Relational semantics for effect-based program transformations: higher-order store

Martin Hofmann

Ludwig-Maximilians-Universität München

IFIP Working Group 2.8, June 2009

Effect-dependent program equivalences

$$
x=e ; y=e ; e^{\prime}(x, y) \quad \text { is equivalent to } \quad x=e ; e^{\prime}(x, x)
$$

provided that x, y are fresh and

- e 's reads and writes are disjoint and
- e does not allocate, or
- none of the above, but somehow e^{\prime} doesn't care.

Effect-dependent program equivalences

$$
x=e ; y=e ; e^{\prime}(x, y) \quad \text { is equivalent to } \quad x=e ; e^{\prime}(x, x)
$$

provided that x, y are fresh and

- e's reads and writes are disjoint and
- e does not allocate, or
- none of the above, but somehow e^{\prime} doesn't care.

Ongoing research programme:

- Justify such conditional equivalences by interpreting effectful types as relations ("logical relation")
- Global integer references (APLAS06)
- Dynamically allocated integer references with regions (PPDP07)
- Ultimate goal: Dynamically allocated references of arbitrary type.

Acknowledgements: Nick Benton, Lennart Beringer, Andrew Kennedy (collaborators)
MOBIUS (IST-FET-15905).

This talk

- Global references of arbitrary (including functional) type
- Relational semantics requires solving mixed-variance equations.
- Existing solution theory found insufficient.
- Extension to solution theory
- Definition of logical relation that proves soundness of effect-dependent program equivalences
- Fly in the ointment: in latent effects of stored functions we cannot distinguish reading and writing.

Syntax

$$
\begin{aligned}
e::= & x|n| \text { true } \mid \text { false } \mid x_{1} \text { op } x_{2}|()|\left(x_{1}, x_{2}\right)|x .1| \\
& x .2\left|x_{1} x_{2}\right| \text { let } x \Leftarrow e_{1} \text { in } e_{2}|!\ell| \ell:=x \mid \\
& \text { if } x \text { then } e_{2} \text { else } e_{3} \mid \text { rec } f \text { x.e } \mid \lambda x . e
\end{aligned}
$$

In examples we use ML notation such as this

```
val f = fn g => fn n =>
    if n=0 then 1 else n * g (n-1);
val r = ref (fn x => 0);
val fac = fn n => (r := (fn x => f (!r) x); !r n);
```


Denotational semantics

$$
\begin{aligned}
\mathbf{V} \cong & \{\text { wrong }\}+\operatorname{unit}(\mathbf{1})+\operatorname{int}(\mathbb{Z})+\operatorname{bool}(\mathbb{B})+ \\
& \operatorname{pair}(\mathbf{V} \times \mathbf{V})+\operatorname{fun}(\mathbf{V} \rightarrow \mathbf{C}) \\
\mathbf{C}= & \mathbf{S} \rightarrow(\mathbf{S} \times \mathbf{V})_{\perp} \\
\mathbf{S}= & \mathbb{L} \rightarrow \mathbf{V}
\end{aligned}
$$

\mathbf{V} is the least predomain solving this. Predomain: CPO not nec. with \perp. NB C happens to have least element $\lambda x . \perp$. We have retracts $p_{i}: \boldsymbol{\phi} \rightarrow \boldsymbol{\phi}$ where $\boldsymbol{\phi} \in\{\mathbf{V}, \mathbf{S}, \mathbf{C}\}$.

Properties of the retracts

$$
\begin{aligned}
p_{i}(\text { wrong }) & =\operatorname{wrong} \\
p_{i}(\operatorname{int}(n)) & =\operatorname{int}(n) \\
p_{i}(\text { unit }()) & =\operatorname{unit}() \\
p_{i}(\operatorname{bool}(x)) & =\operatorname{bool}(x) \\
p_{i}\left(\operatorname{pair}^{\left.\left(v_{1}, v_{2}\right)\right)}\right. & =\operatorname{pair}\left(p_{i}\left(v_{1}\right), p_{i}\left(v_{2}\right)\right) \\
p_{i}(f u n(f)) & =\operatorname{fun}\left(p_{i} ; f ; p_{i}\right) \\
p_{0}(f)(s) & =\perp \\
p_{i+1}(f)(s) & =\perp \operatorname{if} f\left(p_{i}(s)\right)=\perp \\
p_{i+1}(f)(s) & =\left(p_{i}\left(s_{1}\right), p_{i}(v)\right) \text { if } f\left(p_{i}(s)\right)=\left(s_{1}, v\right) \\
p_{i}(s)(\ell) & =p_{i}(s(\ell))
\end{aligned}
$$

