
Koen Lindström Claessen,
Alejandro Russo, John Hughes
Chalmers University of Technology

WG2.8, Park City, Utah,
June 2008

 Passwords on UNIX systems

/etc/passwd

/etc/shadow

Universal Access

Root Access

Dictionary
attacks, offline

attacks, ...

 Passwords on UNIX systems

/etc/passwd

/etc/shadow

Universal Access

Root Access

Dictionary
attacks, offline

attacks, ...Linux Shadow Password HOWTO:
Adding shadow support to a C
program

”Adding shadow support to a
program is actually fairly
straightforward. The only problem is
that the program must be run by root
in order for the the program to be
able to access the /etc/shadow file.”

 For the sake of

 Intruders

 People we let in (plug-ins)

 Ourselves

 We want to restrict

 Access to data

 Where does data go?

 Where is it used?

”Information-flow
security”

Confidentiality
(aot integrity)

Program

high high

low low

Non-interference: Varying high
inputs should not affect low inputs

 Attacker

 Not trusted

 Intruder

 Programmer

 Yourself

 Everyone (including the attacker) can observe
low security outputs

 Study for ~30 years
 Active research field
 Compilers

 JIF (Java) 2001
▪ Cornell University

 FlowCaml (ML) 2002
▪ INRIA (not actively

developed)

 Impact on practice

 Limited!

 Possible to guarantee IF by
a library
 [Zdancewic & Li, 06]

 Haskell

 Arrows
 No need to write a

compiler from scratch
 DSEL approach: Quick

experimenting with ideas
 No restriction on the PL to

use due to security

 Limitations

 No side effects

 Extension to the library [Tsai, Russo,
Hughes’07]

 Major changes in the implementation of the library

 New arrows combinators

 Lack of arrow notation

 Why arrows?

 Zdancewic and Li mention that monads are
not suitable for the design of the library

 Light-weight
 Library-based
 Monad-based (not arrows)
 Restrict capabilities

 Abstract types

 Use of the module system

 Practical (?)

 Pure language

 No side effects

 (Controlled side effects)

 Strong type system

 Cannot ”cheat”

 No implicit information flow!

 Only explicit if secret == 3 then
print(1)

else
print(2)

f :: (Int {-secret-}, Char)

-> (Int {-secret-}, Char)

f (n, c) = (n + 1, chr (ord c + 1))

f (n, c) = (n + ord c, ’a’)

f (n, c) = (n + ord c, chr n)

f (n, c) | n > 0 = (42, c)

| otherwise = (1, chr (ord c + 1))

YES

YES

NO

NO

type Sec a -- abstract

sec :: a -> Sec a

open :: Sec a -> Key -> a

strict!

data Key = TheKey -- hidden

instance Functor Sec

instance Monad Sec

type A

type B

type C

type D

f :: (Sec A, B) -> (Sec C, D)

f (a1,b) = (c,d) => f (a2,b) = (c’,d)

type Sec s a -- abstract

sec :: a -> Sec s a

open :: Sec s a -> s -> a

data H = H -- abstract

data L = L -- public

class Less low high where

up :: Sec low a -> Sec high a

instance Less L H

instance Less L L

instance Less H H

Sec L a ~= a

Trusted
SecLib.hs Haskell

Libraries

Attacker/
Untrusted

Code

Trusted
Code

Public
SecLib.hs

Safe Haskell
Libraries

IO,
unsafePerformIO,

FFI, Exceptions

~400
LOC

 IO features

 File IO

 stdin/stdout

 State references

 Channels

 ...

 This talk: Only File IO

type File s -- abstract

readFileSec :: File s -> IO (Sec s String)

writeFileSec :: File s -> Sec s String -> IO ()

 ”Depending on a high value, write to file1 or
file2”

 Leads to result types

 IO (Sec H a)

 Sec H (IO (Sec H a))

 IO (Sec H (IO (Sec H a)))

 ...

