
Koen Lindström Claessen,
Chalmers University of Technology

WG2.8, Park City, Utah,
June 2008

 SAT-solvers ...
 ... solve SAT-problems

 x v y v z

 ~x v ~y

 ~x v ~z

 ~y v ~z

boolean variables

clauses:
disjunctions of

literals

a possible solution:
x=1, y=0, z=0

 Dynamic software component

 Incremental solving API

 Feedback

 Used in algorithms as sub-component

SAT solver

addClause(clause)

solve(assump)

yes (solution)

no (reason / proof)

type Solver

type Lit

newSolver :: IO Solver

newLit :: Solver -> IO Lit

neg :: Lit -> Lit

addClause :: Solver -> [Lit] -> IO ()

solve :: Solver -> [Lit] -> IO Bool

modelValue :: Solver -> Lit -> IO Bool

”MiniSat”,
implemented in C;

Haskell API
through FFI

A Solver object

A Literal

 Mixing up Lits from different Solvers

 Create a literal in one solver...

 ... use it in another solver

 ... use literals from different solvers in one clause

 Once in IO, you stay in IO

 Calls to the API are imperative

 ...but the SAT-solver is deterministic

 ...and has no observable side effects

 Want to create pure functions

 A low-level API
 Creating unbounded number of ”factory” objects

 A factory can create reference objects...

 ... that are only valid if used with the original
factory object

 The challenge
 Design a method for building APIs that...

 ...avoids mixing reference objects from different
factories

 ...with which pure functions can be created