Moreover, $p_{i} \sqsubseteq p_{i+1}$ and $p_{i} ; p_{j}=p_{\min (i, j)}$ and $\bigsqcup_{i} p_{i}(x)=x$ for all $x \in \mathbf{V} \cup \mathbf{S} \cup \mathbf{C}$.

Useful for proving properties/defining functions over \mathbf{V}.

Semantics of untyped language

$$
\llbracket e \rrbracket \theta \in \mathbf{C} \text { when } \theta: F V(e) \rightarrow \mathbf{V}
$$

$\llbracket x \rrbracket \theta s$	$=(s, \theta(x))$
$\llbracket x y \rrbracket \theta s$	$=f(\theta(y)) s$ where $\theta(x)=$ fun (f)
$\llbracket l e t x \Leftarrow e_{1}$ in $e_{2} \rrbracket \theta s$	$=\llbracket e_{2} \rrbracket \theta[x \mapsto v] s_{1}$ when $\llbracket e_{1} \rrbracket \theta s=\left(s_{1}, v\right)$
【if x then e_{2} else $e_{3} \rrbracket \theta$	$=\llbracket e_{2} \rrbracket \theta$, when $\theta(x)=$ bool(true)
$\llbracket!\ell \rrbracket \theta$ s	$=(s, s . \ell)$
$\llbracket \ell:=y \rrbracket \theta s$	$=(s[\ell \mapsto \theta(y)]$, unit ()$)$
$\llbracket \mathrm{rec} f \mathrm{x} . \mathrm{e} \rrbracket \mathrm{\theta}$	$\begin{aligned} = & (s, \text { fun }(g)) \text { where } g=\bigsqcup_{i} g_{i} \text { and } \\ & g_{0}=\lambda x . \lambda s . \perp \text { and } \end{aligned}$
	$g_{i+1}=\lambda v . \llbracket e \rrbracket \theta\left[x \mapsto v, f \mapsto f u n\left(g_{i}\right)\right]$
$\llbracket \lambda x . e \rrbracket \theta s$	$=(s, f u n(f))$ where $f v=\llbracket e \rrbracket \theta[x \mapsto v]$
$\llbracket e \rrbracket \theta s$	$=$ wrong, if no clause applies

Types

Effects (ε) : Finite subsets of $\left\{r d_{\ell}, w r_{\ell} \mid \ell \in \mathbb{L}\right\}$.
Types:

$$
A, B, C::=\text { int } \mid \text { unit } \mid \text { bool }|A \times B| A \xrightarrow{\varepsilon} B
$$

Store type $(\Sigma): \ell_{1}: A_{1}, \ldots, \ell_{n}: A_{n}$.
Typing context $(\Theta): x_{1}: A_{1}, \ldots, x_{m}: A_{m}$.
Typing judgement: $\Pi ; \Sigma ; \Theta \vdash e: A, \varepsilon$. Here $\Pi \subseteq \mathbb{L}$, all ℓ appearing in jugement are listed in Π.

