
Building a Haskell Verifier
out of component theories

Dick Kieburtz
WG2.8, Frauenchiemsee, June 2009

2

Why a verifier for Haskell, in particular?
 Feasibility:

– There’s a recognized, stable version that is pretty well defined
– Haskell 98

– Mature compilers and interpreters exist
– A collection of papers specifies nearly all aspects of its semantics denotationally

•• a modular, categorical semantics for a modular, categorical semantics for datatypes datatypes provides an provides an equational equational theory for thetheory for the
operations of each typeoperations of each type

– A programming logic has been developed -- P-logic
– P-logic refines the Haskell 98 type system

•• properties of functions are stated as dependent typesproperties of functions are stated as dependent types
– it takes advantage of the referential transparency of the Haskell language

– A front-end processor (pfe) comprehends both language and logic

 Challenges:
– Haskell 98 is a rich language

– Embodies both lazy and strict semantics
– Higher-order function types
– Recursion in both expression and type definitions

3

What’s new?
After experimenting with the construction of an ad hoc verifier

(Plover) for two years, it became unmaintainable; a new
approach was called for.
– I needed an architecture that was modular, provably

sound, and could be developed incrementally

 DPT to the rescue!
– DPT (Decision Procedure Toolkit) is an open-source toolkit

for integrating decision procedures with a first-order
satisfiability solver
– Written in OCAML by a team of researchers at Intel

– (Jim Grundy, Amit Goel, Sava Krstic)

– Gives state-of-the-art performance
– The decision-procedure integration strategy is based upon ten

simple rules and has been proved sound (Krstic & Goel, 2007)

– Distributed via Sourceforge

But how can a solver for decidable, first-order logic formulas be
used to verify properties of Haskell programs?

4

Components of a complex theory are its
subtheories

 Let’s take the semantic theory of Haskell 98, for example
– Subtheories include:

– Equality
– Uninterpreted functions
– Cartesian products
– Definedness of terms

– (i.e., a 1st approximation to a theory of pointed cpo’s)

– Tensor products
– Coalesced sums
– Integer arithmetic with (+, -, *)
– Linear, real arithmetic (interval arithmetic)
– Booleans

– Many properties of (closed) Haskell 98 programs can be formulated
in these theories alone
– Other properties will require additional or more complete theories

– Induction rules, for instance

5

The basic idea for a modular theory solver

 Atomic propositions gleaned from an asserted, closed formula are
sorted according to the theories to which they belong

 For each theory, a dedicated solver calculates
– Conflicts (if any) among the propositions relevant to its theory, or
– Propositions entailed by the theory, if the solver state is consistent.

 A SAT solver makes tentative truth assignments to the atomic
propositions and communicates these to the individual theory solvers
– The current state is a (partial) assignment to the set of atomic

propositions, compatible with truth of the asserted formula
– A (complete) state that all solvers agree is conflict-free is evidence that

the formula is satisfiable
– If no such state exists, the formula is unsatisfiable

– A formula is valid iff the formula (¥) is unsatisfiable

– Modern SAT solvers use sophisticated strategies to quickly prune unsatisfiable
search paths

6

Example: Normalizing a formula:
Translation from a closed formula to atomic literals

Formula: Proxy definitions
forall x, y. x ≥ 0 /\ y ≥ 0 => f (x + y) ≥ 0

Replace quantified variables by unique constant symbols

x0 ≥ 0 /\ y0 ≥ 0 => f (x0 + y0) ≥ 0
Eliminate implication connective

¥ (x0 ≥ 0) \/ ¥ (y0 ≥ 0) \/ (f (x0 + y0) ≥ 0)
Proxy the argument expression in a function application

¥ (x0 ≥ 0) \/ ¥ (y0 ≥ 0) \/ (f v0 ≥ 0) v0 = x0 + y0

Proxy the function application in the rightmost inequality

¥ (x0 ≥ 0) \/ ¥ (y0 ≥ 0) \/ (v1 ≥ 0) v0 = x0 + y0 , v1= f v0

Proxy the inequalities

¥ z0 \/ ¥ z1 \/ z2 v0 = x0 + y0 , v1= f v0 ,

 z0 = x0 ≥ 0, z1 = y0 ≥ 0,
 z2 = v1 ≥ 0

Yielding an equivalent formulation in CNF with all atoms proxied

7

Assigning atomic formulas to theory
solvers

 Each atomic formula is assigned by a host solver to a
particular theory solver for interpretation
– Operator symbols (which must not be overloaded) are partitioned

into sorts corresponding to theories
– Assignment to a theory follows the sort of the dominant operator

symbol of each atomic formula
Examples:

 x0 + y0 : linear arithmetic (INT solver)

 f v0 : uninterpreted functions with equality (CC solver)
 x0 ≥ 0 : linear arithmetic (INT solver)
 … etc.

