
Ajax and Client-Side Evaluation

of

i-Tasks

Workflow Specifications

Rinus Plasmeijer – Jan Martin Jansen - Peter Achten – Pieter Koopman

University of Nijmegen - Dutch Defense Academy

clean.cs.ru.nl http://www.cs.ru.nl/~rinus/iTaskIntro.html

2

Clean

Recap on Workflow Systems & iTasks (ICFP 2007)

Implementation of i-Tasks

Basic implementation: Task Tree Reconstruction

Optimized: Task Tree Rewriting

Local Task Rewriting using "Ajax" technology

Client Side Local Task Rewriting using the SAPL interpreter

Conclusion & Future Research

3

1. What is a Workflow System?

A Workflow describes the operational aspects of work to be done

What are the tasks which have to be performed to achieve a certain goal ?

How do these tasks depend on each other?
In which order should the work be done ?

Who should perform these tasks ?

A Workflow System is a computer application which coordinates the work, given

the workflow description

the actual work to be done

the actual resources available

4

2. How do existing Work Flow Systems look like?

Common characteristics of Commercial Workflow Systems

Semantics based on (simple) Petri Nets

Workflows are commonly graphically defined: flow graphs

Workflow specification abstracts from concrete work and resources
Databases are used to store the actual work and progress made

> 25 “Workflow Patterns” identified (Van der Aalst et al.)

sequencing, repetition, exclusive choice,
multiple choice,
parallel or, parallel or, ...

Descriptions are un-typed

Descriptions are static

5

3. i -Tasks Approach

Initiative from industry: why not apply techniques known from Functional Languages?
Dutch Applied Science (STW) project: “Demand Driven Workflows”
i-Tasks is our first "simple" try out

6

3. i -Tasks Approach

Initiative from industry: why not apply techniques known from Functional Languages?
Dutch Applied Science (STW) project: “Demand Driven Workflows”
i-Tasks is our first "simple" try out

We offer all "standard" Workflow Patterns as combinator functions
Sequencing of tasks, repetition, exclusive choice, multiple choice, …

7

3. i -Tasks Approach

Initiative from industry: why not apply techniques known from Functional Languages?
Dutch Applied Science (STW) project: “Demand Driven Workflows”
i-Tasks is our first "simple" try out

We offer all "standard" Workflow Patterns as combinator functions
Sequencing of tasks, repetition, exclusive choice, multiple choice, …

Typical features known from functional languages like Haskell and Clean
Strongly typed, dynamically constructed, compositional, re-usable

8

3. i -Tasks Approach

Initiative from industry: why not apply techniques known from Functional Languages?
Dutch Applied Science (STW) project: “Demand Driven Workflows”
i-Tasks is our first "simple" try out

We offer all "standard" Workflow Patterns as combinator functions
Sequencing of tasks, repetition, exclusive choice, multiple choice, …

Typical features known from functional languages like Haskell and Clean
Strongly typed, dynamically constructed, compositional, re-usable

New useful workflow patterns
Higher order tasks, Processes, Exception Handling, …

9

3. i -Tasks Approach

Initiative from industry: why not apply techniques known from Functional Languages?
Dutch Applied Science (STW) project: “Demand Driven Workflows”
i-Tasks is our first "simple" try out

We offer all "standard" Workflow Patterns as combinator functions
Sequencing of tasks, repetition, exclusive choice, multiple choice, …

Typical features known from functional languages like Haskell and Clean
Strongly typed, dynamically constructed, compositional, re-usable

New useful workflow patterns
Higher order tasks, Processes, Exception Handling, …

Executable workflow specification using standard web browsers
All low level I/O handled automatically using generic programming techniques

Storage and retrieval of information, web I/O handling
Declarative style of programming

Complexity of underlying architecture hidden
One single application running distributed on server and clients

10

A very small *complete* example I

module exercise1

import StdEnv, StdiTasks

Start world = singleUserTask [] simple world

simple :: Task Int
simple = editTask "Done" createDefault

11

A very small *complete* example II

module exercise1

import StdEnv, StdiTasks

Start world = singleUserTask [] simple world

simple :: Task (Int, Real)
simple = editTask "Done" createDefault

12

A very small *complete* example III

simple :: Task [Int]
simple = editTask "Done" createDefault

13

A very small *complete* example IV

:: Person = { firstName :: String
, surName :: String
, dateOfBirth :: HtmlDate
, gender :: Gender
}

