Relational algebra with discriminative joins and lazy products

Fritz Henglein

Department of Computer Science
University of Copenhagen
Email: henglein@diku.dk

IFIP TC 2 Working Group 2.8 meeting, Frauenchiemsee, 2009-06-08

The problem

A query using list comprehensions:

```
[(dep, acct) | dep <- depositors,
acct <- accounts,
depNum dep == acctNum account.
```

Using relational algebra operators:

```
select (\(dep, acct) ->
    depNum dep == acctNum account))
(prod depositors accounts)
```

+ Compositional, simple (generate and test)
- $\Theta\left(n^{2}\right)$ time and space complexity (not scalable)

Solution 1: Optimize by rewriting

Rewrite and use a sort-merge join (Wadler, Trinder 1989) or hash join; e.g.
jmerge (sort s1) (sort s2)
$+O(n \log n+0)$ time complexity

- Programmer needs to rewrite statically
- Join algorithm explicit and fixed
- Requires ordering relation for sorting

Solution 2: Use join

- Introduce (equi) join operator and make programmer use it.
- Use hash or sort-merge join algorithm in implementation of join
$+O(n \log n+o)$ time complexity
+ Join algorithm encapsulated, can be changed (even dynamically)
- Requires using join and clever static optimization, e.g. combining two consecutive joins.

Solution 3: Write it naively

- Write query using select, project, prod, no need to use explicit join
- Use lazy (symbolic) products to represent Cartesian products
- Employ generic discrimination for asymptotically worst-case optimal joining
$+O(n+0)$ time complexity
+ Naive query, with symbolic representations of formulas
+ Dynamic optimization, subsumes classical static algebraic optimizations
+ Works generically for equivalences, not just equalities
+ Works for reference types with observable equality only, no need for observable sort order or hash function

Sets, naively

```
data Set a = Set [a]
```

- A set is represented by any list that contains the right elements
- Same set represented by:
- $[4,8,9,1]$
- $[1,9,8,4,4,9]$
- Allow any element type, not just tuples of primitive type as in Relational Algebra

Projections, naively

data Proj a b = Proj (a -> b)

- A projection is any function.
- Allow any function, not just proper projections of records to fields.

Predicates, naively

data Pred a $=$ Pred (a -> Bool)

- A predicate is any function to Bool.
- Allow any predicate, not just relational operators $=, \neq, \leq, \geq$ applied to fields of records.

Relational operators

```
select (Pred c) (Set xs) =
    Set (filter c xs)
project (Proj f) (Set xs) =
    Set (map f xs)
prod (Set xs) (Set ys) =
    Set [(x, y) | x <- xs, y <- ys]
```

Other operators: union, intersect similarly

Definable operators

Join operator:
$\begin{aligned} \text { join } & \text { c s1 s2 }= \\ & \text { select } c(p r o d ~ s 1 ~ s 2) ~\end{aligned}$
SQL-style SELECT FROM WHERE:

$$
\begin{aligned}
& \text { selectFromWhere p s c }= \\
& \text { project p (select c s) }
\end{aligned}
$$

Problem:

- Intermediate data may require asymptotically more storage space than input and output:
- prod produces large output
- select shrinks it again

Partitioning discriminator

Definition

D :: forall v. [(k, v)] -> [[v]]
is a (partitioning) discriminator for equivalence e on k if

- D partitions the value components of key-value pairs into the e-equivalence classes of their keys.
- D is parametric wrt. e: Replacing a key in the input with any e-equivalent key yields the same result.

Example:

- $(x, y) \in$ evenOdd iff both x, y even or both odd.
- Possible result: $D[(5,100),(4,200),(9,300)]=[[100,300],[200]]$
- By parametricity then also: $D[(\mathbf{3}, 100),(\mathbf{8}, 200),(\mathbf{1}, 300)]=[[100,300],[200]]$

Discrimination-based equijoin: Algorithm

- Values: Tag records of input sets to identify where they come from
- Keys: Apply specified projections to records
- Concatenate list of key/value pairs
- Discriminate
- Form formal products (formal product: list of records from first input and list of records from second input, all with equivalent keys)
- Multiply out: Each record in a formal product from first input paired with each record from the second input.

Discrimination-based equijoin: Code

$$
\begin{aligned}
& \text { join (Set xs, Set ys) (Proj f1) e (Proj f2)= } \\
& \text { Set [(x, y) | (xs, ys) <- fprods, } \\
& \text { x <- xs, y <- ys] } \\
& \text { where bs = disc e } \\
& \text { ([(f1 x, Left x) | x <- xs] ++ } \\
& \text { [(f2 y, Right y) | y <- ys]) } \\
& \text { fprods = map split bs }
\end{aligned}
$$

Auxiliary function
split :: [Either a b] -> ([a], [b])
splits a group of tagged values into their left, respective right values.

Discrimination-based equijoin: Example

Fritz Henglein

The problem
Relational algebra, naively

Relational algebra, cleverly

Complexity

Assume:

- Worst-case time complexity of projection application: $O(1)$.
- s_{1}, s_{2} are the respective lengths of the two inputs.
- O is the length of the output.

Observe:

- Discrimination-based join runs in worst-case time $O\left(s_{1}+s_{2}+o\right)$.
- Each step runs in time $O\left(s_{1}+s_{2}\right)$ except for the last: multiplying out the results.
Idea: Be lazy! (Why multiply out if it's a lot of work?)