Typing rules

$$
\begin{align*}
& \overline{\Pi ; \Sigma ; \Theta \vdash n: \text { int }}(\mathrm{T}-\mathrm{INT}) \\
& \frac{x \in \operatorname{dom}(\Theta) \quad \Pi \vdash \Theta o k}{\Pi ; \Sigma ; \Theta \vdash x: \Theta(x)}(\mathrm{T}-\mathrm{VAR}) \\
& \frac{\Pi ; \Sigma ; \Theta}{\Pi ; \Sigma ; \Theta \vdash!\ell: \Sigma(\ell),\left\{r d_{\ell}\right\}}(\mathrm{T}-\mathrm{READ}) \\
& \frac{\Pi ; \Sigma ; \Theta \vdash y: \Sigma(\ell)}{\Pi ; \Sigma ; \Theta \vdash \ell:=y: \text { unit, }\{w r \ell\}}(\mathrm{T}-\mathrm{WRITE}) \\
& \frac{\Pi ; \Sigma ; \Theta \vdash e: A, \varepsilon_{1} \quad A<: B \quad \varepsilon_{1} \subseteq \varepsilon_{2}}{\Pi ; \Sigma ; \Theta \vdash e: B, \varepsilon_{2}}(\mathrm{~T}-\mathrm{SUB}) \\
& \frac{\Pi ; \Sigma ; \Theta \vdash x: A \stackrel{\varepsilon}{\rightarrow} B \quad \Pi ; \Sigma ; \Theta \vdash y: A}{\Pi ; \Sigma ; \Theta \vdash x y: B, \varepsilon}(\mathrm{~T}-\mathrm{APP})
\end{align*}
$$

Typing rules, cont'd

$$
\begin{aligned}
& \frac{\Pi ; \Sigma ; \Theta, x: A \vdash e: B, \varepsilon}{\Pi ; \Sigma ; \Theta \vdash \lambda x . e: A \xrightarrow{\varepsilon} B}(\mathrm{~T}-\mathrm{LAM}) \\
& \begin{array}{c}
\Pi ; \Sigma ; \Theta \vdash x: \text { boole } \\
\Pi ; \Sigma ; \Theta \vdash \text { if } x \text { then } e_{1} \text { else } e_{2}: A, \varepsilon \\
\Pi ; \mathrm{T}-\mathrm{IF}) \\
\frac{\Pi ; \Sigma ; \Theta \vdash e_{1}: A_{1}, \varepsilon_{1} \quad \Pi ; \Sigma ; \Theta, x: A_{1} \vdash e_{2}: A_{2}, \varepsilon_{2}}{\Pi ; \Sigma ; \Theta \vdash \operatorname{let} x \Leftarrow e_{1} \text { in } e_{2}: A_{2}, \varepsilon_{1} \cup \varepsilon_{2}}(\mathrm{~T}-\mathrm{LET}) \\
\frac{\Pi ; \Sigma ; \Theta \vdash x: A \quad \Pi ; \Sigma ; \Theta \vdash y: B}{\Pi ; \Sigma ; \Theta \vdash(x, y): A \times B}(\mathrm{~T}-\mathrm{PAIR}) \\
\frac{\Pi ; \Sigma ; \Theta, f: A \xrightarrow{\varepsilon} B, x: A \vdash e: B, \varepsilon}{\Pi ; \Sigma ; \Theta \vdash \operatorname{rec} f x . e: A \xrightarrow{\varepsilon} B}(\mathrm{~T}-\mathrm{REC})
\end{array}
\end{aligned}
$$

Subtyping

$$
\begin{gathered}
\overline{A<: A}(\mathrm{~S}-\mathrm{REFL}) \\
\frac{A_{1}<: A_{2} \quad B_{1}<: B_{2}}{A_{1} \times B_{1}<: A_{2} \times B_{2}}(\mathrm{~S}-\mathrm{PROD}) \\
\frac{A_{2}<: A_{1} \quad B_{1}<: B_{2} \quad \varepsilon_{1} \subseteq \varepsilon_{2}}{A_{1} \xrightarrow{\varepsilon_{1}} B_{1}<: A_{2} \xrightarrow{\varepsilon_{2}} B_{2}}(\mathrm{~S}-\mathrm{ARR})
\end{gathered}
$$

Example again

$$
\begin{aligned}
& \text { val } f=f n g=>f n n=> \\
& \text { if } \mathrm{n}=0 \text { then } 1 \text { else } \mathrm{n} * \mathrm{~g}(\mathrm{n}-1) \text {; } \\
& \text { val } r=r e f(f n \times 10) \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r} ; \mathrm{r}: \text { int } \xrightarrow{r d_{\mathrm{r}}} \text { int; } \emptyset \vdash \mathrm{f}:\left(\text { int } \xrightarrow{r d_{r}} \text { int }\right) \rightarrow \text { int } \xrightarrow{r d_{r}} \text { int } \\
& \mathrm{r} ; \mathrm{r}: \text { int } \xrightarrow{r d_{\mathrm{r}}} \text { int; } \emptyset \vdash \mathrm{fac}: \text { int } \xrightarrow{r d_{r}, w r_{r}} \text { int. }
\end{aligned}
$$

More examples: Vector multiplication, event handling.