:: Gender = Male
| Female

simple :: Task Person
simple = editTask "Done" createDefault

14

A very small *complete* example IV

:: Person = { firstName :: String
, surName :: String
, dateOfBirth :: HtmlDate
, gender :: Gender
}

:: Gender = Male
| Female

simple :: Task Person
simple = editTask "Done" createDefault

15

editTask

editTask :: String a → Task a | iData a
editTaskPred :: a (a → (Bool, HtmlCode)) → Task a | iData a

:: Task a :== *TSt → *(a, *TSt) // a Task is state transition function
:: TSt // an abstract type

A task consist of an amount of work to be performed by the user involving ≥ 0 interactions
It is either not active, active, or finished.

16

editTask

editTask :: String a → Task a | iData a
editTaskPred :: a (a → (Bool, HtmlCode)) → Task a | iData a

:: Task a :== *TSt → *(a, *TSt) // a Task is state transition function
:: TSt // an abstract type

A task consist of an amount of work to be performed by the user involving ≥ 0 interactions
It is either not active, active, or finished.

iData a is a context restriction for type a

In Haskell one would write:

editTask :: iData a => String → a → Task a

- In Clean it is used not only to demand instances of overloaded functions for type a
- But it can also be used to demand instances of generic functions…

17

generic functions used by i-Task system

class iData a | gForm {|*|} , iCreateAndPrint, iParse, iSpecialStore a
class iCreateAndPrint a | iCreate, iPrint a
class iCreate a | gUpd {|*|} a
class iPrint a | gPrint {|*|} a
class iParse a | gParse {|*|} a
class iSpecialStore a | gerda {|*|}, read {|*|}, write {|*|}, TC a

It requires the instantiation of several generic functions for type "a" e.g.
gForm gUpd html form creation / form handling

Serialization / De-Serialization for storage
gParse gPrint parsing / printing (in TxtFile, Page, Session)
gerda storage and retrieval (in Database),
read write efficient binary reading / writing (in DataFile)

TC conversion to and from Dynamics
option used to store functions

all generic functions can, on request, automatically be derived by the compiler

18

A very small *complete* example IV

:: Person = { firstName :: String
, surName :: String
, dateOfBirth :: HtmlDate
, gender :: Gender
}

:: Gender = Male
| Female

simple :: Task Person
simple = editTask "Done" createDefault

derive gForm Person, Gender
derive gUpd Person, Gender
derive gParse Person, Gender
derive gPrint Person, Gender
derive gerda Person, Gender
derive read Person, Gender
derive write Person, Gender

19

Options

A task or any combination of tasks, can have several options:

class (<<@) infixl 3 b :: (Task a) b → Task a

instance <<@ Lifespan // default: Session
, StorageFormat // default: PlainString
, Mode // default: Edit
, GarbageCollect // default: Collect

:: Lifespan = TxtFile | DataFile | Database // persistent state stored on Server
| Session | Page // temp state stored in browser
| Temp // temp state in application

:: StorageFormat = StaticDynamic // to store functions
| PlainString // to store data

:: Mode = Edit | Submit // editable
| Display // non-editable
| NoForm // not visible, used to store data

:: GarbageCollect = Collect | NoCollect // off: used for debugging & logging

20

A very small *complete* example IV

simple :: Task Person
simple = editTask "Done" createDefault

By default any change made in a form is transmitted to the clean application
Pressing "Done" means: task is finished

21

A very small *complete* example IV Submit

simple :: Task Person
simple = editTask "Done" createDefault <<@ Submit

Common behaviour: form is submitted when Submit is pressed, yet task not finished
Pressing "Done" means: task is finished

22

A very small *complete* example IV, Submit, TxtFile

simple :: Task Person
simple = editTask "Done" createDefault <<@ Submit <<@ TxtFile

Task(s) becomes persistent: status of the (partially evaluated) task is remembered
Important for multi-user applications.

