Safe, Purely Functional APIs to
Low-Level Imperative Libraries:
A Programming Challenge

ﬁ

Motivating Example

SAT-solvers ...

... solve SAT-problems
XVYvVZ
~X V ~Y
~XV ~Z

~Y Vv ~Z

Modern SAT-solvers

Dynamic software component

Incremental solving API
Feedback
Used in algorithms as sub-component

addClause(clause) yes (solution)

solve(assump) no (reason / proof)

type Solver
type Lit

newSolver

newlLlt
neg

addClause
solve

modelValue

IO Solver

Solver -> I0 Lit
Lit -> Lit

Solver -> [Lit] =-> IO ()
Solver -> [Lit] -> IO Bool

Solver -> Lit -> IO BRool

Problems With Low-Level API

Mixing up Lits from different Solvers
Create a literal in one solver...
... use it in another solver
... use literals from different solvers in one clause

Oncein |O, you stay in |O
Calls to the APl are imperative
...but the SAT-solveris deterministic
...and has no observable side effects
Want to create pure functions

The Challenge: Summing Up

A low-level API

Creating unbounded number of “factory” objects
A factory can create reference objects...

... that are only valid if used with the original
factory object

The challenge
Design a method for building APIs that...

...avoids mixing reference objects from different
factories

...with which pure functions can be created

