Building a Haskell Verifier out of component theories

Dick Kieburtz WG2.8, Frauenchiemsee, June 2009

Why a verifier for Haskell, in particular?

• Feasibility:

- There's a recognized, stable version that is pretty well defined
 - Haskell 98
 - Mature compilers and interpreters exist
 - A collection of papers specifies nearly all aspects of its semantics denotationally
 - a modular, categorical semantics for datatypes provides an equational theory for the operations of each type
 - A programming logic has been developed -- P-logic
 - *P-logic* refines the Haskell 98 type system
 - properties of functions are stated as dependent types
 - it takes advantage of the referential transparency of the Haskell language
 - A front-end processor (*pfe*) comprehends both language and logic

Challenges:

- Haskell 98 is a rich language
 - Embodies both lazy and strict semantics
 - Higher-order function types
 - Recursion in both expression and type definitions

What's new?

After experimenting with the construction of an *ad hoc* verifier (*Plover*) for two years, it became unmaintainable; a new approach was called for.

- I needed an architecture that was modular, provably sound, and could be developed incrementally
- DPT to the rescue!
 - DPT (Decision Procedure Toolkit) is an open-source toolkit for integrating decision procedures with a first-order satisfiability solver
 - Written in OCAML by a team of researchers at Intel
 - (Jim Grundy, Amit Goel, Sava Krstic)
 - Gives state-of-the-art performance
 - The decision-procedure integration strategy is based upon ten simple rules and has been proved sound (Krstic & Goel, 2007)
 - Distributed via Sourceforge

But how can a solver for decidable, first-order logic formulas be used to verify properties of Haskell programs?

Components of a complex theory are its subtheories

- Let's take the semantic theory of Haskell 98, for example
 - Subtheories include:
 - Equality
 - Uninterpreted functions
 - Cartesian products
 - Definedness of terms
 - (i.e., a 1st approximation to a theory of pointed cpo's)
 - Tensor products
 - Coalesced sums
 - Integer arithmetic with (+, -, *)
 - Linear, real arithmetic (interval arithmetic)
 - Booleans
 - Many properties of (closed) Haskell 98 programs can be formulated in these theories alone
 - Other properties will require additional or more complete theories
 - Induction rules, for instance

The basic idea for a modular theory solver

- Atomic propositions gleaned from an asserted, closed formula are sorted according to the theories to which they belong
- For each theory, a dedicated solver calculates
 - Conflicts (if any) among the propositions relevant to its theory, or
 - Propositions entailed by the theory, if the solver state is consistent.
- A SAT solver makes tentative truth assignments to the atomic propositions and communicates these to the individual theory solvers
 - The current state is a (partial) assignment to the set of atomic propositions, compatible with truth of the asserted formula
 - A (complete) state that all solvers agree is conflict-free is evidence that the formula is satisfiable
 - If no such state exists, the formula is unsatisfiable
 - A formula Φ is valid iff the formula ($\neg \Phi$) is unsatisfiable
 - Modern SAT solvers use sophisticated strategies to quickly prune unsatisfiable search paths

Example: Normalizing a formula: Translation from a closed formula to atomic literals

Formula:

Proxy definitions

forall x, y. $x \ge 0 / y \ge 0 \Longrightarrow f(x + y) \ge 0$

Replace quantified variables by unique constant symbols

 $x_0 \ge 0 / y_0 \ge 0 => f(x_0 + y_0) \ge 0$

Eliminate implication connective

$$\neg (x_0 \ge 0) \lor \neg (y_0 \ge 0) \lor (f(x_0 + y_0) \ge 0)$$

Proxy the argument expression in a function application

 $\neg (x_0 \ge 0) \lor \neg (y_0 \ge 0) \lor (f v_0 \ge 0)$

Proxy the function application in the rightmost inequality

$$\neg (x_0 \ge 0) \lor \neg (y_0 \ge 0) \lor (v_1 \ge 0)$$

Proxy the inequalities

$$\neg z_0 \lor \neg z_1 \lor z_2$$

 $v_0 = x_0 + y_0$

$$v_0 = x_0 + y_0$$
, $v_1 = f v_0$

$$\begin{aligned} v_0 &= x_0 + y_0 \,, \, v_1 &= f \, v_0 \,, \\ z_0 &= x_0 \geq 0, \, z_1 = y_0 \geq 0, \\ z_2 &= v_1 \geq 0 \end{aligned}$$

Yielding an equivalent formulation in CNF with all atoms proxied

Assigning atomic formulas to theory solvers

- Each atomic formula is assigned by a host solver to a particular theory solver for interpretation
 - Operator symbols (which must not be overloaded) are partitioned into sorts corresponding to theories
 - Assignment to a theory follows the sort of the dominant operator symbol of each atomic formula

