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Types:

τ ::= nat naturals

| τ1 → τ2 functions

Expressions:

e ::= x variable

| z zero

| s(e) successor

| rec[τ](e; e0; x.y.e1) recursor

| λ(x:τ. e) lambda

| e1(e2) application

Judgements:

Γ ⊢ e : τ Typing Judgement

Γ ⊢ e1 ≡ e2 : τ Maximal Consistent Congruence
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A function F : N → N is definable in T iff there exists a term eF of

type nat → nat such that F (m) = n iff eF(m) ≡ n.

Theorem 1 (Gödel). The functions definable in T are those provable

total in HA.

Proof. Normalization proof is formalizable in HA. Totality proofs in

HA can be erased to terms in T.

Using Gödel-numbering and diagonalization one may exhibit a

function that is not definable in T.
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For an expression e of T, let peq ∈ N be the Gödel-number of e.

Let the function E : N → N be such that if e is a closed term of type

nat → nat, then E(peq) = n iff e(peq) ≡ n.

Theorem 2. The function E is not definable in T.

Proof. Suppose eE defines E, and let

eD = λ(x:nat. s(eE(x))). We have

eD(peDq) ≡ s(eE(peDq)) (1)

≡ s(eD(peDq)). (2)

This contradicts consistency of equivalence in T.
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For an expression e of T, let peq ∈ N be the Gödel-number of e.

Let the function E : N → N be such that if e is a closed term of type

nat → nat, then E(peq) = n iff e(peq) ≡ n.

Theorem 4. The function E is not definable in T.

Proof. Suppose eE defines E, and let

eD = λ(x:nat. s(eE(x))). We have

eD(peDq) ≡ s(eE(peDq)) (1)

≡ s(eD(peDq)). (2)

This contradicts consistency of equivalence in T.

Corollary 5. The function E is not provably total in HA.
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Theorem 6. The function E is provably total in HA2.

Proof. Essentially, can comprehend all possible computability

predicates in order to account for all possible programs.
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Theorem 9. The function E is provably total in HA2.

Proof. Essentially, can comprehend all possible computability

predicates in order to account for all possible programs.

Theorem 10 (Girard). A function on the natural numbers is definable

in System F iff it is provably total in HA2.

Corollary 11. The function E is definable in System F.
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Theorem 12. The function E is provably total in HA2.

Proof. Essentially, can comprehend all possible computability

predicates in order to account for all possible programs.

Theorem 13 (Girard). A function on the natural numbers is definable

in System F iff it is provably total in HA2.

Corollary 14. The function E is definable in System F.

This raises an interesting programming problem . . . .
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Give an explicit definition of the function E in System F.

In other words, define an evaluator for Gödel’s T in Girard’s F.

This seems to be a hard problem!

1. The evaluator must be manifestly total, in accordance with

Girard’s Theorem.

2. The implicit proof of its totality must encompass all possible
proofs of termination formalizable in (first-order) HA.
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You may use any sort of term representation you’d like, as long as it’s

obvious that it can be Church-encoded. That is, you are permitted to

use inductively defined types in F.
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You may use any sort of term representation you’d like, as long as it’s

obvious that it can be Church-encoded. That is, you are permitted to

use inductively defined types in F.

You may use a lexicographic extension of structural induction to any

finite number of places. That is, may use a nested structural

induction in which the outer induction dominates the inner induction.
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You may use any sort of term representation you’d like, as long as it’s

obvious that it can be Church-encoded. That is, you are permitted to

use inductively defined types in F.

You may use a lexicographic extension of structural induction to any

finite number of places. That is, may use a nested structural

induction in which the outer induction dominates the inner induction.

Any characterization of equivalence in T sufficient for definability of

computations of type nat is acceptable. You need not prove that it is

the maximal consistent congruence.
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Partial credit will be awarded for solutions to any of these problems:

1. Show that E is definable in Agda or Coq , using dependent

types and large eliminations to define families of types indexed

by an inductive type.

2. Show that the analogue of E for simply typed λ-calculus with
Booleans is definable in System F.

The first may or may not be “on track” for a full-credit solution, but the

second definitely is.
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