Equational theory

$$
\frac{\forall \theta . \llbracket e_{1} \rrbracket \theta=\llbracket e_{2} \rrbracket \theta \quad \Pi ; \Sigma ; \Theta \vdash e_{i}: A, \varepsilon}{\Pi ; \Sigma ; \Theta \vdash e_{1}=e_{2}: A, \varepsilon}(\text { E-BASIC })
$$

Sym,Trans, Cong.

$$
\frac{\Pi ; \Sigma ; \Theta \vdash e: A, \varepsilon \quad \operatorname{rds}(\varepsilon) \cap \operatorname{wrs}(\varepsilon)=\emptyset \quad x \notin \operatorname{dom}(\Theta)}{\Pi ; \Sigma ; \Theta \vdash \operatorname{let} x \Leftarrow e \operatorname{in} \operatorname{pair}(x, x)=}(\mathrm{E}-\mathrm{DUP})
$$

$$
\text { let } x \Leftarrow e \text { in let } y \Leftarrow e \text { in } p \operatorname{air}(x, y): A \times A, \varepsilon
$$

Typing rules cont'd

$$
\begin{gathered}
\Pi ; \Sigma ; \Theta \vdash e_{i}: A_{i}, \varepsilon_{i} \quad \forall i=1,2 \cdot \operatorname{rds}\left(\varepsilon_{i}\right) \cap \operatorname{wrs}\left(\varepsilon_{3-i}\right)=\emptyset \\
\quad \operatorname{wrs}\left(\varepsilon_{i}\right) \cap \operatorname{wrs}\left(\varepsilon_{3-i}\right)=\emptyset \\
x_{i} \cap\left(\operatorname{dom}(\Theta) \cup\left\{x_{3-i}\right\}\right)=\emptyset \\
\hline \Pi ; \Sigma ; \Theta \vdash \operatorname{let} x_{1} \Leftarrow e_{1} \text { in let } x_{2} \Leftarrow e_{2} \text { in } \operatorname{pair}\left(x_{1}, x_{2}\right)= \\
\text { let } x_{2} \Leftarrow e_{2} \text { in let } x_{1} \Leftarrow e_{1} \text { in pair }\left(x_{1}, x_{2}\right): A_{1} \times A_{2}, \varepsilon_{1} \cup \varepsilon_{2} \\
\Pi ; \Sigma ; \Theta \vdash e_{1}: A, \emptyset \quad \Pi ; \Sigma ; \Theta, x: A, y: B \vdash e_{2}: C, \varepsilon \quad x \neq y \\
\hline \Pi ; \Sigma ; \Theta \vdash \text { let } \Leftarrow \Leftarrow e_{1} \text { in } \lambda y: B \cdot \operatorname{let} x \Leftarrow e_{1} \text { in } e_{2}= \\
\text { let } x \Leftarrow e_{1} \text { in } \lambda y: B \cdot e_{2}: B \xrightarrow{\varepsilon} C, \emptyset
\end{gathered}
$$

Goal: Semantic interpretation of eq.thy as logical relation.