23

A very small *complete* example IV, Submit, Database

simple :: Task Person
simple = editTask "Done" createDefault <<@ Submit <<@ Database

Task(s) becomes persistent, now stored in relational database
Important for multi-user applications.
Options switched by toggling flags

24

Some predefined combinators…

Sequencing of tasks: monads
(=>>) infix 1 :: (Task a) (a → Task b) → Task b | iData b
return_V :: a → Task a | iData a

Assign a task to a user, every user has a unique id (UserId :== Int)
(@::) infix 3 :: UserId (Task a) → Task a | iData a

Select 1 task to do out of n:
chooseTask :: [(String,Task a)] → Task a | iData a

Or Task: do both tasks concurrently in any order, finish as soon as one of them completes
(-||-) infixr 3:: (Task a) (Task a) → Task a | iData a

Repeat forever:
foreverTask :: (Task a) → Task a | iData a

Prompting operator: displays Html text as long as a task is activated:
(?>>) infix 5 :: HtmlCode (Task a) → Task a | iData a

25

Assigning Tasks to Users

26

Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

delegate :: UserId (Task a) → Task a | iData a
delegate boss task
= boss @:: [Txt "Who has to do the job ?"]

?>> editTask "OK" createDefault

27

Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

delegate :: UserId (Task a) → Task a | iData a
delegate boss task
= boss @:: [Txt "Who has to do the job ?"]

?>> editTask "OK" createDefault
=>> \employee → employee @:: task

28

Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

delegate :: UserId (Task a) → Task a | iData a
delegate boss task
= boss @:: [Txt "Who has to do the job ?"]

?>> editTask "OK" createDefault
=>> \employee → employee @:: task
=>> \result → boss @:: [Txt "Result:", toHtml result]

?>> editTask "OK" Void

29

Assigning Tasks to Users

The actual assignment of tasks to users can be calculated dynamically:

delegate :: UserId (Task a) → Task a | iData a
delegate boss task
= boss @:: [Txt "Who has to do the job ?"]

?>> editTask "OK" createDefault
=>> \employee → employee @:: task
=>> \result → boss @:: [Txt "Result:", toHtml result]

?>> editTask "OK" Void
=>> _ → return_V result

Start world = multiUserTask [] (delegate 0 some_nice_task) world

30

Different ways to start a workflow application…

definition module iTasksHandler

singleUserTask :: [StartUpOptions] (Task a) *World → *World | iData a

multiUserTask :: [StartUpOptions] (Task a) *World → *World | iData a

workFlowTask :: [StartUpOptions] (LoginTask a) (TaskForUser a b)
*World → *World | iData b

:: LoginTask a :== Task ((Bool, UserId), a)
:: TaskForUser a b :== UserId a → LabeledTask b

31

Semantics I - Types

:: ITask = { val :: Val
, ident :: ID
, done :: Done
}

:: Done = Yes | No
:: Val = Int Int

| Tuple (Val, Val)
:: ID :== Int
:: Event :== ITask
:: TasksToDo :== [ITask]

:: ITaskComb = Editor ITask // editor, input device
| Sequence ITaskComb (Val -> ITaskComb) // sequence, monadic bind
| Return Val // normal form, monadic return
| Or ITaskComb ITaskComb // or combinator
| And ITaskComb ITaskComb // and combinator

32

Semantics II – Reduction Rules

Normal Form:

inNF :: ITaskComb → Bool
inNF (Return val) = True
inNF _ = False

One Step Reduction + Determining Active Editors for the next Reduction Step

Reduce :: ITaskComb (Maybe Event) TasksToDo → (ITaskComb, TasksToDo)

Reduce (Editor itask) Nothing todo = (Editor itask, [itask : todo])
Reduce (Editor itask) (Just event) todo
| event.ident == itask.ident

| isFinished event.done = (Return event.val, todo)
| otherwise = (Editor event, [event : todo])

| otherwise = (Editor itask, [itask : todo])
where

isFinished :: Done → Bool
isFinished Yes = True
isFinished No = False

33

Basic Implementation Scheme: Task Tree Reconstruction

Flow is specified in one Clean application serving all users

An i-Task specification reads like a book

because it gives the illusion that it step-by-step interacts with the user
like standard IO for a desktop application

In reality it starts from scratch every time information is committed, and dies

It reconstructs the Task Tree, starting from the root
finds previous evaluation point

It deals with Multiple Users
Sequential handling of requests: users are served one-by-one

It determines the resulting html code for all users
but it shows only the html code intended for a specific user

It stores state information in the html page, databases, files for the next request
Depending on the task options chosen

34

Optimization I: Global Task Rewriting

Can this be efficient?
Over time, more and more tasks are created
the reconstruction of the Task Tree will take more and more time as well

Speed-up re-construction of the Task Tree: Global Task Rewriting

Tasks are rewritten in (persistent) storages just like functions
The result of a task is remembered, not how a task accomplished

