

7

Main> dist ”abcd” ”xaby”

Main> dist ”” ”monkey”

Main> dist ”Haskell” ””

Main> dist ”hello” ”hello”
0

Edit distance

dist :: Eq a => [a] -> [a] -> Int

4

6

smallest number of
inserts/deletes to turn

arg#1 into arg#2

Edit distance implementation

dist :: Eq a => [a] -> [a] -> Int
dist [] ys = length ys
dist xs [] = length xs
dist (x:xs) (y:ys)
 | x == y = dist xs ys
 | otherwise = (1 + dist (x:xs) ys)
 `min` (1 + dist xs (y:ys))

either insert y or
delete xtwo recursive calls:

exponential time

challenge #0:
implement a polynomial

time version

How to test? ”Test Oracle”

 Formal specification
 Executable
 Efficient (polynomial time)

think
QuickCheck

challenge #1: find an
practical way to test
your implementation!

comparing
against naive dist

is no good...

(answer)

An efficient dist

dist :: Eq a => [a] -> [a] -> Int
dist xs ys = head (dists xs ys)

dists :: Eq a => [a] -> [a] -> [Int]
dists [] ys = [n,n-1..0] where n = length ys
dists (x:xs) ys = line x ys (dists xs ys)

line :: Eq a => a -> [a] -> [Int] -> [Int]
line x [] [d] = [d+1]
line x (y:ys) (d:ds)
 | x == y = head ds : ds'
 | otherwise = (1+(d`min`head ds')) : ds'
 where
 ds' = line x ys ds

dynamic
programming

testing
upper-bound: easy,
lower-bound: hard

Naive dist

dist :: Eq a => [a] -> [a] -> Int
dist [] ys = length ys

dist xs [] = length xs

dist (x:xs) (y:ys)
 | x == y = dist xs ys

dist (x:xs) (y:ys)
 | otherwise = (1 + dist (x:xs) ys)
 `min` (1 + dist xs (y:ys))

base case #1

step case #2

base case #2

step case #1

”Inductive Testing”

prop_BaseXs (ys :: String) =
 dist [] ys == length ys

prop_BaseYs (xs :: String) =
 dist xs [] == length xs

prop_StepSame x xs (ys :: String) =
 dist (x:xs) (x:ys) == dist xs ys

prop_StepDiff x y xs (ys :: String) =
 x /= y ==>
 dist (x:xs) (y:ys) == (1 + dist (x:xs) ys) `min`
 (1 + dist xs (y:ys))

specialization

(Alternative)

distFix :: Eq a => ([a] -> [a] -> Int)
 -> ([a] -> [a] -> Int)
distFix f [] ys = length ys
distFix f xs [] = length xs
distFix f (x:xs) (y:ys)
 | x == y = f xs ys
 | otherwise = (1 + f (x:xs) ys)
 `min` (1 + f xs (y:ys))

prop_Dist xs (ys :: String) =
 dist xs ys == distFix dist xs ys

no recursion

What is happening?

bugs

Applications

 Search algorithms
 SATsolvers
 other kinds of solvers

 Optimization algorithms
 LPsolvers
 (edit distance)

 Symbolic algorithms?
 substitution, unification, antiunification, ...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

