Bounded Dataflow Networks (BDNSs)

and
Latency-Insensitive (LI) Circuits

Murali Vijayaraghavan and Arvind
Computer Science and Artificial Intelligence Laboratory
M. LT

WG 2.8, Chiemsee, Germany
June 12, 2009

http://csg.csail.mit.edu

Dataflow networks

& Kahn-Dennis networks: A network of
computing stations connected by unbounded
FIFOs

= a “get” is blocking but a “put” is not

& Dataflow networks with bounded FIFOs (BDNSs)
= Hard to model as a Kahn-Dennis network

= Varying the size of a FIFO changes the meaning
(may cause a deadlock)

& Several groups are using BDNs for latency-
insensitive refinements of Synchronous
Sequential Machines (SSMs) and often
encounter deadlocks

June 12, 2009 http://csg.csail.mit.edu

Bounded Dataflow Networks

&® Can be modeled accurately in Bluespec

@® Can be used a high-level structuring
technique for Bluespec designs

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNSs:

A Combinational Block

a fis a combinational circuit:
¢ must accept an input value
b Im— on each input before

producing an output

Behavior

rule CL when (—a.emptyA—b.emptya—c.full)
— c.enq(f(afirst, b.first)); a.deq ; b.deq

Unlike SSMs, the (red) lines only show dataflow and

not all the control lines needed to make BDNs
function

June 12, 2009 http://csg.csail.mit.edu

A fork definition

IMb

a I1ITH

IMc

Behavior

a fork that copies an
input value to both its
outputs simultaneously

rule F when (-a.empty A —b.full A —c.full)
= b.enqg(a.first); c.enq(a.first); a.deq

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNs:

Fork

a 1ITH

Behavior

a fork to copy an input
value but the input can
be dequeued only when
both the outputs have
accepted the input

= bh.enqg(a.first); bDone <= True

= c.enq(a.first); cDone <= True

rule Fl when (—a.emptyAbDone A cDone)
= a.deq; bDone <= False;
cDone <= False

rule FO1 when (—a.emptya—b.full A =bDone)

Initial Values

rule FO2 when (—a.emptya—c.full A —cDone) bDone = False

cDone = False

Which one do
we want?

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNs:

Register
A register whose
aTll——! r —mmb reads and writes must
A match
]
bDone
Behavior
rule RO when (—b.full A —bDone) Initial Values

=b.enq(r); bDone <= True

bDone = False
rule Rl when (—a.empty A bDone) r=r,
=r <= a.first; a.deq; bDone <= False

June 12, 2009 http://csg.csail.mit.edu

Examples of primitive BDNs:

Mux Hp
A mux that accepts an
aCnt input value on each input
alll —J port but passes only the
b T bCnt |] {0 ¢ appropriate value to the
] output
Behavior

rule MuxO when —c.full A —p.empty

— if(p-first A — a.empty) V'QI'L'SL

then c.enq(a.first); a.deq; bCnt<=bCnt+1
else if(!(p.first) A — b.empty) aCnt=0
then c.enq(b.first); b.deq; aCnt<=aCnt+1 bCnt =0

rule MuxI1 when aCnt >0 A — a.empty
= a.deq; aCnt<=aCnt-1

rule MuxI2 when bCnt >0 A — b.empty
= b.deq; bCnt<=bCnt-1

June 12, 2009 http://csg.csail.mit.edu

Composition of BDNs

L
@ If R, and R, are BDNs then so is the parallel composition of
R,and R, (R=R; ® R,)

M— g A0 1 R A1

Im——{ ' —m m ' lam
R

I[D—'R—HII] T R SI|
2 2

11 111 T T

& R1 is a BDN then so is the (li ,Oj) iterative composition of
R1 (R = (i,j) ® R1) provided li ¢ Depends-on(Oj)*

=0,

[T —IM Q.
: R, J R | R
I —10 1M 1]

* No direct combinational path
June 12, 2009 http://csg.csail.mit.edu

BDN as a refinement of an SSM

R -0, 1, T—, —MM o,
e _ — —
— — — —
— — — —

l,— — o, 1, TI—] ——1 o,

® There is a bijective mapping between the
inputs (outputs) of S and R

&® for alln > O,
I(k) matches for Sand R (1 £k <n) Cycle
= O(j) matches for Sand R (1 <j<n) | Accuracy
In general it is difficult to compare an SSM and a BDN

because a BDN can deadlock. We will restrict our attention
to a class of BDNs with some “desirable properties”

June 12, 2009 http://csg.csail.mit.edu

Deadlock-free BDN

— R —
——— >

{ll T— I:I:I:I:Iol}
| 0

ly T —I10 O,

® Assuming an infinite sink, a BDN is deadlock-
free if for all n > 0O, if n values are enqueued
into |1 then eventually n values will be
dequeued from both O and |

= we need a stronger property for deadlock-freeness to
be preserved under composition

June 12, 2009 http://csg.csail.mit.edu

NED-BDN:

BDNs with no extraneous dependencies

@® A BDN is said to have no extraneous
dependencies if its output O, is not enqueued n
times, assuming it is not full and all the inputs
are enqueued n-1 times, then it must be that
one of the inputs in Depends-on(0O;) is not
enqueued n times