- Justifies soundness eq.thy for obs.eq.
- Allows for semantic reasoning (justify obs.eq using the log.rel rather than rules)

The logical relation

Define

$\llbracket \Pi ; \Sigma \vdash A \rrbracket \subseteq \mathbf{V} \times \mathbf{V}$
$\llbracket \Pi ; \Sigma \vdash A, \varepsilon \rrbracket \subseteq \mathbf{C} \times \mathbf{C}$
$\llbracket \Pi ; \Sigma \vdash \varepsilon \rrbracket \subseteq$ sets of relations on \mathbf{S}

$$
\begin{aligned}
& \llbracket \Pi ; \Sigma \vdash A, \varepsilon \rrbracket=\operatorname{per}\left(\mathrm{T}_{E}^{O}(A)\right) \\
& \left(f, f^{\prime}\right) \in \mathrm{T}_{E}^{O}(A) \Longleftrightarrow \forall s s^{\prime} s_{1} s_{1}^{\prime} v v^{\prime} . \forall R \in E .\left(s R s^{\prime} \Rightarrow\right. \\
& \quad\left(f s=\perp \Leftrightarrow f^{\prime} s^{\prime}=\perp\right) \wedge \\
& \quad\left((f s)=\left(s_{1}, v\right) \wedge\left(f^{\prime} s^{\prime}\right)=\left(s_{1}^{\prime}, v^{\prime}\right) \Rightarrow s_{1} R s_{1}^{\prime} \wedge\left(v, v^{\prime}\right) \in \llbracket \Pi ; \Sigma \vdash A \rrbracket\right)
\end{aligned}
$$

Logical relation cont'd

$$
\begin{aligned}
\llbracket \Pi ; \Sigma \vdash \text { unit } \rrbracket & =\text { Unit } \\
\llbracket \Pi ; \Sigma \vdash \text { int } \rrbracket & =\text { Int } \\
\llbracket \Pi ; \Sigma \vdash \mathrm{bool} \rrbracket & =\text { Bool } \\
\llbracket \Pi ; \Sigma \vdash A \times B \rrbracket & =\operatorname{Prod} \llbracket \Pi ; \Sigma \vdash A \rrbracket, \llbracket \Pi ; \Sigma \vdash B \rrbracket \\
\llbracket \Pi ; \Sigma \vdash A \xrightarrow{\varepsilon} B \rrbracket & =\operatorname{Arr} \llbracket \Pi ; \Sigma \vdash A \rrbracket, \llbracket \Pi ; \Sigma \vdash B, \varepsilon \rrbracket)
\end{aligned}
$$

Problem: It is not clear whether $\llbracket . . . \rrbracket$ satisfying these exists!

Logical relation cont'd

$$
\begin{aligned}
\llbracket \Pi ; \Sigma \vdash \text { unit } & =\text { Unit } \\
\llbracket \Pi ; \Sigma \vdash \mathrm{int} \rrbracket & =\text { Int } \\
\llbracket \Pi ; \Sigma \vdash \mathrm{bool} \mathrm{\rrbracket} & =\text { Bool } \\
\llbracket \Pi ; \Sigma \vdash A \times B \rrbracket & =\operatorname{Prod} \llbracket \Pi ; \Sigma \vdash A \rrbracket, \llbracket \Pi ; \Sigma \vdash B \rrbracket \\
\llbracket \Pi ; \Sigma \vdash A \xrightarrow{\varepsilon} B \rrbracket & =\operatorname{Arr} \llbracket \Pi ; \Sigma \vdash A \rrbracket, \llbracket \Pi ; \Sigma \vdash B, \varepsilon \rrbracket)
\end{aligned}
$$

Problem: It is not clear whether $\llbracket . . \rrbracket$ satisfying these exists!
We can show existence for a special case: latent effects of stored functions "storable", i.e. both $r d_{\ell}, w r_{\ell}$ or ℓ not mentioned at all.

Logical relation cont'd

$$
\begin{aligned}
\llbracket \Pi ; \Sigma \vdash \text { unit } & =\text { Unit } \\
\llbracket \Pi ; \Sigma \vdash \mathrm{int} \rrbracket & =\text { Int } \\
\llbracket \Pi ; \Sigma \vdash \mathrm{bool} \mathrm{\rrbracket} & =\text { Bool } \\
\llbracket \Pi ; \Sigma \vdash A \times B \rrbracket & =\operatorname{Prod} \llbracket \Pi ; \Sigma \vdash A \rrbracket, \llbracket \Pi ; \Sigma \vdash B \rrbracket \\
\llbracket \Pi ; \Sigma \vdash A \xrightarrow{\varepsilon} B \rrbracket & =\operatorname{Arr} \llbracket \Pi ; \Sigma \vdash A \rrbracket, \llbracket \Pi ; \Sigma \vdash B, \varepsilon \rrbracket)
\end{aligned}
$$

Problem: It is not clear whether $\llbracket . . . \rrbracket$ satisfying these exists!
We can show existence for a special case: latent effects of stored functions "storable", i.e. both $r d_{\ell}, w r_{\ell}$ or ℓ not mentioned at all.

