
June 12, 2008 1

Composable Parallel 
Programming

Any parallel program can be used, without change, 
as a component of a larger parallel program: A can 

be used to build B; B and C to build D.

D

C

B A



June 12, 2008 2

Composable Parallel 
Programming

Q: Why is it not possible today?

A: Parallel Programs make Resource Decisions!

Which Processors?
How is Data Distributed?

Q: Why can’t a Compiler do it?

A: Must Look at the Entire Program!
Can’t Respond to Run-Time Changes!



June 12, 2008 3

Q: What can we learn from
Sequential Computing?

A: Two Powerful Concepts:

Procedures Objects

Goal: Generalize for Multi-Core Computing!



June 12, 2008 4

Nested Sequential Procedure Activations

Address Space of Program

A

stack

B

local
variables

call

A waits while
B executes



June 12, 2008 5

Nested Parallel Procedure Activations
A continues while
others execute
concurrently!

A

C

B

D

Q: How to Allocate Locals? A Stack no longer works!

A: Use a Tree Structure; Allocate in Heap
The Cactus Stack:

A
DCB



June 12, 2008 6

General Object Implementation

Sequential Computing

To avoid complex address
translation all objects must
reside in a common global
address space.

O1

Multi-Core Computing

P P P

address space
stack

O2

heap

O1

O2

Distributed memory



June 12, 2008 7

Q: Can efficient Heap Management be
Implemented in a Multi-Core Computer?

A: Yes! With the right hardware:
- Global Addressing
- Built-in Garbage Collection

Composable Parallel Programming

What it requires: Efficient Heap Management

Fine-Grain Scheduling of Threads



June 12, 2008 8

Composability

Current multiprocessor computers do not support 
composition of parallel programs:

Using a parallel program as a component of a 
larger parallel program generally requires 
understanding and modifying the internal 
mechanisms of the component.

This is true because programmers are given the 
responsibility for planning the management of 
processors and distribution of data.



June 12, 2008 9

Requirements for 
Composability

• Means for flexible and fast run-time 
management of processor and memory 
allocation.
– Hardware-supported memory allocation and 

garbage collection.
– Fine-grain scheduling of threads.

• Architectural support for a memory model that 
satisfies principles of modularity:
– Context Independence

– Data Generality
– Hierarchy


	Composable Parallel Programming 
	Composable Parallel Programming
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Composability
	Requirements for Composability

