
WG2.8 ‘08 1

Proof Technology for
High-Assurance Runtime Systems

Andrew Tolmach, Andrew McCreight,
and the Programatica team

WG2.8 ‘08 2

Functional Languages for High-
Assurance Applications

• Goal: rely on properties of functional languages to
build high-assurance software in cost-effective way

– Improved productivity through abstraction

– Memory safety

– Type safety

– Formal semantics (maybe!)

– Easy reasoning about programs (maybe!)

• Especially interested in systems code

– important, tricky

• Example: the House proof-of-concept OS [ICFP05]

WG2.8 ‘08 3

• House relies on services provided by the Glasgow
Haskell Compiler (GHC) run-time system

• currently around 35-50KLOC of complex C code

• Any assurance argument that we might make about
House requires a corresponding argument about the
run-time system

• hard or impossible for existing RTS

• Situation is similar for many other high-level
languages/implementations, e.g. Java

A Credibility Gap

WG2.8 ‘08 4

• Reduce code size:

• Eliminate functionality that we don’t need

• Eliminate accidental/historical complexity

• Re-implement in a safer language

• Re-implement with new goals

• Simplicity

• Ease of formal verification

• Stress formal specification of intended behavior

How to Bridge the Gap

WG2.8 ‘08 5

High-Assurance RTS for Haskell, Java, …

Services:

• Garbage collection

• Concurrency

• Interfacing to untrusted languages

HARTS

First priority

WG2.8 ‘08 6

Talk Outline

Motivation for HARTS

Verifying Garbage Collectors

Verifying Imperative Pointer Programs

Verifying Using Deep Embeddings,
Separation Logic, and Tactics

WG2.8 ‘08 7

• Errors in algorithms
– Especially for highly-concurrent algorithms

• Errors in GC implementation

• Errors in mutator
– Mutator must identify all roots
– Mutator must respect GC data structures

Where Do GC Bugs Come From?

Focus for Today

Formalizing the contract is a critical first step

WG2.8 ‘08 8

• Insist on machine-checked proofs

• Verify the actual implementation

• Amortize the cost of verification over all uses

• Engineer a re-usable framework for future
verifications of similar style

• Amortize the cost of building the framework over
multiple GCs

• Build on existing work
– at INRIA (Leroy et al) on certified compilation
– at Yale (Shao, McCreight, et al) on certified GCs

Principles for Verified GC

WG2.8 ‘08 9

• Very few published machine-checked proofs of GC
implementations

• [FluetWang04,McCreight++07,Hawblitzel++07,
Myreen08,…?]

• Typically 100-300 lines, and somewhat simplified

Wanted: a proof methodology that will scale to
GC’s of this size and complexity

• There are fielded, production-quality GC
implementations with good performance and support
for a rich set of language features in 2000 LOC

Feasibility

WG2.8 ‘08 10

• Long-standing goal: define a strongly-typed language
rich enough to express collectors

• Proposals to date are complex
• and only guarantee safety

• We’re following a different path, based on general-
purpose provers (e.g. Coq, Isabelle, etc.)
• Ultimately, approaches may converge

• In any case, type-based approach may still be useful
choice for verifying mutator behavior

What about types?

WG2.8 ‘08 11

A certified compiler developed by Xavier
Leroy et al. using the Coq proof assistant

The Compcert Framework

PowerPC
assembly

Clight code
Mathematical

model
Formal semantics

Mathematical
modelFormal semantics

!
Mechanized proof that compilation

preserves semantics

WG2.8 ‘08 12

The Compcert Framework

Clight code

PowerPC
assembly

Implemented as a pipeline with
multiple stages

WG2.8 ‘08 13

The Compcert Framework

Clight code
Mathematical

model
Formal semantics

PowerPC
assembly

Mathematical
modelFormal semantics

!

Mathematical
model

Formal semantics

Mathematical

model
Formal semantics

!

!

WG2.8 ‘08 14

The Compcert Framework

Clight code

PowerPC
assembly

Cminor

Java bytecode

Cminor is one of the intermediate languages
• Simple, structured, weakly typed
• Concrete machine arithmetic
• Slightly abstract memory/pointer model
• A good target for compiling other

languages

GHC

WG2.8 ‘08 15

The Compcert Framework

Clight code

PowerPC
assembly

Cminor

Java bytecode

These languages require GC services!

