
Programming with dependent types:
passing fad or useful tool?

Xavier Leroy

INRIA Paris-Rocquencourt

IFIP WG 2.8, 2009-06

X. Leroy (INRIA) Dependently-typed programming 2009-06 1 / 22



Dependent types

In a very general sense: all frameworks enabling programmers to

Write functional programs;

State logical properties about them;

Prove these properties with machine assistance.

Examples: most proof assistants (HOL, Isabelle/HOL, Coq, Agda, . . . )

Unquestionably a Very Very Good Thing.

X. Leroy (INRIA) Dependently-typed programming 2009-06 2 / 22



Dependent types

In a narrower sense: all frameworks enabling programmers to

Include logical propositions within data and function types;

Include proof terms within data and functions.

Foundations: Martin-Löf’s type theory.

Examples: Coq, Agda, Epigram (general); Dependent ML (restricted).

This talk: an experience report on using / not using dependent types when
programming and verifying functional programs in Coq.

X. Leroy (INRIA) Dependently-typed programming 2009-06 3 / 22



Dependent function types in Coq

Functions can take proof terms as arguments. . .

div: forall (a: Z) (b: Z), b <> 0 -> Z.

This function must be called with 3 arguments: 2 integers a, b and a proof
that b <> 0.

X. Leroy (INRIA) Dependently-typed programming 2009-06 4 / 22



Dependent data types in Coq

The “subset” type: { x : T | P x }

Data of this type are pairs of an x of type T and a proof that the
proposition P x holds. (With P : T -> Prop.)

proj1_sig: {x: T | P x} -> T
proj2_sig: forall (p: {x: T | P x}), P (proj1_sig x)

Examples:

Definition Zstar : Type := { x : Z | x <> 0 }.
Definition Zplus : Type := { x : Z | x >= 0 }.

X. Leroy (INRIA) Dependently-typed programming 2009-06 5 / 22



Dependent data types in Coq

More generally: dependent record types.

Record cfg: Type := mk_cfg {
graph: nat -> option instruction;
entrypoint: nat;
lastnode: nat;
entrypoint_exists: graph entrypoint <> None;
graph_finite: forall n, n > lastnode -> graph n = None

}

X. Leroy (INRIA) Dependently-typed programming 2009-06 6 / 22



Dependent data types in Coq

The primitive notion: inductive definitions where constructors receive
dependent function types.

Inductive sig (A: Type) (P: A -> Prop) : Type :=
| exist:

forall (x: A), P x -> sig A P.

Definition proj1_sig (A: Type) (P: A -> Prop) (s: sig A P) : A :=
match s with exist x p => x end.

X. Leroy (INRIA) Dependently-typed programming 2009-06 7 / 22



Putting all together

The general shape of a function with precondition P and postcondition Q:

forall (x1 : A1) . . . (xn : An), P x1 . . . xn → {y : B | Q x1 . . . xn y}

Example:

divrem: forall (a b: Z), b > 0 ->
{ qr: Z * Z | 0 <= snd(qr) < b

/\ a = b * fst(qr) + snd(qr) }

X. Leroy (INRIA) Dependently-typed programming 2009-06 8 / 22



Using dependently-typed functions

The hard way: write proof terms by hand.

Lemma square_nonzero_pos:
forall (y: Z), y <> 0 -> y * y > 0.

Proof.
(* interactive proof *)

Qed.

Definition f (x: Z) (y: Z) (nonzero: y <> 0) : Z :=
fst (proj1_sig (divrem x (y*y) (square_nonzero_pos y nonzero))).

X. Leroy (INRIA) Dependently-typed programming 2009-06 9 / 22



Using dependently-typed functions

The easier way: Matthieu Sozeau’s Program mechanism.

Program Definition f (x: Z) (y: Z) (nonzero: y <> 0) : Z :=
fst (divrem x (y*y) _ ).

Next Obligation.
(* interactive proof of

Z -> forall y : Z, y <> 0 -> y * y > 0 *)
Qed.

X. Leroy (INRIA) Dependently-typed programming 2009-06 10 / 22



My practical experience

Dependent types work great to automatically propagate invariants

Attached to data structures (standard);

In conjunction with monads (new!).

In most other cases, plain functions + separate theorems about them are
generally more convenient.

X. Leroy (INRIA) Dependently-typed programming 2009-06 11 / 22



Attaching invariants to data structures

The example of AVL trees:

Inductive tree: Type :=
| Leaf: tree
| Node: tree -> A -> tree -> tree.

Inductive bst: tree -> Prop := ...
(* to be a binary search tree *)

Inductive avl: tree -> Prop := ...
(* to be balanced according to the AVL criterion *)

X. Leroy (INRIA) Dependently-typed programming 2009-06 12 / 22



Attaching invariants to data structures

Need to prove that all base operations over trees preserve the bst and avl
invariants:

Definition add (x: A) (t: tree) : tree := ...

Lemma add_invariant:
forall x t, bst t /\ avl t -> bst (add x t) /\ avl (add x t).

Problem: users must also prove that their functions using the base
operations preserves these invariants. Without strong proof automation,
this entails a lot of manual proof.

