
Koen Lindström Claessen,
Chalmers University of Technology

WG2.8, Park City, Utah,
June 2008

 SAT-solvers ...
 ... solve SAT-problems

 x v y v z

 ~x v ~y

 ~x v ~z

 ~y v ~z

boolean variables

clauses:
disjunctions of

literals

a possible solution:
x=1, y=0, z=0

 Dynamic software component

 Incremental solving API

 Feedback

 Used in algorithms as sub-component

SAT solver

addClause(clause)

solve(assump)

yes (solution)

no (reason / proof)

type Solver

type Lit

newSolver :: IO Solver

newLit :: Solver -> IO Lit

neg :: Lit -> Lit

addClause :: Solver -> [Lit] -> IO ()

solve :: Solver -> [Lit] -> IO Bool

modelValue :: Solver -> Lit -> IO Bool

”MiniSat”,
implemented in C;

Haskell API
through FFI

A Solver object

A Literal

 Mixing up Lits from different Solvers

 Create a literal in one solver...

 ... use it in another solver

 ... use literals from different solvers in one clause

 Once in IO, you stay in IO

 Calls to the API are imperative

 ...but the SAT-solver is deterministic

 ...and has no observable side effects

 Want to create pure functions

 A low-level API
 Creating unbounded number of ”factory” objects

 A factory can create reference objects...

 ... that are only valid if used with the original
factory object

 The challenge
 Design a method for building APIs that...

 ...avoids mixing reference objects from different
factories

 ...with which pure functions can be created

