

let y = E in B
 Typecheck E:
 Find E’s type, T

 Gather type constraints C from E

 Generalise over as, free in T but not in

 Infer type f :: forall as. C => T

eg (a -> a)

eg (Num a)

eg forall a. Num a => a->a

let y = E in B
 Typecheck E:
 Find E’s type, T

 Gather type constraints C from E

 Generalise over as, free in T but not in

 Infer type f :: forall as. C => T

 BUT such a type is TOO GENERAL

data T a where
C :: T Bool
D :: T a

f :: T a -> a -> Bool
f = \v.\x. let y = not x

in case v of
C -> y
D -> True

data T a where
C :: T Bool
D :: T a

f :: T a -> a -> Bool
f = \v.\x. let y :: (a~Bool) => Bool

y = not x
in case v of

C -> y
D -> True

let y = E in B
 No in-place unification at all

 Gather all constraints (no matter how innocuous)

 Abstract over them

 Result:
 Large incomprehensible types

 Type errors postponed to call sites

let y = E in B
 Typecheck E:
 Find E’s type, T

 Gather type constraints C from E

 Simplify C “as much as possible”, giving D

 Infer type f :: forall as. D => T

 But “as much as possible” may vary
depending on how much of the rest of the
program we’ve seen
 D [a] instance D [a] Int where ...

 F [a] ~ Int type instance F [a] Int = Int

 The info about b may come from B; but we
can’t typecheck B until we’ve decided a tpye
for f.

let y = E in B

 Nasty cases only occur when there are type
variables free in the environment; ie, in nested
let/where bindings

 Proposal:
 Never generalise local let/where bindings (except

where there is a type signature)
 Always generalise top-level bindings

 Note: many consider it good style to provide a
type signature on all top level bindings, so
Proposal amounts to: all polymorphism is
explicitly declared

 Proposal:
 Never generalise local let/where bindings (except

where there is a type signature)

 Always generalise top-level bindings

 Questions:
 How many existing programs would break?
 answer: 10%

 How inconvenient would the restriction be?
 SPJ answer: not inconvenient

Give up something
that you are used to having

but don’t really use

in exchange for

Substantial simplification of
the language design