GHC

Our Strategy:

• Write GC in Cminor

• Prove GC correctness wrt/ Cminor semantics

• Compcert backend preserves correctness

GC (Memory Management Library)

WG2.8 ‘08 16

Compcert Semantic Framework
• Compcert IL behavior is specified by operational

semantics

– given as Coq inductive relation

– bad programs just get stuck; no types needed

• Evaluation yields result and trace of system calls

• Semantic preservation at each compiler
transformation means

– at program level: result and trace preserved

– at statement level: effect of statement on
state is suitably simulated

– etc.

WG2.8 ‘08 17

Cheney-style GC code (1)

#define NULL_PTR 0

var "freep"[4]

var "toStartp"[4]

var "toEndp"[4]

var "frStartp"[4]

var "frEndp"[4]

"numFields" (x) : int -> int

{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int

{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void

{ var i;

 i = 0;

 while (I < len) {
 int32[dst + 4 * i] = int32[src + 4 * i];

 i = i + 1;

 }

 }

"scanPtrField" (xp,free) : int -> int -> int

{

 var x, len, hdr;

 x = int32[xp];

 if (x == NULL_PTR)

 return free;

 hdr = int32[x - 4];

 if (hdr != NULL_PTR) {

 len = "numFields"(hdr) : int -> int;

 "memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;

 int32[x] = free + 4;

 int32[x - 4] = NULL_PTR;

 free = free + 4 * len + 4;

 }

 int32[xp] = int32[x];

 return free;

}

WG2.8 ‘08 18

"cheneyAlloc"(hdr,root) : int -> int -> int

{

 var free,len;

 free = int32["freep"];

 len = "numFields"(hdr) : int -> int;

 len = len * 4;

 if (len == 0)

 return 0;

 if (free + len + 4 >= int32["toEndp"]) {

 free = "cheneyCollect"(root) : int -> int;

 if (free + len + 4 >= int32["toEndp"])

 return 0;

 }

 int32["freep"] = free + len + 4;

 int32[free] = hdr;

 return (free + 4);

}

 "cheneyCollect" (rootp) : int -> int

{

 var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;

 frStart = int32["toStartp"]; toStart = int32["frStartp"];

 int32["toStartp"] = toStart; int32["frStartp"] = frStart;

 toEnd = int32["frEndp"]; frEnd = int32["toEndp"];

 int32["toEndp"] = toEnd; int32["frEndp"] = frEnd;

 free = "scanPtrField"(root, toStart) : int -> int -> int;

 scan = toStart;

 while (scan != free) {

 hdr = int32[scan];

 scan = scan + 4;

 len = "numFields"(hdr) : int -> int;

 i = 0;

 while (I < len) {

 isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;

 if (isPtr)

 free = "scanPtrField"(scan,free) : int -> int -> int;

 scan = scan + 4;

 i = i + 1;

 }

 }

}

Cheney-style GC code (2)

WG2.8 ‘08 19

• Just a special case of general task: proving
properties of imperative pointer-based programs

• A long-standing but newly lively research area

• No single generally-accepted approach

• (NB. Different from Compcert’s goal, which is about
proving correctness of transformations on
imperative programs)

Proving Cminor Programs

WG2.8 ‘08 20

Talk Outline

Motivation for HARTS

Verifying Garbage Collectors

Verifying Imperative Pointer Programs

Verifying Using Deep Embeddings,
Separation Logic, and Tactics

WG2.8 ‘08 21

A naïve investigation

• What’s the current state of the art?

• Started examining alternatives in Fall ‘06

• Caveats:

• Was on sabbatical at INRIA Rocquencourt

• Using a theorem prover for the first time

• National bias towards Coq-based tools

• Case-study examples initially from
[Mehta&Nipkow05]

• Assume that bulk of each proof will need to
be done using an interactive prover

WG2.8 ‘08 22

Example: in-place list reversal

"reverse" (v) : int -> int {

 var w,t;

 w = 0;

 while (v != 0) {

 t = int32[v + 4];

 int32[v + 4] = w;

 w = v;

 v = t;

 }

 return w;

}

w

v

v

w

a b c

a b c

0

0

WG2.8 ‘08 23

Proving properties of reverse

"reverse" (v) : int -> int {

 var w,t;

 w = 0;

 while (v != 0) {

 t = int32[v + 4];

 int32[v + 4] = w;

 w = v;

 v = t;

 }

 return w;

}

Precondition: v points to
a well-formed acyclic list with
cell addresses vs = v,v2,v3, …vn

Postcondition: return value points
to a well-formed acyclic list with
cell addresses vn,…,v2,v = rev vs

Loop invariant:
•v and w point to well-formed
acyclic lists vs’, ws’
•(rev vs’) ++ ws’ = rev vs
•vs’ & ws’ are disjoint

Loop termination condition:
length of vs decreases at each
iteration

Not proven: contents of list
don’t change!

