
Defunctionalized Interpreters for
Call-by-Need Programming Languages

— a functional pearl with hygiene —

Olivier Danvy (Aarhus University)
Kevin Millikin (Google)

Johan Munk (Arctic Lake Systems)

IFIP WG 2.8 12 June 2009
1

The contributions

• A hygienic standard call-by-need reduction
for the λ-calculus.

• The notion of explicit evaluation contexts.

• Towards an abstract machine
and a natural semantics for call by need
through refocusing, refunctionalization, etc.

2

The starting point

The standard call-by-need reduction of

• Ariola and Felleisen, 1997
JFP 7(3):265-301

• Maraist, Odersky and Wadler, 1998
JFP 8(3):275-317

3

The starting point

The standard call-by-need reduction of

• Ariola and Felleisen, 1997
JFP 7(3):265-301

• Maraist, Odersky and Wadler, 1998
JFP 8(3):275-317

The goal: to extract a computational content.

4

Syntax

T ::= x | λx.T | T T | let x be T in T

A ::= λx.T | let x be T in A

E ::= [] | E T |

let x be T in E |

let x be E in E[x]

5

Axioms

(λx.T) T1 → let x be T1 in T

let x be λx.T in E[x] → let x be λx.T in E[λx.T]

(let x be T1 in A) T2 → let x be T1 in A T2

let x2 be let x1 be T

in A

in E[x2]

→ let x1 be T

in let x2 be A

in E[x2]

6

In practice

...too hard to test!

7

La même chose, with integers

Syntax:

T ::= pnq | succ T | x | . . .

A ::= pnq | λx.T | let x be T in A

E ::= [] | succ E | E T | . . .

8

La même chose, with integers

Three extra axioms:

succ pnq → pn ′
q

where n ′ = n + 1

let x be pnq in E[x] → let x be pnq in E[pnq]

succ (let x be T in A) → let x be T in succ A

9

Some exegesis

1. The potential redexes

2. Barendregt’s variable convention

3. The evaluation contexts

10

1. The potential redexes

A helpful grammar:

R ::= succ A | A T | let x be A in E[x]

where

A ::= pnq | λx.T | let x be T in A

11

2. Barendregt’s variable convention (1/3)

It is assumed, e.g., in

(let x be T1 in A) T2 → let x be T1 in A T2

let x be λx.T in E[x] → let x be λx.T in E[λx.T]

12

2. Barendregt’s variable convention (2/3)

One axiom, however, yields terms
that do not satisfy the convention:

let x be λx.T in E[x] → let x be λx.T in E[λx.T]

13

2. Barendregt’s variable convention (3/3)

Simple fix:
let x be λx.T

in E[x]

→ let x be λx.T

in E[λx ′.T ′]

where λx ′.T ′ = freshen up(λx.T)

14

3. The evaluation contexts

The grammar of contexts is unusual
because

it includes identifiers within (delimited) contexts.

15

3. The evaluation contexts

The grammar of contexts is unusual
because

it includes identifiers within (delimited) contexts.

• These contexts are constructed outside in.

• All the others are constructed inside out.

16

Towards explicit evaluation contexts

Analogy with explicit substitutions:
delay the actual substitution.

Here: delay the recomposition, i.e.,
keep E instead of having λx.E[x].

Joint work with Kristoffer Rose
17

Contexts as lists of frames

F ::= succ � |

� T |

let x be � in Coi[x] |

let x be T in �

Coi ::= • | F ◦ Coi

Cio ::= • | F ◦ Cio

18

Recomposition of outside-in contexts

〈•, T〉oi ↑rec T

〈Coi, T〉oi ↑rec T0

〈(� T1) ◦ Coi, T〉oi ↑rec T0 T1

. . .

19

Recomposition of inside-out contexts

〈•, T〉io ↑rec T

〈(� T1) ◦ Cio, T〉io ↑rec 〈Cio, T T1〉io

. . .

20

Decomposition

A convenient format: as a transition system.

Accepting states: 〈T, Cio〉term

〈Cio, A〉context

〈Cio, (Coi, x)〉reroot

Final states: 〈A〉answer

〈R, Cio〉decomposition

21

One-step reduction

T 7→let T ′ if






〈T, •〉term ↓∗dec 〈R, Cio〉decomposition

(R, R ′) ∈ ...the axioms...

〈Cio, R ′〉io ↑∗rec T ′

22

Reduction-based evaluation

T 7→∗
let A

23

Good news

The rest is (essentially) mechanical.

Reference: Defunctionalized Interpreters for
Programming Languages, ICFP’08.

24

The syntactic correspondence

• Refocusing: from reduction semantics to
small-step abstract machine

• Lightweight fusion: from small-step abstract
machine to big-step abstract machine

• Transition compression: from big-step abstract
machine to big-step abstract machine

25

The functional correspondence

• Refunctionalization: from abstract machine to
continuation-passing interpreter

• Back to direct style: from continuation-passing
interpreter to first-order natural semantics

• Refunctionalization: from first-order natural
semantics to higher-order natural semantics

26

Main results

• A readable, hygienic abstract machine.

• A readable, hygienic natural semantics.

27

Orthogonal issues

• Adding a garbage-collection rule

• Introducing a heap

• Introducing a store

28

Variants

Ensuring hygiene.

29

Latest news

More aggressive transition compression (using a
global invariant) makes outside-in contexts
unnecessary.

Good news for Simon’s head:
a continuation-free account of lazy evaluation.

Work in progress.

30

Conclusion

• The standard call-by-need reduction of
the lambda-calculus, plus hygiene, can be
uniformly mirrored into an abstract machine
and a natural semantics that make sense.

• Further transition compression leads to a
continuation-free account of call by need.

Thank you.

31