Examples:

- $x_0 + y_0$: linear arithmetic (INT solver) $f v_0$: uninterpreted functions with equality (CC solver)
- $x_0 \ge 0$: linear arithmetic (INT solver)
- ... etc.
- Theory solvers bind fresh variables as proxies for atomic formulas
 - Each solver reports its set of bound proxy variables to the host solver
 - to establish the data of a working interface

Modular Architecture of DPT

- *Solver_api* prescribes an *object* template
 - A solver object may have internal state, which is accessed only through its public methods
- A host solver communicates literals of interest to each theory solver
 - An individual theory solver is responsible to detect conflicts among the set of literals it has been given, interpreting only its own theory
 - Detected conflicts are communicated back to the host solver
- A CC (congruence closure) solver propagates equalities
- A SAT solver (DPLL) directs a search for a satisfying assignment to literals extracted from a given formula
 - Backtracks when a conflict is detected in a current assignment
 - Reports satisfiability if a full assignment is made for which no conflict is detected (but doesn't yet trace the satisfying assignment)
 - Reports unsatisfiability if no further assignments are possible and conflict persists

Architecture of a system of solvers

Modules packaged with DPT

- SAT solver •
- Uninterpreted functions w/ equality •
- Linear, integer arithmetic ٠
- Real, interval arithmetic •

User-defined modules interfaced with DPT ...

- Cartesian product
- Coalesced sum
- Strength (approximates definedness)
- **Tensor product**

Internal architecture of a theory solver

- A typical theory solver has at least three components
 - A *literals* module defines the data representation of literals for this theory solver
 - (a *literal* is either an atomic proposition or its negation)
 - A core module implements the decision procedure
 - maintains the state variables of a model for this theory
 - interprets operators of this theory in the model
 - interprets dedicated predicates of this theory (if any)
 - reports conflicts in the state of the model
 - An interface wrapper conforms to the *solver_api*
 - It proxies literals and their subterms with unique variables
 - a proxy map is a bijection between variables and terms
 - Maintains a bijective map between term representations and the equivalent data representations used in an internal model
 - Accepts *set_literal* directives from the host to update the solver state
 - Replies to queries from the host about conflicts detected in the core
 - Manages backtrack requests from the host

My First Theory Solver: Prod

- First solver: Cartesian product
 - Constants: mkpr :: $t \rightarrow t \rightarrow t$, fst :: $t \rightarrow t$, snd :: $t \rightarrow t$
 - Three axioms can be implemented by reduction rules:
 - fst (mkpr x y) = x
 - snd (mkpr x y) = y
 - (mkpr (fst p) (snd p)) = p
 - Two conditions of inductive definition can be checked
 - (mkpr x y) \neq x
 - (mkpr x y) ≠ y
 - Prod solver was constructed with a term model
 - Interfaced by following the documented, DPT *solver_api*
 - Reading DPT source code was essential, however
 - Non-critical methods were dummied
 - Given a set of asserted literals, the Prod solver detects any conflict with the axioms and conditions

A Second Solver: Tensor Product

- The first solver gave me confidence that I knew what I was doing
- So I tried a second solver, for a theory of tensor products in a cpo domain
 - and encountered some surprises!
- The theory is more interesting than Prod
 - Constants: mktr :: $t \rightarrow t \rightarrow t$, tfst :: $t \rightarrow t$, tsnd :: $t \rightarrow t$
 - Axioms:
 - Isdef $y \Rightarrow$ tfst (mktr x y) = x
 - Isdef $x \Rightarrow$ tsnd (mktr x y) = y
 - mktr (tfst p) (tsnd p) = p
 - Inductivity conditions:
 - Isdef $x \Rightarrow x \neq mktr x y$
 - Isdef y ⇒ y ≠ mktr x y
 - where Isdef is an interpreted predicate satisfied by all non-bottom elements of a domain.
- Notice that most of these axioms are implicative formulas

List of potential conflicts and entailments

- Conflicts:
 - Tr1) Isdef x & x = mktr x y
 - Tr2) Isdef y & y = mktr x y
 - Tr3) Isdef x & x = tfst x
 - Tr4) Isdef y & y = tsnd y
 - Tr5) Isdef z & \Rightarrow (Isdef (tfst z))
 - Tr6) Isdef z & \Rightarrow (Isdef (tsnd z))
 - Tr7) Isdef (mktr x y) $\& \Rightarrow$ (Isdef x)
 - Tr8) Isdef (mktr x y) $\& \Rightarrow$ (Isdef y)
 - Tr9) Isdef y & $x \neq$ tfst (mktr x y)
 - Tr10)Isdef x & y \neq tsnd (mktr x y)
 - Tr11)Isdef x & Isdef y &
 ⇒(Isdef (mktr x y))
- All involve the Isdef predicate
- Reduction rules are realized by Tr9, TR10 and TI9 and TI10

