
1

http://csg.csail.mit.edu

Bounded Dataflow Networks (BDNs)
and
Latency-Insensitive (LI) Circuits

Murali Vijayaraghavan and Arvind
Computer Science and Artificial Intelligence Laboratory
M.I.T.

WG 2.8, Chiemsee, Germany
June 12, 2009

June 12, 2009 http://csg.csail.mit.edu

Dataflow networks
Kahn-Dennis networks: A network of
computing stations connected by unbounded
FIFOs

a “get” is blocking but a “put” is not

Dataflow networks with bounded FIFOs (BDNs)
Hard to model as a Kahn-Dennis network
Varying the size of a FIFO changes the meaning
(may cause a deadlock)

Several groups are using BDNs for latency-
insensitive refinements of Synchronous
Sequential Machines (SSMs) and often
encounter deadlocks

2

June 12, 2009 http://csg.csail.mit.edu

Bounded Dataflow Networks

Can be modeled accurately in Bluespec
Can be used a high-level structuring
technique for Bluespec designs

what restrictions should be placed on
BDNs such that its meaning does not
change with respect to a given SSM
when we vary the FIFO sizes

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNs:

A Combinational Block

f
a

b
c

rule CL when (¬a.empty∧¬b.empty∧¬c.full)
⇒ c.enq(f(a.first, b.first)); a.deq ; b.deq

Behavior

f is a combinational circuit:
must accept an input value

on each input before
producing an output

Unlike SSMs, the (red) lines only show dataflow and
not all the control lines needed to make BDNs
function

3

June 12, 2009 http://csg.csail.mit.edu

A fork definition

rule F when (¬a.empty ∧ ¬b.full ∧ ¬c.full)
⇒ b.enq(a.first); c.enq(a.first); a.deq

a

b

c

Behavior

a fork that copies an
input value to both its

outputs simultaneously

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNs:

Fork

rule FO1 when (¬a.empty∧¬b.full ∧ ¬bDone)
⇒ b.enq(a.first); bDone <= True

rule FO2 when (¬a.empty∧¬c.full ∧ ¬cDone)
⇒ c.enq(a.first); cDone <= True

rule FI when (¬a.empty∧bDone ∧ cDone)
⇒ a.deq; bDone <= False;

cDone <= False

a

b

c

bDone

cDone

Behavior

bDone = False
cDone = False

Initial Values

a fork to copy an input
value but the input can

be dequeued only when
both the outputs have

accepted the input

Which one do
we want?

4

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNs:

Register

rule RO when (¬b.full ∧ ¬bDone)
⇒b.enq(r); bDone <= True

rule RI when (¬a.empty ∧ bDone)
⇒r <= a.first; a.deq; bDone <= False

a br

bDone

Behavior

bDone = False
r = r0

Initial Values

A register whose
reads and writes must

match

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNs:

Mux

rule MuxO when ¬c.full ∧ ¬p.empty
⇒ if(p.first ∧ ¬ a.empty)

then c.enq(a.first); a.deq; bCnt<=bCnt+1
else if(!(p.first) ∧ ¬ b.empty)

then c.enq(b.first); b.deq; aCnt<=aCnt+1
rule MuxI1 when aCnt >0 ∧ ¬ a.empty
⇒ a.deq; aCnt<=aCnt-1

rule MuxI2 when bCnt >0 ∧ ¬ b.empty
⇒ b.deq; bCnt<=bCnt-1

bCnt

aCnt

p

a

b
c

Behavior

aCnt = 0
bCnt = 0

Initial
values

A mux that accepts an
input value on each input
port but passes only the
appropriate value to the

output

5

June 12, 2009 http://csg.csail.mit.edu

Composition of BDNs
If R1 and R2 are BDNs then so is the parallel composition of
R1 and R2 (R = R1 ⊕ R2)

R1

R2

R1

R2

R

* No direct combinational path

R1
Ii Oj R1R

Ii = Oj

R1 is a BDN then so is the (Ii ,Oj) iterative composition of
R1 (R = (i,j) ⊗ R1) provided Ii ∉ Depends-on(Oj)*

June 12, 2009 http://csg.csail.mit.edu

BDN as a refinement of an SSM

There is a bijective mapping between the
inputs (outputs) of S and R
for all n > 0,

I(k) matches for S and R (1 ≤ k ≤ n)
⇒ O(j) matches for S and R (1 ≤ j ≤ n)

S
I1

In

O1

Om

R
I1

In

O1

Om

In general it is difficult to compare an SSM and a BDN
because a BDN can deadlock. We will restrict our attention
to a class of BDNs with some “desirable properties”

Cycle
Accuracy

6

June 12, 2009 http://csg.csail.mit.edu

Deadlock-free BDN

R
I1

In

O1

Om

I o

Assuming an infinite sink, a BDN is deadlock-
free if for all n > 0, if n values are enqueued
into I then eventually n values will be
dequeued from both O and I

we need a stronger property for deadlock-freeness to
be preserved under composition

June 12, 2009 http://csg.csail.mit.edu

NED-BDN:
BDNs with no extraneous dependencies

A BDN is said to have no extraneous
dependencies if its output Oi is not enqueued n
times, assuming it is not full and all the inputs
are enqueued n-1 times, then it must be that
one of the inputs in Depends-on(Oi) is not
enqueued n times
Note that this is a property of BDN – it is
different from the condition for iterative
composition