 Theory solvers bind fresh variables as proxies for atomic formulas
– Each solver reports its set of bound proxy variables to the host solver

– to establish the data of a working interface

8

Modular Architecture of DPT
 Solver_api prescribes an object template

– A solver object may have internal state, which is accessed only
through its public methods

 A host solver communicates literals of interest to each theory
solver
– An individual theory solver is responsible to detect conflicts among

the set of literals it has been given, interpreting only its own theory
– Detected conflicts are communicated back to the host solver

 A CC (congruence closure) solver propagates equalities
 A SAT solver (DPLL) directs a search for a satisfying assignment

to literals extracted from a given formula
– Backtracks when a conflict is detected in a current assignment
– Reports satisfiability if a full assignment is made for which no conflict

is detected (but doesn’t yet trace the satisfying assignment)
– Reports unsatisfiability if no further assignments are possible and

conflict persists

9

Architecture of a system of solvers

DPLL CC INT PROD SUM ISDEF

distributor

TENSOR

Modules packaged with DPT User-defined modules interfaced with DPT …
• SAT solver Cartesian product
• Uninterpreted functions w/ equality Coalesced sum
• Linear, integer arithmetic Strength (approximates definedness)
• Real, interval arithmetic Tensor product

…

10

Internal architecture of a theory solver

 A typical theory solver has at least three components
– A literals module defines the data representation of literals for

this theory solver
– (a literal is either an atomic proposition or its negation)

– A core module implements the decision procedure
– maintains the state variables of a model for this theory
– interprets operators of this theory in the model
– interprets dedicated predicates of this theory (if any)
– reports conflicts in the state of the model

– An interface wrapper conforms to the solver_api
– It proxies literals and their subterms with unique variables

– a proxy map is a bijection between variables and terms

– Maintains a bijective map between term representations and the
equivalent data representations used in an internal model

– Accepts set_literal directives from the host to update the solver state
– Replies to queries from the host about conflicts detected in the core
– Manages backtrack requests from the host

11

My First Theory Solver: Prod

 First solver: Cartesian product
– Constants: mkpr :: t → t → t, fst :: t → t, snd :: t → t
– Three axioms can be implemented by reduction rules:

– fst (mkpr x y) = x
– snd (mkpr x y) = y
– (mkpr (fst p) (snd p)) = p

– Two conditions of inductive definition can be checked
– (mkpr x y) ≠ x
– (mkpr x y) ≠ y

– Prod solver was constructed with a term model
– Interfaced by following the documented, DPT solver_api

– Reading DPT source code was essential, however
– Non-critical methods were dummied

– Given a set of asserted literals, the Prod solver detects any
conflict with the axioms and conditions

12

A Second Solver: Tensor Product

 The first solver gave me confidence that I knew what I was doing
 So I tried a second solver, for a theory of tensor products in a cpo

domain
– and encountered some surprises!

 The theory is more interesting than Prod
– Constants: mktr :: t → t → t, tfst :: t → t, tsnd :: t → t
– Axioms:

– Isdef y e tfst (mktr x y) = x
– Isdef x e tsnd (mktr x y) = y
– mktr (tfst p) (tsnd p) = p

– Inductivity conditions:
– Isdef x e x ≠ mktr x y
– Isdef y e y ≠ mktr x y

– where Isdef is an interpreted predicate satisfied by all non-bottom
elements of a domain.