- Entailments:
 - TI1) x = mktr x y \Rightarrow_{\neg} (Isdef x)
 - TI2) y = mktr x y ⇒¬ (Isdef y)
 - TI3) x = tfst x $\Rightarrow \neg$ (Isdef x)
 - TI4) x = tsnd x $\Rightarrow \neg$ (Isdef x)
 - TI5) Isdef z \Rightarrow Isdef (tfst z)
 - TI6) Isdef $z \Rightarrow$ Isdef (tsnd z)
 - TI7) Isdef (mktr x y) \Rightarrow Isdef x
 - TI8) Isdef (mktr x y) \Rightarrow Isdef y
 - TI9) Isdef $y \Rightarrow x = tfst (mktr x y)$
 - TI10)Isdef $x \Rightarrow y = tsnd (mktr x y)$

- TI11)
$$\neg$$
 (Isdef (mktr x y)) \Rightarrow

 $(\neg$ (Isdef x) or \neg (Isdef y))

The ubiquitous Isdef suggests managing definedness with a separate theory

- The theory Strength
 - Constants:
 - Isdef :: t \rightarrow prop
 - Axiom:
 - ¬ (Isdef x) & ¬ (Isdef y) ⇒ x = y
- *Strength* is a simple theory for which to build a solver.
 - However, interpreting a proposition (Isdef <term>) can only be done in the particular theory in which <term> is interpreted
 - An Isdef literal must be "shared" between the solver for *Strength* and the solver in which the proposition can be interpreted.
 - Either solver might detect a conflict among asserted literals containing Isdef propositions
 - Similar to equality in this respect
 - The DPT framework provides a mechanism to implement sharing of propositions between individual theory solvers

Sharing propositions between theory solvers

- Suppose p is a proposition of interest to two theory solvers, Th₁ and Th₂
- Each solver provides a proxy variable for p, a name by which it is known to the host framework
 - Suppose Th_1 proxies p as x_1 ; Th_2 proxies p as x_2
 - To indicate to the DPLL solver that the two proxy variables are logically equivalent literals, assert the following clauses to the DPLL solver:

- $(x_1 \text{ or } \neg x_2) \text{ and } (\neg x_2 \text{ or } x_1)$

- That's all there is to it!

Embedding Strict theories

- There are many useful decision procedures for theories over sets, rather than over a cpo domain
 - In such theories there is no notion of definedness (or not)
 - Examples: linear arithmetic, boolean algebra, etc.
 - When embedded in a pointed cpo domain, the operators of such a theory are said to be *strict* and *total*.
 - Mathematical comment: a subdomain whose algebra consists only of strict operators embeds in a cpo domain as a comonad
- To integrate a decision procedure for a strict theory with a framework for reasoning over cpo's,
 - Require that the variables of each strict operator expression satisfy the Isdef predicate (to assure strictness)
 - Infer that each strict operator expression satisfies Isdef (to assure totality)
- This integration can be efficiently implemented in the DPT framework by small additions to the code of the host solver
 - Decision procedures for strict theories remain opaque (abstract)

What's difficult about this?

- Not much, so long as you stay with decidable theories
 - Comprehensive unit testing is essential
 - it's easy to err on the side of building unnecessary cases into a prototype solver
- What does the future hold?
 - Quantified variable instantiation could be added to DPT
 - There are known algorithms for efficient E-matching (de Moura & Bjorner, 2007), but none has yet been implemented in DPT
 - Traceback reporting
 - The ability to report a satisfying assignment would enable counterexamples to false assertions of validity to be constructed
 - an assignment satisfying ($\neg D$ is a counterexample of asserted validity
- To re-implement *Plover*, three more things are needed:
 - a generic theory of induction (and coinduction)
 - an interface to a language front-end, such as *programatica-pfe*
 - termination analysis for recursively-defined functions

Some references

Sava Krstic and Amit Goel:

Architecting Solvers for SAT Modulo Theories: Nelson-Oppen with DPLL

.pdf available from Sava's home page, <u>www.csee.ogi.edu/~krstics/</u>

Grundy, Goel and Krstic: Decision Procedure Toolkit

sourceforge.net/projects/dpt

offers downloads of code and documentation;

additional user-submitted documentation is available via the wiki tab

Richard Kieburtz: P-logic: property verification for Haskell programs

web.cecs.pdx.edu/~dick/plogic.pdf

Programming logic for a large fragment of Haskell98, with some examples