X. Leroy (INRIA) Dependently-typed programming 2009-06 13 / 22



Dependent types to the rescue

An internal implementation using plain data structures:

Inductive raw_tree: Type := ...
Inductive bst: raw_tree -> Prop := ...
Inductive avl: raw_tree -> Prop := ...
Definition raw_add (x: A) (t: raw_tree) : raw_tree := ...
Lemma raw_add_invariant:
forall x t, bst t /\ avl t ->

bst (raw_add x t) /\ avl (raw_add x t).

An external interface using a subset type, guaranteeing that the invariant
always holds in well-typed user code:

Definition tree : Type := { t: raw_tree | bst t /\ avl t }.
Definition add (x: A) (t: tree) : tree :=
match t with exist rt INV =>

exist (raw_add x rt) (raw_add_invariant x rt INV)
end.

X. Leroy (INRIA) Dependently-typed programming 2009-06 14 / 22



Attaching invariants to monadic computations
Example: incremental construction of a control-flow graph by successive
additions of nodes. A job for the state monad!

Record cfg : Type := mk_cfg {
graph: nat -> option instr;
nextnode: nat;
wf: forall n, n >= nextnode -> graph n = Node }.

Definition mon (A: Type) : Type := cfg -> A * cfg.

Definition ret (A: Type) (x: A) : mon A :=
fun s => (x, s).

Definition bind (A B: Type) (x: mon A) (f: A -> mon B): mon B :=
fun s => let (r, s’) := x s in f r s’.

Program Definition add (i: instr) : mon nat :=
fun s => (nextnode s,

mk_cfg (update (graph s) (nextnode s) (Some i))
(nextnode s + 1) _).

X. Leroy (INRIA) Dependently-typed programming 2009-06 15 / 22



Monotone evolution of the state

Crucial property: nodes are added to the CFG, but existing nodes are
never modified.

Definition cfg_incl (s1 s2: cfg) : Prop :=
nextnode s1 <= nextnode s2
/\ forall n i, graph s1 n = Some i -> graph s2 n = Some i.

Easy to prove that ret, bind, add satisfy this property:

Lemma add_incr:
forall s i n s’, add i s = (n, s’) -> cfg_incl s s’.

But users need to prove that similar properties hold for all the functions
they define using this monad . . .

X. Leroy (INRIA) Dependently-typed programming 2009-06 16 / 22



Dependent types to the rescue

Attach an invariant to the monad (new!):

Definition mon (A: Type) : Type :=
forall (s: cfg), { r: A * cfg | cfg_incl s (snd r) }

The definitions of the monad operations include some proofs (for ret and
bind: reflexivity and transitivity of cfg_incl, respectively).

Then, the cfg_incl property comes for free for all user code written with
this monad!

X. Leroy (INRIA) Dependently-typed programming 2009-06 17 / 22



What doesn’t work well with dependent types

Issue 1: Where to put preconditions?

div: forall (a b: Z), b <> 0 -> Z

div: Z -> { b: Z | b <> 0 } -> Z

No best choice between these two presentations.

X. Leroy (INRIA) Dependently-typed programming 2009-06 18 / 22



What doesn’t work well with dependent types

Issue 2: what properties shoud be attached to the result of a function?
what properties should be stated separately?

Extreme example: very basic functions such as list append have a huge
number of properties of interest

app nil l = l
app l nil = l
app (app l1 l2) l3 = app l1 (app l2 l3)
app l1 l2 = l2 -> l1 = nil
rev (app l1 l2) = app (rev l2) (rev l1)
length (app l1 l2) = length l1 + length l2
In x (app l1 l2) <-> In x l1 \/ In x l2
...

If we were to give a dependent type to app, which of these should be
attached to the result?
(Assuming they can be attached at all – not true for associativity, e.g.)

X. Leroy (INRIA) Dependently-typed programming 2009-06 19 / 22



What properties should be attached to the result of a
general-purpose function?

Sensible answer: none!

Almost sensible answer: an inductive predicate describing the recursion
pattern of the function.

Inductive p_app: list A -> list A -> list A -> Prop :=
| p_app_nil: forall l, p_app nil l l
| p_app_cons: forall l1 l2 l3 a,

p_app l1 l2 l3 -> p_app (a :: l1) l2 (a :: l3).

Fixpoint app (l1 l2: list A): { l | p_app l1 l2 l } := ...

Enables replacing some reasoning over the function app by reasoning over
the inductive predicate p_app. For app, nothing is gained. Sometimes
useful for more complex recursion patterns, though.

X. Leroy (INRIA) Dependently-typed programming 2009-06 20 / 22



Summary

Dependent types are a “niche” feature with a couple of convenient uses:

Propagating data invariants attached to data structures.

Propagating input-output invariants through monadic computations.

(Note that proof automation more powerful than Coq’s could, in principle,
achieve the same propagation without dependent types.)

In all other cases, I believe it’s just more effective to write plain
ML/Haskell-style data structures and functions, and separately state and
prove properties about them.

X. Leroy (INRIA) Dependently-typed programming 2009-06 21 / 22



Some open questions

Any other good “design patterns” for dependent types?

Any other good examples of dependently-typed monads?

X. Leroy (INRIA) Dependently-typed programming 2009-06 22 / 22