WG2.8 ‘08 24

Three Coq-based Alternatives

• Caduceus+Why -> Coq

• Monadic shallow embedding + extraction

• Deep embedding + separation logic + tactics

WG2.8 ‘08 25

Caduceus+Why [Filliatre+]
• Verification Condition (VC) generation from

annotated imperative programs (C,Java,...)

• function pre- and post- conditions

• loop invariants, “variants” (termination measures)

• assertions

• Targets many backend provers

• both fully automated (Ergo,…) and proof
assistants (Coq,...)

• No mechanized proof that VC extraction is correct

WG2.8 ‘08 26

Example: specifying ‘reverse’
• I’ll skip the actual specification notation…

• By the time we’ve translated to Coq, our
notion of a well-formed pointer list amounts
to this:
Inductive Plist : Sto -> Ptr -> Ptr list -> Prop :=

| PlistNil : forall s, Plist s 0 nil

| PlistCons: forall s p ps, p <> 0 ->

 Plist s (s(p+4)) ps -> Plist s p (p::ps)

end.

• Note that the store is quite explicit

WG2.8 ‘08 27

Invariant for ‘reverse’

• Here’s a suitable loop invariant:
Definition rev_inv (s:Sto) (v:Ptr) (vs: list Ptr)
 (w:Ptr) (ws: list Ptr) (xs: list Ptr) :=
 Plist s v vs /\ Plist s w ws /\ disjoint vs ws /\
 rev vs ++ ws = rev xs.

• We must maintain explicit disjointness
information in rev_inv, and via lemmas like
this:
Lemma List_NoDup: forall s x xs,
 List s x xs -> NoDup xs.

• Can also use Bornat-style field-separation
axioms

WG2.8 ‘08 28

Example ‘reverse’ VC
• Here’s the VC corresponding to maintenance

of the loop invariant and “variant”
Lemma loop_ok :

 forall s0 v0 vs0, Plist s0 v0 vs0 ->

 forall s v vs w ws,

 rev_inv s v vs w ws vs0 ->

 v <> null ->

 forall v', v' = load s (next v) ->

 forall s’, s’ = update s (next v) w ->

 rev_inv s’ v' (tail vs) v (v::ws) vs0 /\

 length s’ v' < length s v.

• Note that imperative operations on local
variables are all gone

WG2.8 ‘08 29

Assessment of Caduceus
+ Function and loop specs are (mostly) natural
+ Termination handling is separable -- very nice
+ Proof size reasonable (~ 138 lines for reverse)
- Coq translations of specs and VC’s are much uglier than

I’ve shown
- Very hard to connect VC’s mentally to code

positions/paths
- VC’s can be huge and repetitive

- e.g. 25 line in-place merge algorithm from
[Mehta&Nipkow05] generated 6900 lines of VC’s!

Many of these problems are “just” engineering issues
+ team is working on them
- but their focus is on fully automated paths

WG2.8 ‘08 30

Three Coq-based Alternatives

• Caduceus+Why -> Coq

• Monadic shallow embedding + extraction

• Deep embedding + separation logic + tactics

WG2.8 ‘08 31

Coq proofs for Coq functions

• The easiest subject for a Coq proof is a Coq
program
– i.e., a function written in the Calculus of

Inductive Constructions (CIC) itself
• Can then use Coq’s extraction facility to get

corresponding executable code in OCaml, etc.
– Same properties should hold
– Remaining proof obligation: extraction is

correct...
• But CIC programs must be pure (and “obviously”

terminating) and can be higher-order...

WG2.8 ‘08 32

Monadic Shallow Embeddings

How can we adopt this approach to imperative
pointer code?

Answer : Code programs using an abstract
 state monad! (And keep code first-order)

This gives a shallow embedding: our imperative
program is represented by its denotation in
CIC.

Must adjust extraction to get imperative
operations instead of monadic encoding...

...or connect to imperative code another way

WG2.8 ‘08 33

Defining the Store Monad

Definition Sto := Loc -> Val.
Definition update (s:Sto) (l:Loc) (v:Val) : Sto :=
 fun l0 => if eq_loc_dec l l0 then v else s l0.

Definition M (A:Set) := Sto -> Sto*A.
Definition Return (A:Set) (e:A) : M A := fun s => (s,e).
Definition Bind (A B:Set) (m : M A) (k : A -> M B) : M B :=
 fun s => let (s’,a) = m s in k a s’.

Definition Put (l:Loc) (v:Val): M unit := fun s => (update s l v,u).
Definition Get (l:Loc) : M Val := fun s => (s,s l).