Tail recursion / repetition is translated to a Loop
Task Tree will not grow infinitely

Garbage collection of stored iTasks which are not needed anymore

The efficiency is not bad at all, but for large systems we can do better

35

Optimization II: Local Task Rewriting – Basic idea

Local Task Rewriting

Avoid complete Task Tree reconstruction all the way from the root

Only locally rewrite the different tasks (sub tree) a user is working on

Use “Ajax” technology and only update on web page what has to change

Transparent: (almost) no changes in the original workflow specification

Each tasks assigned to a user with the @:: combinator is rewritten “locally”

Fine grain control: any i-Task can assigned to be rewritten “locally”

UseAjax @>> any_task_expression

36

Optimization II: Local Task Rewriting - Implementation

Property: any Sub-Tree in the Task Tree can be reconstructed from scratch

Thread Storage: to store closures: an iTask combinator call + its arguments

stored closure serves as kind of call-back function or thread
which can handle all events of all subtasks in the subtree

Global Effects Storage for every user

locally one cannot detect global effects
administrate which tasks are deleted, the fact that new tasks are assigned

Rewrite-o-matic: from Local Task Rewriting stepwise to Global Task Rewriting

Threads can be nested, and can partly overlap
when a thread is finished locally rewrite parent thread, and so on...

Switch back to top level Global Task Rewriting
when parent thread belongs to another user
when there are global effects administrated affecting the user

37

Example: Check and Double-Check

Check 1: by predicate Check 2: by application user

One can imagine that this is all done on the Client side

38

Check and Double-Check i-Task Specification

General Recipe to check and double-check the correctness of any value of any type…

doubleCheckForm :: a (a → (Bool, [BodyTag])) → Task a | iData a
doubleCheckForm a preda
= [Txt "Please fill in the form:"]

?>> editTaskPred a preda

=>> \na → [Txt "Received information:", toHtml na, Txt "Is everything correct ?"]
?>> chooseTask [("Yes", return_V na)

, ("No", doubleCheckForm na preda)
]

doubleCheckPerson :: Person → Task Person
doubleCheckPerson = doubleCheckForm createDefault checkPerson
where checkPerson person = …

example = doubleCheckPerson createDefault

39

Delegate: assigning tasks to users

example :: Task Person
example = foreverTask delegate

delegate
= [Txt "Define new initial form:"]

?>> editTask "onServer" createDefault

=>> \fi → [Txt "Assign first worker:"]
?>> editTask "Assign" 1

=>> \w1 → [Txt "Assign second worker:"]
?>> editTask "Assign" 2

=>> \w2 → fillform w1 fi -||- fillform w2 fi

=>> \fr → [Txt "resulting form received from fastest worker:", toHtml fr]
?>> editTask "OK" Void

where
fillform w f = w @:: doubleCheckPerson f

40

Delegate – Task Tree Snapshot

=>>

=>>

0

=>>

-||-

@::1

=>>

2 @::

41

Delegate using Ajax

example :: Task Person
example = foreverTask delegate

delegate
= [Txt "Define new initial form:"]

?>> editTask "onServer" createDefault

=>> \fi → [Txt "Assign first worker:"]
?>> editTask "Assign" 1

=>> \w1 → [Txt "Assign second worker:"]
?>> editTask "Assign" 2

=>> \w2 → fillform w1 fi -||- fillform w2 fi

=>> \fr → [Txt "resulting form received from fastest worker:", toHtml fr]
?>> editTask "OK" Void

where
fillform w f = w @:: doubleCheckPerson f

42

Delegate Ajax – Task Tree Snapshot

=>>

=>>

0

=>>

-||-

@::1

=>>

2 @::

43

Optimization III: Client Side Local Task Rewriting

Even better to avoid web traffic overhead: Client Side Local Task Rewriting

Transparent: (almost) no changes in the original workflow specification

In the workflow specification, any i-Task can be turned into a Client Thread

OnClient @>> any_task_expression

44

Delegate using Sapl & Ajax

example :: Task Person
example = foreverTask delegate

delegate
= [Txt "Define new initial form:"]

