Edit distance

$$
\text { dist :: Eq a => [a] } \rightarrow \text { [a] } \rightarrow \text { Int }
$$

Main> dist "abcd" "xaby"
4
Main> dist "" "monkey"
6

Main> dist "Haskell" ""
7

Main> dist "hello" "hello"
0

Edit distance implementation

```
dist :: Eq a => [a] -> [a] - challenge #0:
dist [] ys = lengt implement a polynomial
dist xs [] = lengtr time version
dist (x:xs) (y:ys)
    | x == y = dist xs ys
    | otherwise = (1 + dist (. ) ys)
        `min` (1 + dist xs (y:ys))
```

two recursive calls:
exponential time
either insert y or delete x

How to test? -- "Test Oracle"

- Formal specification

think QuickCheck

- Executable
- Efficient (polynomial time)
comparing against naive dist is no good...
challenge \#1: find an practical way to test your implementation!
(answer)

An efficient dist

dist : : Eq a => [a] -> [a] -> Int dist xs ys = head (dist xs ys)
dists :: Eq a => [a] -> [a] -> [Int]
distr [] gs $=$ [$n, n-1.0]$ where $n=$ length ys dist (x:xs) ys = line x gs (dists $x s y s)$
line :: Eq a => a -> [a] -> [Int] -> [Int]
line x [] [d] $=[d+1]$
line x ($y: y s)$ (dads)

$$
\mathrm{l}=\mathrm{x}=\mathrm{y} \quad=\text { head os }: \mathrm{ds} \text { ' }
$$

$\begin{aligned} & \text { I otherwise } \\ & \text { here }\end{aligned}=\left(1+\left(d^{\prime} \min\right.\right.$ ' testing
where

$$
\mathrm{ds}{ }^{\prime}=\text { line } \times \mathrm{ys} \mathrm{ds}
$$

upper-bound: easy, lower-bound: hard

Naive dist

dist :: Eq a => [a] -> [a] -> Int dist [] ys = length ys
base case \#1
dist xs [] = length xs
base case \#2
dist (x:xs) (y:ys)

$$
\mid x==y \quad=\text { dist } x s \text { ys }
$$

step case \#1
dist (x:xs) (y:ys)
| otherwise
$=(1+\operatorname{dist}(x: x s) y s)$
`min` (1 + dist xs (y:ys))

"Inductive Testing"

prop_BaseXs (ys :: String) = dist [] ys == length ys
prop_BaseYs (xs :: String) = dist xs [] == length xs
prop_StepSame x xs (ys :: String) = dist (x:xs) (x:ys) == dist xs ys
specialization
prop_StepDiff x y xs (ys : : String) = x /= y ==> dist (x:xs) (y:ys) == (1 + dist (x:xs) ys) `min`
(1 + dist xs (y:ys))

(Alternative)

$$
\begin{aligned}
& \text { distFix : : Eq a => ([a] -> [a] -> Int) } \\
& \text {-> ([a] -> [a] -> Int) } \\
& \text { distFix } f \text { [] ys }=\text { length ys } \\
& \text { distFix f xs [] = length xs } \\
& \text { distFix f (x:xs) (y:ys) }
\end{aligned}
$$

prop_Dist xs (ys :: String) = dist xs ys == distFix dist xs ys

What is happening?

Applications

- Search algorithms
- SAT-solvers
- other kinds of solvers
- Optimization algorithms
- LP-solvers
- (edit distance)
- Symbolic algorithms?
- substitution, unification, anti-unification, ...