 Notice that most of these axioms are implicative formulas

13

List of potential conflicts and entailments

 Conflicts:
– Tr1) Isdef x & x = mktr x y
– Tr2) Isdef y & y = mktr x y
– Tr3) Isdef x & x = tfst x
– Tr4) Isdef y & y = tsnd y
– Tr5) Isdef z & e (Isdef (tfst z))

– Tr6) Isdef z & e (Isdef (tsnd z))

– Tr7) Isdef (mktr x y) & e (Isdef x)

– Tr8) Isdef (mktr x y) & e (Isdef y)
– Tr9) Isdef y & x ≠ tfst (mktr x y)
– Tr10)Isdef x & y ≠ tsnd (mktr x y)
– Tr11)Isdef x & Isdef y &

 ee ((Isdef Isdef ((mktr mktr x y))x y))

 Entailments:
– TI1) x = mktr x y e ¥ (Isdef x)

– TI2) y = mktr x y e ¥ (Isdef y)

– TI3) x = tfst x e ¥ (Isdef x)

– TI4) x = tsnd x e ¥ (Isdef x)

– TI5) Isdef z e Isdef (tfst z)

– TI6) Isdef z e Isdef (tsnd z)

– TI7) Isdef (mktr x y) e Isdef x

– TI8) Isdef (mktr x y) e Isdef y

– TI9) Isdef y e x = tfst (mktr x y)

– TI10)Isdef x e y = tsnd (mktr x y)

– TI11) ¥ (Isdef (mktr x y)) e
 (¥ (Isdef x) or ¥ (Isdef y))

• All involve the Isdef predicate

• Reduction rules are realized by Tr9, TR10 and TI9 and TI10

14

The ubiquitous Isdef suggests managing
definedness with a separate theory

 The theory Strength
– Constants:

– Isdef :: t → prop

– Axiom:
– ¥ (Isdef x) & ¥ (Isdef y) e x = y

 Strength is a simple theory for which to build a solver.
– However, interpreting a proposition (Isdef <term>) can only be done in

the particular theory in which <term> is interpreted
– An Isdef literal must be “shared” between the solver for Strength and the

solver in which the proposition can be interpreted.
– Either solver might detect a conflict among asserted literals containing

Isdef propositions
– Similar to equality in this respect

– The DPT framework provides a mechanism to implement sharing of
propositions between individual theory solvers

15

Sharing propositions between theory
solvers

 Suppose p is a proposition of interest to two theory solvers,
Th1 and Th2

 Each solver provides a proxy variable for p, a name by which
it is known to the host framework
– Suppose Th1 proxies p as x1; Th2 proxies p as x2

– To indicate to the DPLL solver that the two proxy variables are
logically equivalent literals, assert the following clauses to the
DPLL solver:
– (x1 or ¥ x2) and (¥ x2 or x1)

– That’s all there is to it!

16

Embedding Strict theories

 There are many useful decision procedures for theories over
sets, rather than over a cpo domain
– In such theories there is no notion of definedness (or not)
– Examples: linear arithmetic, boolean algebra, etc.
– When embedded in a pointed cpo domain, the operators of such a

theory are said to be strict and total.
– Mathematical comment: a subdomain whose algebra consists only of

strict operators embeds in a cpo domain as a comonad

 To integrate a decision procedure for a strict theory with a
framework for reasoning over cpo’s,
– Require that the variables of each strict operator expression

satisfy the Isdef predicate (to assure strictness)
– Infer that each strict operator expression satisfies Isdef

(to assure totality)
 This integration can be efficiently implemented in the DPT

framework by small additions to the code of the host solver
– Decision procedures for strict theories remain opaque (abstract)

17

What’s difficult about this?

 Not much, so long as you stay with decidable theories
– Comprehensive unit testing is essential

– it’s easy to err on the side of building unnecessary cases into a
prototype solver

 What does the future hold?
– Quantified variable instantiation could be added to DPT

– There are known algorithms for efficient E-matching (de Moura &
Bjorner, 2007), but none has yet been implemented in DPT

– Traceback reporting
– The ability to report a satisfying assignment would enable

counterexamples to false assertions of validity to be constructed
– an assignment satisfying (¥) is a counterexample of asserted validity

 To re-implement Plover, three more things are needed:
– a generic theory of induction (and coinduction)
– an interface to a language front-end, such as programatica-pfe
– termination analysis for recursively-defined functions

End

19

Some references

Sava Krstic and Amit Goel:
Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL
.pdf available from Sava’s home page, www.csee.ogi.edu/~krstics/

Grundy, Goel and Krstic: Decision Procedure Toolkit

sourceforge.net/projects/dpt
offers downloads of code and documentation;
additional user-submitted documentation is available via the wiki tab

Richard Kieburtz: P-logic: property verification for Haskell programs
web.cecs.pdx.edu/~dick/plogic.pdf
Programming logic for a large fragment of Haskell98, with some examples