We can "define" log.rel. even for dynamic allocation

Hereditarily pure

Consider

$$
\mathbf{V} \cong \mathbf{V} \times \mathbf{V} \rightarrow(\mathbf{V} \times \mathbf{V})_{\perp}
$$

models untyped functional programs with one global reference.
Retracts:

$$
\begin{aligned}
p_{0}(f)(s, x)= & \perp \\
p_{i+1}(f)(s, x)= & \perp, \text { if } f\left(p_{i}(s), p_{i}(x)\right)=\perp \\
p_{i+1}(f)(s, x)= & \left(p_{i}\left(s_{1}\right), p_{i}(y)\right), \text { if } \\
& \quad f\left(p_{i}(s), p_{i}(x)\right)=\left(s_{1}, y\right)
\end{aligned}
$$

We seek $P \subseteq \mathbf{V}$ such that:

$$
\begin{aligned}
f \in P \Longleftrightarrow \forall x \in P . & (\forall s \in \mathbf{V} . f(s, x)=\perp) \vee \\
& (\exists u \in P . \forall s \in \mathbf{V} \cdot f(s, x)=(s, u))
\end{aligned}
$$

Does such P exist?

Problem with existing solution theory

A. Pitts (1996) ("minimal invariants"): Essentially define $P_{i}:=P \cap \operatorname{Im}\left(p_{i}\right)$ by induction on i. Then define $P=\left\{x \mid \forall i . p_{i}(x) \in P_{i}\right\}$.

Problem: the predicate P so obtained is closed under the p_{i}. However, fun $(i d)$ should be in P, yet fun $\left(p_{i}\right)=p_{i}(f u n() i d)$ should not. Projecting down the store isn't "pure".

Our solution

Replace the p_{i} with q_{i} given by:

$$
\begin{aligned}
q_{0}(f)(s, x) & =\perp \\
q_{i+1}(f)(s, x) & =\perp, \text { if } f\left(s, q_{i}(x)\right)=\perp \\
q_{i+1}(f)(s, x) & =\left(s_{1}, q_{i}(y)\right), \text { if } f\left(s, q_{i}(x)\right)=\left(s_{1}, y\right)
\end{aligned}
$$

We can thus establish the existence of P.
This also allows us to establish the existence of the desired logical relation.

Challenge: Hereditarily read only commands

Consider $\mathbf{V} \cong \mathbf{V} \rightarrow \mathbf{V}_{\perp}$.
Think of $f: \mathbf{V} \rightarrow \mathbf{V}$ 分 as stateful function of type unit->unit
("command") manipulating single untyped reference.
We want to single out hereditarily read only, i.e., define P such that

$$
f \in P \Longleftrightarrow \forall x \in P . f x \in\{x, \perp\}
$$

Note that $\nabla=\lambda x . x x$ would be in P if P exists.

Not all predicates exist!

Same predomain V as before. Want to define "hereditarily total":

$$
f \in T \Longleftrightarrow \forall x \in T . f(x) \neq \perp \wedge f(x) \in T
$$

Not all predicates exist!

Same predomain V as before. Want to define "hereditarily total":

$$
f \in T \Longleftrightarrow \forall x \in T . f(x) \neq \perp \wedge f(x) \in T
$$

If T existed then $\nabla \in T$, yet $\nabla \nabla=\perp$. A contradiction.

Conclusion

- Slogan "Boldly define mixed-variance predicates and appeal to "minimal invariants" is dangerous.
- Open problem: Existence of hereditarily read-only.
- If we succeed in showing existence: we obtain powerful equational theory to reason about effectful programs.
- Partial solution: global references with restriction on effects of stored functions.