& Note that this is a property of BDN — it is
different from the condition for iterative
composition

June 12, 2009 http://csg.csail.mit.edu

NED-BDN v

1m

a I1ITH

1m

Behavior

iolation 1

b a fork that copies an
input value to both its
outputs simultaneously

C

rule F when (—a.em

= b.enqg(a.first); c.enq(a.first); a.deq

pty A —b.full A —c.full)

June 12, 2009

http://csg.csail.mit.edu

June

aIl——
b IIIFt

Possible Behaviors

NED-BDN violation 2

—>I|I|C

—{Md

rule O when (—a.emptyAa—b.emptya—c.full A—d.full)
= c.enq(f(a.first, b.first)); d.enq(b.first);

a.deq ; b.deq

rule O1 when (—a.emptya—b.emptya—c.full A—cDone)

= c.enq(f(a.first, b.

rule O2 when (—b.emptyA—d.full A—dDone)
= d.enq(b.first); dDone <= True

rule In when (cDone Ad
= a.deq ; b.deq

first)); cDone <= True

Done)

. 2009

odan e /1 IS TRRN]
ntpr77csg-csatmiteat

Latency-Insensitive (L1) BDN

& LI-BDN is an NED-BDN which is
refinement of an SSM

IhL— — 0 Iy 1 1T 0,
—

—
In om In :D:D—’ —ED:D Om

June 12, 2009 http://csg.csail.mit.edu

LI refinement Theorem

® L1-BDNs are composable under parallel
and sequential composition
= If R;, R, are refinements of S;, S, =
* R, ® R, is the refinement of S; +S,
* (i, J) ® R, is the refinement of (i, j)><S;

@ Basically this ensures that the
composition of LI-BDNs are deadlock-
free and cycle-accurate w.r.t. the
original SSMs

June 12, 2009 http://csg.csail.mit.edu

Application: Modeling via RTL
prototyping on FPGAs

& Some RTL structures are inefficient to
map directly onto FPGAs

= For example, a 3-ported register file (RF)
consumes lot of area as opposed a 1-ported
RF used for 3 cycles

= However, replacing a 3-ported RF naively
by a 1-ported RF in a design may loose
“cycle-accuracy”, even if the high-level
functionality “turns out” to be correct

June 12, 2009 http://csg.csail.mit.edu

Application: Cycle-accurate
modeling

Full/ Bad
portion

June 12, 2009 http://csg.csail.mit.edu

Startable SSMs: SSMs with a “start”
. signal to update registers

| { f start (=1)
}o

June 12, 2009 http://csg.csail.mit.edu

1000 feet view of LI-refinement
of an SSM

@® FIFOs are introduced in every input and
every output of the SSM

@ Time cycles of the SSM are converted
Into enqueues into inputs and dequeues
from outputs
s “Cycle-accurate” w.r.t SSM

&® Atomic rules for the operations are
defined so that no extraneous
dependencies are introduced
» Ensures deadlock-free operation

June 12, 2009 http://csg.csail.mit.edu

10

Writing the LI-BDN wrapper for an
SSM

LI-BDN:
rule j (!o;.done)
0;.done <= True
o;.enq(fi(ij,-first, ... ,i,;.first, s))

rule finish (o,.done && o0,.done && ...)
0,.done <= False; 0,.done <= False; ...
s <= g(i,.first, i,.first, ... , s)
i,.deq ; i,.deq ; ...

Given the SSM:
0;(1) = (i, (D), --- ,iy;(), s(D)
/1 iy, i, ... iyy; @re in Depends-on(o;)
s(t+1) = g(i, (1), i (1), ..., s(1))

June 12, 2009 http://csg.csail.mit.edu

2) Automatically generated LI-
BDN for a 3-ported register file

, b [rdODone] rule RDO when (—rdODone)
e 11a0 o rd0.enq(rf_O[ra0.first])

- . rdODone <= True
1m — I

f rule RD1 when (—rd1Done)
Tmen rd1.enq(rf_1[ral.first])
T wa rd1Done <= True
T wd
rule finish when (rdODone A rd1Done)

ra0.deq; ral.deq

wen.deq; wa.deq; wd.deq

rf_2[wa.first] <= wen.first?

This again uses 3 ports wd.first : rf_2[wa.first]
rdODone <= False

rd1Done <= False

June 12, 2009 http://csg.csail.mit.edu

Refinement into a one-ported
register file LI-BDN

-
rule RDO when (—rdODone)
rdODone ,
T ra0 rd0 ST r:gan(r<f:0T[ra0.f|rst])
i i rdODone <= True
1m —1
rule RD1 when (—rd1Done)
ven If rdl.enq(rf _0O [ral.first])
1
wa rd1Done <= True
I
wd
1M rule finish when (rdODone A rd1Done)
ra0.deq; ral.deq
wen.deq; wa.deq; wd.deq
rf_0 [wa.first] <= wen.first?
) wd.first : rf_0 [wa.first]
This uses 1 port rdODone <= False
rd1Done <= False
June 12, 2009 http://csg.csail.mit.edu

Thanks

http://csg.csail.mit.edu

12