7

June 12, 2009 http://csg.csail.mit.edu

NED-BDN violation 1

rule F when (¬a.empty ∧ ¬b.full ∧ ¬c.full)
⇒ b.enq(a.first); c.enq(a.first); a.deq

a

b

c

Behavior

a fork that copies an
input value to both its

outputs simultaneously

June 12, 2009 http://csg.csail.mit.edu

NED-BDN violation 2

¬

f
a

b
c

rule O when (¬a.empty∧¬b.empty∧¬c.full ∧¬d.full)
⇒ c.enq(f(a.first, b.first)); d.enq(b.first);

a.deq ; b.deq

Possible Behaviors

d

rule O1 when (¬a.empty∧¬b.empty∧¬c.full ∧¬cDone)
⇒ c.enq(f(a.first, b.first)); cDone <= True

rule O2 when (¬b.empty∧¬d.full ∧¬dDone)
⇒ d.enq(b.first); dDone <= True

rule In when (cDone ∧dDone)
⇒ a.deq ; b.deq

8

June 12, 2009 http://csg.csail.mit.edu

Latency-Insensitive (LI) BDN
LI-BDN is an NED-BDN which is
refinement of an SSM

S
I1

In

O1

Om

R
I1

In

O1

Om

June 12, 2009 http://csg.csail.mit.edu

LI refinement Theorem

LI-BDNs are composable under parallel
and sequential composition

If R1, R2 are refinements of S1, S2 ⇒
R1 ⊕ R2 is the refinement of S1 +S2

(i, j) ⊗ R1 is the refinement of (i, j)×S1

Basically this ensures that the
composition of LI-BDNs are deadlock-
free and cycle-accurate w.r.t. the
original SSMs

9

June 12, 2009 http://csg.csail.mit.edu

Application: Modeling via RTL
prototyping on FPGAs

Some RTL structures are inefficient to
map directly onto FPGAs

For example, a 3-ported register file (RF)
consumes lot of area as opposed a 1-ported
RF used for 3 cycles
However, replacing a 3-ported RF naively
by a 1-ported RF in a design may loose
“cycle-accuracy”, even if the high-level
functionality “turns out” to be correct

June 12, 2009 http://csg.csail.mit.edu

Application: Cycle-accurate
modeling

Full designBad
portion

Model of full designModel
of bad portion

(optimized)

10

June 12, 2009 http://csg.csail.mit.edu

Startable SSMs: SSMs with a “start”
signal to update registers

f start (=1)I

O

June 12, 2009 http://csg.csail.mit.edu

1000 feet view of LI-refinement
of an SSM

FIFOs are introduced in every input and
every output of the SSM
Time cycles of the SSM are converted
into enqueues into inputs and dequeues
from outputs

“Cycle-accurate” w.r.t SSM
Atomic rules for the operations are
defined so that no extraneous
dependencies are introduced

Ensures deadlock-free operation

11

June 12, 2009 http://csg.csail.mit.edu

Writing the LI-BDN wrapper for an
SSM

Given the SSM:
oj(t) = fj(ij1(t), ... ,ijIj(t), s(t))

// ij1, ij2, ... ijIj are in Depends-on(oj)
s(t+1) = g(i1(t), i2(t), ... , s(t))

LI-BDN:
rule j (!oj.done)

oj.done <= True
oj.enq(fj(ij1.first, ... ,ijIj.first, s))

rule finish (o1.done && o2.done && ...)
o1.done <= False; o2.done <= False; ...
s <= g(i1.first, i2.first, ... , s)
i1.deq ; i2.deq ; ...

June 12, 2009 http://csg.csail.mit.edu

2) Automatically generated LI-
BDN for a 3-ported register file

rf

ra0

ra1

wen
wa
wd

rd0

rd1

rule RD0 when (¬rd0Done)
rd0.enq(rf_0[ra0.first])
rd0Done <= True

rule RD1 when (¬rd1Done)
rd1.enq(rf_1[ra1.first])
rd1Done <= True

rule finish when (rd0Done ∧ rd1Done)
ra0.deq; ra1.deq
wen.deq; wa.deq; wd.deq
rf_2[wa.first] <= wen.first?

wd.first : rf_2[wa.first]
rd0Done <= False
rd1Done <= False

rd0Done

rd1Done

This again uses 3 ports

12

June 12, 2009 http://csg.csail.mit.edu

Refinement into a one-ported
register file LI-BDN

rf

ra0

ra1

wen
wa
wd

rd0

rd1

rule RD0 when (¬rd0Done)
rd0.enq(rf_0 [ra0.first])
rd0Done <= True

rule RD1 when (¬rd1Done)
rd1.enq(rf _0 [ra1.first])
rd1Done <= True

rule finish when (rd0Done ∧ rd1Done)
ra0.deq; ra1.deq
wen.deq; wa.deq; wd.deq
rf_0 [wa.first] <= wen.first?

wd.first : rf_0 [wa.first]
rd0Done <= False
rd1Done <= False

rd0Done

rd1Done

This uses 1 port

http://csg.csail.mit.edu

Thanks

