
Finding good prefix networks using
Haskell

Mary Sheeran (Chalmers)

1

Prefix

Given inputs x1, x2, x3 … xn

Compute x1, x1*x2, x1*x2*x3, … , x1*x2*…*xn

where * is an arbitrary associative (but not necessarily
commutative) operator

2

Why interesting?

Microprocessors contain LOTS of parallel prefix circuits
not only binary and FP adders

address calculation

priority encoding etc.

Overall performance depends on making them fast

But they should also have low power consumption...

Parallel prefix is a good example of a connection pattern
for which it is interesting to do better synthesis

3

4

Serial prefix

least most significant

5

serr _ [a] = [a]

serr op (a:b:bs) = a:cs

where

c = op(a,b)

cs = serr op (c:bs)

*Main> simulate (serr plus) [1..10]

[1,3,6,10,15,21,28,36,45,55]

Might expect

But I am going to prefer building blocks
that are themselves pp networks

6

bser _ [] = []

bser _ [a] = [a]

bser op as = ser bop as

where

bop [a,b] = op[c]++[d]

where [c,d] = op [a,b]

type NW a = [a] -> [a]

type PN = forall a. NW a -> NW a

When the operator works on a singleton list, it is a
buffer (drawn as a white circle)

7

Sklansky

32 inputs, depth 5, 80 operators

8

Sklansky

32 inputs, depth 5, 80 operators

9

skl :: PN

skl _ [a] = [a]

skl op as = init los ++ ros'

where

(los,ros) = (skl op las, skl op ras)

ros' = fan op (last los : ros)

(las,ras) = halveList as

plusop[a,b] = [a, a+b]

*Main> (skl plusop) [1..10]

[1,3,6,10,15,21,28,36,45,55]

10

11

Brent Kung

fewer ops, at cost of being deeper. Fanout only 2

12

Ladner Fischer

NOT the same as Sklansky; many books and papers are wrong about this

Question

How do we design fast low power prefix
networks?

13

Answer

Generalise the above recursive constructions

Use dynamic programming to search for a
good solution

Use Wired to increase accuracy of power and
delay estimations

14

BK recursive pattern

15

P is another half size network operating on only the thick wires

BK recursive pattern generalised

16
Each S is a serial network like that shown earlier

17

4 2 3 … 4

This sequence of numbers
determines how the outer
”layer” looks

wrp ds p comp as = concat rs

where

bs = [bser comp i | i <- splits ds as]

ps = p comp $ map last (init bs)

(q:qs) = mapInit init bs

rs = q:[bfan comp (t:u) | (t,u) <- zip ps qs]

twos 0 = [0]

twos 1 = [1]

twos n = 2:twos (n-2)

bk _ [a] = [a]

bk comp as = wrp (twos (length as)) bk comp as

19

4 2 3 … 4

So just look at all
possibilities for this
sequence

and for each one find
the best possibility for
the smaller P

Then pick best overall!

Dynamic programming

Search!

need a measure function (e.g. number of operators)

Need the idea of a context into which a network (or even just wires) should fit

type Context = ([Int],Int)

data PPN = Pat PN | Fail

delF :: NW Int

delF [a] = [a+1]

delF [a,b] = [m,m+1]

where m = max a b

try :: PN -> Context -> PPN

try p (ds,w)

= if and [o <= w | o <- p delF ds] then Pat p else Fail

20

21

wrp2 :: [Int] -> PPN -> PPN -> PPN

wrp2 ds (Pat wires) (Pat p) = Pat r

where

r comp as = concat rs

where

bs = [bser comp i | i <- splits ds as]

qs = wires comp $ concat (mapInit init bs)

ps = p comp $ map last (init bs)

(q:qs') = splits (mapInit sub1 ds) qs

rs = q:[bfan comp (t:u) | (t,u) <- zip ps qs']

wrp2 _ _ _ = Fail

Need a variant of wrp that can fail, and that makes the ”crossing over”
wires explicit (because they might not fit either)

22

parpre f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

23

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

f1 is the measure function being
optimised for

24

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

g is max width of small F
networks. Controls fanout.

25

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

use memoisation to avoid
expensive recomputation

26

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

base case: single wire

27

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

Fail if it is simply impossible
to fit a prefix network in the
available depth

28

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

Generate candidate sequences

Here is where the cleverness is

I keep them almost sorted

29

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

For each candidate sequence:
Build the resulting network
(where call of (prefix f) gives the
best network for the recursive call
inside)

30

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

Figures out the contexts for the
wires and the call of p in
a call of wrp2

31

wso f1 g ctx = getans (error "no fit") (prefix f1 ctx)

where

prefix f = memo pm

where

pm ([i],w) = trywire ([i],w)

pm (is,w) | 2^maxd(is,w) < length is = Fail

pm (is,w) = ((bestOn is f).dropFail)

[wrpC ds (prefix f) | ds <- topds g h lis]

where

h = maxd(is,w)

lis = length is

wrpC ds p = wrp2 ds (trywire (ts,w-1)) (p (ns,w-1))

where

bs = [bser delF i | i <- splits ds is]

ns = map last (init bs)

ts = concat (mapInit init bs)

Finally, pick the best among
all these candidates

32

Result when minimising number of ops, depth 6, 33 inputs, fanout 7

This network is Depth Size Optimal (DSO)

depth + number of ops = 2(number of inputs)-2
(known to be smallest possible no. ops for given depth, inputs)

6 + 58 = 2*33 – 2

BUT we need to move away from DSO networks to get shallow networks
with more than 33 inputs

A further generalisation

33

Result

When minimising no. of ops: gives same as
Ladner Fischer for 2^n inputs, depth n,

considerably fewer ops and lower fanout
elsewhere (non power of 2 or not min. depth)

Promising power and speed when netlists given
to Design Compiler

34

Result (more real)

Use Wired, a system for low level wire-aware
hardware design developed by Emil Axelsson at
Chalmers

To link to Wired, need slightly fancier context

since physical position is important

Can minimise for (accurately estimated) speed

in P1 and for power in P2 (two measure functions)

35

36

Link to Wired allows more accurate estimates. Can then explore design space

37

Can also export to Cadence SoC Encounter

Need to do more to make realistic circuits (buffering of long wires, sizing of cells)

38

And the search space gets even larger if one allows operators with more
than 2 inputs.

So there is more fun to be had .

Conclusion

Search based on recursive decomposition gives
promising results

Need to look at lazy dynamic programming

Need to do some theory about optimality (taking into
account fanout)

Will try to apply similar ideas in data parallel
programming on GPU (where scan is also important)

39