Lazy sets

Constructors for sets:

```
data Set : : * -> * where
    Set : : [a] -> Set a
U : : Set a \(->\) set \(a->\) Set \(a\)
X : : Set \(a \rightarrow\) Set \(b \rightarrow \operatorname{Set}(a, b)\)
```

- Set xs: Set represented by list xs
- s1 'U' s2: Union of sets s1, s2
- s1 'X' s2: Cartesian product of s1, s2

Lazy projections

$$
\begin{aligned}
& \text { data Proj : : * }->\text { * }->\text { * where } \\
& \text { Proj : : (a }->\mathrm{b}) \text {-> Proj a b } \\
& \text { Par : : Proj a b }->\text { Projc d }-> \\
& \text { Proj (a, c) (b, d) }
\end{aligned}
$$

- Proj f: Projection given by function f
- Par p q: Parallel composition of p, q

Why parallel compositions?
Permit symbolic execution at run-time.

Lazy predicates

```
data Pred :: * -> * where
    Pred :: (a -> Bool) -> Pred a
    TT :: Pred a
    FF :: Pred a
    PAnd :: Pred a -> Pred b -> Pred (a, b)
    In :: (Proj a k, Proj b k) -> Equiv k
        -> Pred (a, b)
```

- Pred f: Predicate given by characteristic function
- TT, FF: Constant true, false
- PAnd: Parallel conjunction
- In: Join condition constructor.

Relational algebra operators

Example:

select ((depNum, acctNum) 'In` eqNat16) (prod depositors accounts)

Like original naive definition, but:

- runs in time $O(n)$ (size of the input);
- listing result takes time $O(0)$ (size of the output).

Observe:
No separate join! Defined naively:
join c s1 s2 = select c (prod s1 s2)

Select: Nonjoins

```
select TT s = s
select FF s = Set []
select p (Set xs) = Set (filter (sat p) xs)
select P (s1 'U' s2) =
    select P s1 'U' select P s2
select (Pred f) s@(s1 'X' s2) =
    Set (filter f (toList s))
select (p 'PAnd' q) (s1 'X' s2) =
    select p s1 'X' select q s2
select ((p, q) 'In' e) s@(s1 'X' s2) = ...
```

The problem
Relational algebra, naively

Relational algebra, cleverly

What do lazy (symbolic) representations buy?

- TT, FF: Argument set not traversed (good!)
- p with ' u ': Lazy selection (good!)
- Pred f with ' X ': Multiplying out (ouch!)
- p `PAnd` q with ‘X ': Lazy product (good!)

Select: Join

```
select ((f1, f2) 'In' e) (s1 'X' s2) =
    foldr (\b s -> let (xs, ys) = split b
    in (Set xs 'X' Set ys) 'U' s) empty bs
    where bs = disc e
    ([(ext fl r, Left r) | r <- toList sl] ++
        [(ext f2 r, Right r) | r <- toList s2])
```

- Recognize dynamically when select has an (equi)join condition applied to a lazy product.
- Invoke discrimination-based join algorithm
- Avoid multiplying out result in final step

Theorem

Join executes in time $O\left(s_{1}+s_{2}\right)$ for $O(1)$-time projections where s_{1}, s_{2} are the sizes (as lists) of $s 1, s 2$, respectively.
Observe: No o in that formula! Not $s_{1} \times s_{2}$, but $s_{1}+s_{2}$!

Project

```
project f (Set xs) = Set (map (ext f) xs)
project f (s1 'U' s2) =
        project f s1 'U' project f s2
project (Proj f) s@(s1 'X' s2) =
    Set (map f (toList s))
project (Par f1 f2) (s1 'X' s2) =
    project f1 s1 'X' project f2 s2
```

At run time:

- Set: Iterate (okay, not much else to do)
- 'U `: Lazy union (good!)
- Proj f with 'x': Multiply out (ouch!)
- Par f1 f2 with 'x': Lazy product (good!)

Prod

Fritz Henglein

The problem
Relational algebra, naively

Relational algebra, cleverly
prod s1 s2 = s1 'X' s2

- Constant time!

Relation to query optimization

Implementation performs classical algebraic query optimizations, including

- filter promotion (performing selections early)
- join introduction (replacing product followed by selection by join)
- join composition (combining join conditions to avoid intermediate multiplying out)

Observe:

- Done at run-time
- No static preprocessing
- Data-dependent optimization possible.
- Deforestatation of intermediate materialized data structures not necessary due to lazy evaluation.

Applicability

- Assumption: RAM-model, all memory accesses cost the same
- Out-of-the-box applicability: In-memory bulk data.
- Just as you would not dream of applying sorting or hashing out-of-the-box to disk data, do not apply discrimination to disk data out of the box.
- As for sorting and hashing, does not rule out usability of generic discrimination as a technique to be combined with I/O efficiency techniques; e.g. block-by-block discrimination.

Related work

Database theory:

- Discrimination as an alternative/complement to sorting and hashing: Not previously explored.
- Lazy products, unions: Where? (Couldn't find in literature)
- Dynamic algebraic query optimization: Where? (Couldn't find in literature)
Functional Programming:
- Buneman et al., HaskelIDB, LINQ, Links: Type-safe interfaces to SQL database systems
- Query optimization for in-memory non-SQL data: HaskellDB (?), LINQ (?)
- Kleisli: Distributed database system with functional query language based on Nested Relational Calculus
- Trinder, Wadler (1990), Improving list comprehension database queries: Classical query optimizations on list comprehensions

Contributions

- Partitioning discrimination: New generic technique for "bringing data together"
- complements hashing and sorting techniques
- makes only equivalence observable (no order, no hash function)
- Lazy products (and derived lazy data structures): New (?) data structure for compact representation of cross-products
- Generic relational algebra
- User-definable equivalences, not just equalities
- User-defined data types, including reference types (pointers)

