The Chocolate Game

Ralf Hinze

Computing Laboratory, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD, England
ralf.hinze@comlab.ox.ac.uk
http://www.comlab.ox.ac.uk/ralf.hinze/

June 2009

The Chocolate Game

$$
\begin{array}{rllll}
(11,5) & \mapsto(11,3) & \mapsto(7,3) & \mapsto(6,3) & \mapsto(3,3) \\
& \mapsto(3,2) & \mapsto(2,2) & \mapsto(1,2) & \mapsto(1,1)
\end{array}
$$

Impartial Two-Person Games

Winning and losing

- The chocolate game is an example of an
impartial two-person game.
- A game is fixed by a set of positions and a set of moves.

$$
\text { move :: Pos } \rightarrow \text { [Pos] }
$$

- The two players take it in turn to make a move.
- The games ends when it is not possible to make a move.
- The player whose turn it is loses.

Winning and losing positions

- A position is a losing position iff every move leads to a winning position.
- From a winning position there is at least one move to a losing position.

Sum games

- The chocolate game is an example of a sum game.
- It consists of two components: the left and the right game.
- A move consists in making a move
- either in the left or
- in the right game.
- A position in the combined game is a pair of positions.

Sprague-Grundy numbers

- Idea: assign a natural number to each component position so that (i, j) is a losing position iff $\mathrm{sg} \mathrm{i}=\mathrm{sg} \mathrm{j}$.
- Every move from a losing position makes the numbers unequal.
- For every winning position there is a move that makes them equal.

$$
\begin{aligned}
& \operatorname{sg} \mathrm{p}=\operatorname{mex}\{\mathrm{sg} \mathrm{q} \mid \mathrm{q} \leftarrow \operatorname{move} \mathrm{p}\} \\
& \operatorname{mex} \mathrm{x}=\operatorname{head}\langle\mathrm{n} \mid \mathrm{n} \leftarrow \mathrm{nat}, \mathrm{n} \notin \mathrm{x}\rangle
\end{aligned}
$$

$$
\operatorname{sg} \mathrm{i}=(\mathrm{frac})_{\mathrm{i}} \text { where } \text { frac }=\text { nat } \curlyvee \text { frac }
$$

References

- R. Sprague. Über mathematische Kampfspiele. Tohoku Mathematical Journal 41:438-444.
- P.M. Grundy. Mathematics and games. Eureka 2:6-8, 1939. Reprinted, 27:9-11, 1964, see also http://www.archim.org.uk/eureka/27/games.html.
- P.M. Grundy and C.A.B Smith. Disjunctive games with the last player losing. Proc. Cambridge Philos. Soc., 52:527-533, 1956.
- R. Backhouse and D. Michaelis. A Calculational

Presentation of Impartial Two-Person Games. Abstract presented at RelMiCS8, 2005.