 Need a new type for ”secure IO”

type SecIO s a -- abstract

peek :: Sec s a -> SecIO s a

readFileSec :: File s -> SecIO s String

writeFileSec :: File s -> String -> SecIO s ()

run :: SecIO s a -> IO (Sec s a)

* Read from level s or lower
* Write to level s or higher
* Produce a value at level s

Side effects escape
”Sec s”!

example :: Sec H Int -> SecIO s ()

example secret =

do x <- peek secret

if x == 42

then writeFileSec file1 ”foo”

else writeFileSec file2 ”bar”

main :: File H -> File L -> IO (Sec H Answer)
main shadow passwd = run (...)

shadow :: File H
passwd :: File L

main = ... Untrusted.main shadow passwd ...

type File m s -- abstract

data R

data W

readFileSec :: File R s -> SecIO s String

writeFileSec :: File W s -> String -> SecIO s ()

passwd :: File R L

shadow :: File R H

database :: File m H -- polymorphic

• Login program

• Get password from user input

• Check if it is correct (compare with shadow)

• Act accordingly

• It is necessary to leak information that depends on
secrets!

• cypher inp == pwd

• Not non-interferent

• Dimensions and principles of declassificaiton
[Sabelfeld and Sands, 06]

– What information can be leaked?

– When can information be leaked?

– Where in the program is it safe to leak information?

– Who can leak information?

• How to be certain that our programs
leak what they are supposed
to leak?

Program

high high

low low

 Our library should be able to handle
different kind of declassificaiton
policies

 Policies are programs!

 Trusted users of the library
implement them

 Controlled at run-time

 A module defines combinators for
different declassification policies
(what, when, who)

Trusted
Code

 Declassification is performed by functions

 Terminology: escape hatches [Sabelfeld and Myers, 2004]

 In our library:

 Example: checking password

type Hatch sH sL a b = Sec sH a -> Sec sL b

hatch :: (a -> b) -> Hatch sH sL a b -- hidden

check :: Hatch H L (String,Passwd) Bool

check = hatch (\(inp,pwd) -> cypher inp == pwd)

monomorphic

 We want to restrict capabilities of escape hatches

type Hatch sH sL a b =

Sec sH a -> IO (Maybe (Sec sL b))

internal state may fail

-- restricting ”what” (how often)

nTimes :: Int -> Hatch sH sL a b ->

IO (Hatch sH sL a b)

-- example

check =

nTimes 3

(hatch (\(inp,pwd) -> cypher inp == pwd))

-- restricting ”what” (how often)

nTimes :: Int -> Hatch sH sL a b ->

IO (Hatch sH sL a b)

nTimes n hatch =

do ref <- newIORef n

return (\x ->

do k <- readIORef ref

if k >= 0

then do writeIORef ref (k-1)

hatch x

else do return Nothing)

-- restricting ”when” (flow locks)

data Open = Open (IO ()) -- hidden

data Close = Close (IO ()) -- hidden

when :: Hatch sH sL a b ->

IO (Hatch sH sL a b, Open, Close)

-- restricting ”who” (flow locks)

data Authority s = Auth Open Close -- hidden

who :: Hatch sH sL a b ->

IO (Hatch sH sL a b, Authority sH)

-- for use by attacker

certify :: s -> Authority s -> IO a -> IO a

 Powerful
 Expressive

 Theory of declassification is in its infancy

 One dimension only

 Weak results

 In practice, we want to combine things

 Pragmatic

 ”Sec” -- obvious and trivial
 All other things

 SecIO

 Files

 References

 ...

 On top of Sec: also obvious
 With slight modification: small proof

To do

To do

 Modelled library + language as a Haskell
datatype

 Evaluate function

 Written a random generator

 Respecting types

 Expressed non-interference as a QuickCheck
property

 Counter-examples for unsound versions of the
library

 Light-weight library (~400 LOC)
 Practical
 Simple (Monads)

 Features: files, stdio/stdout, references

 Declassification

 Examples: login system, bidding,banking system
prototype,...

 Limitations
 Timing leaks

 Static security lattice