?>> editTask "onServer" createDefault

=>> \fi → [Txt "Assign first worker:"]
?>> editTask "Assign" 1

=>> \w1 → [Txt "Assign second worker:"]
?>> editTask "Assign" 2

=>> \w2 → fillform w1 fi -||- fillform w2 fi

=>> \fr → [Txt "resulting form received from fastest worker:", toHtml fr]
?>> editTask "OK" Void

where
fillform w f = w @:: OnClient @>> doubleCheckPerson f

45

Optimization III: Client Side Local Task Rewriting

The whole i-Task machinery has to run in the browser as well

We use Jan-Martin Jansen’s SAPL interpreter: fastest, small, in C & Java (TFP '06)

The whole Clean iTask application is compiled to SAPL code
“simple” iTask: > 7000 functions, functions can be large (> 20.000 chars)

The SAPL interpreter + SAPL iTask code is loaded as Java Applet in the web page

2 almost identical iTask images: Clean .exe on server, SAPL code on Client

A Clean function call can be translated to an equivalent SAPL function call

When a Client thread is created (SAPL), a Server thread is made as well (Clean)
We can choose where to evaluate: Client or Server
If it cannot be done on the Client, we can do it on the Server

46

Optimization III: Client Side Local Task Rewriting

When an event occurs, we know it's prime destination: Client or Server

The Client basically performs the same actions as the Server
but it cannot deal with

global effects
persistent storage handling (access to files, databases)
parent threads from other users
threads to be evaluated on server
new threads created for other users

Rewrite-o-matic
in case of panic the Client evaluation stops
switch back to Server Side Local Task Rewriting

47

Conclusions

Advantages over Commercial Systems

Executable specification, but not yet as declarative as envisioned

Workflows are dynamically constructed
Flow can depend on the actual contents

Workflows are statically typed, input type checked as well
Highly reusable code: polymorphic, overloaded, generic
Fully compositional
Higher order: resulting work can be a workflow -> shift work to someone else

It generates a multi-user web enabled workflow system
Runs on client or server, as demanded

One application => easier to reason
Technical very interesting architecture, general applicable
Distributed Database, operating system, not only for web applications

Intuitive for functional programmers
but probably not for other programmers ???

48

Lots of work to do…
More Real Life Examples needed:

Car Damage Subrogation System (IFL 2007, Erik Zuurbier)
Conference Management System (AFP 2008 Summerschool)
Planned:

Logistic Control System (Dutch Navy)
Crisis Management System (Navy, Ministry of National Affairs)

Improve Practical Application
Robustness ? Performance ? Scaling ? Security ? Software evolution ?
Embedding with existing databases, workflow systems, main stream web tools
Improve implementation:

Controlling parallel applications
Distributed Servers

Exploit flexibility and total overview:
Improve feedback and control given to the manager: adjust a running system

Powerful editors on Client: full text editors, drawing of pictures, etc.

Theoretical foundation
Semantics ? Soundness ?

Can we define a declarative system on top of it ?

	Ajax and Client-Side Evaluation ��of��i-Tasks��Workflow Specifications
	Clean
	1. What is a Workflow System?
	2. How do existing Work Flow Systems look like?
	3. i -Tasks Approach
	3. i -Tasks Approach
	3. i -Tasks Approach
	3. i -Tasks Approach
	3. i -Tasks Approach
	A very small *complete* example I
	A very small *complete* example II
	A very small *complete* example III
	A very small *complete* example IV
	A very small *complete* example IV
	editTask
	editTask
	generic functions used by i-Task system
	A very small *complete* example IV
	Options
	A very small *complete* example IV
	A very small *complete* example IV Submit
	A very small *complete* example IV, Submit, TxtFile
	A very small *complete* example IV, Submit, Database
	Some predefined combinators…
	Assigning Tasks to Users
	Assigning Tasks to Users
	Assigning Tasks to Users
	Assigning Tasks to Users
	Assigning Tasks to Users
	Different ways to start a workflow application…
	Semantics I - Types
	Semantics II – Reduction Rules
	Basic Implementation Scheme: Task Tree Reconstruction
	Optimization I: Global Task Rewriting
	Optimization II: Local Task Rewriting – Basic idea
	Optimization II: Local Task Rewriting - Implementation
	Example: Check and Double-Check
	Check and Double-Check i-Task Specification
	Delegate: assigning tasks to users
	Delegate – Task Tree Snapshot
	Delegate using Ajax
	Delegate Ajax – Task Tree Snapshot
	Optimization III: Client Side Local Task Rewriting
	Delegate using Sapl & Ajax
	Optimization III: Client Side Local Task Rewriting
	Optimization III: Client Side Local Task Rewriting
	Conclusions
	Lots of work to do…