Definition run (A:Set) (s:Sto) (m: M A) : Sto*A := m s.

WG2.8 ‘08 34

Monadic CIC example: ‘reverse’
(* We pull this out to make a convenient spot
to state the "loop" invariant.*)
Definition revcore (v:Loc) (w:Loc) : M Loc :=
 Get (tl v) >>= fun t =>
 Put (tl v) w >>
 Return t.

Fixpoint rev1 (v:Loc) (w:Loc) : M Loc :=
 if eq_loc_dec v null then
 Return w
 else
 revcore v w >>= fun t =>
 rev1 t v.

Definition revinplace (v : Loc) : M Loc := rev1 v 0.

w

v

revcore v w

WG2.8 ‘08 35

Specs & proof for ‘reverse’

• Specification is essentially similar to
Caduceus style

• Proof (~ 80 lines) is also similar in
substance, but code appears explicitly
in hypotheses

– We can “step through” it if we wish

• Proof “opens up” monadic abstraction,
making heap state explicit

• Code is already functional, so no
mutable local variables to worry about

WG2.8 ‘08 36

What about Termination?
• All CIC functions must be “obviously” terminating
• So as written just now, rev1 wasn’t valid Coq
• Recent Coq extensions use dependent types to allow

termination obligations to be treated separately
– Can get partial correctness by just admitting

obligation
– Proof terms can get messy: dependent types don’t

mix well with monadic abstraction
• Alternatively, we can add a decreasing measure as

extra, artificial argument

WG2.8 ‘08 37

Larger example: mark&sweep GC
Extremely simple heap model:

two-word cons cells, each with one-word header
(containing marked flag)

all reachable cell contents are valid pointers
(possibly null) -- no other values!

Extremely simple collector:
single free list, linked through left children
assume unbounded recursion stack, but...

To keep Coq happy, recursive mark routine has an
extra depth parameter that bounds traversal
(could be used to index an explicit mark stack)

WG2.8 ‘08 38

Proofs for mark&sweep

• We specify and prove a strong correctness result
for the collector
• includes both safety and progress results

• Proof is ~ 2100 lines
• Side note: bounded marking has a much more

complicated invariant than unbounded marking!
• Not a very realistic collector

– No headers (beause fixed size, everything is a
pointer)

– Heap addresses are modeled as natural
numbers

WG2.8 ‘08 39

Imperative Code Extraction
• Can hack a post-processor for existing Coq extraction

mechanism that converts explicitly monadic code to
implicitly monadic code.

• Cleaner approach: get Coq team to support extraction
to imperative languages directly

• But is the extraction process itself trustworthy
anyhow?
– There is a pencil&paper proof…
– …and ongoing work to formalize this within Coq

• Basic idea: model the extraction target language
within Coq using ASTs and an operational semantics
– a deep embedding
– prove shallow and deep embeddings are equivalent

WG2.8 ‘08 40

Monadic CIC Assessment

+ Flexible proof organization & style

+ Good integration of programs and proofs

+ Pleasant (functional!) coding style

- Termination is a persistent problem

- Don’t know how to mix monads with proof
techniques based on dependent types

- Need a lot more engineering to automate
and verify connection between CIC and
imperative code

WG2.8 ‘08 41

Three Coq-based Alternatives

• Caduceus+Why -> Coq

• Monadic shallow embedding + extraction

• Deep embedding + separation logic + tactics

WG2.8 ‘08 42

Just use Deep Embeddings?

McCreight, Shao et al. (working at Yale) have
produced impressive GC proofs on a deeply-
embedded MIPS-like machine code

Appel & Blazy (working at INRIA) have
suggested doing program proofs directly on a
deep embedding of CMinor

Proofs require a program logic describing the
target language’s behavior

These authors also use separation logic
- avoid need for much explicit separation

reasoning in proofs
Strong need for specialized tactics to work with

these encoded logics

WG2.8 ‘08 43

Initial Assessment : Mixed
+++ Proofs apply directly to the imperative

program representation (and to Compcert
certified compiler chain)

--- Working directly with the semantic evaluation
relation is hard!
• Yale work took many graduate-student-years
• Specialized tactics seem essential
• But tactics are hard to develop and maintain

(e.g. Appel&Blazy’s don’t quite work yet)…
• …and they are fragile, leaving you at the

mercy of the expert tactic author!

WG2.8 ‘08 44

Three Coq-based Alternatives

• Caduceus+Why -> Coq

• Monadic shallow embedding + extraction

• Deep embedding + separation logic + tactics

Overall assessment:

• All have promise

• None quite works

• Not clear which is best bet

But we had to move forward somehow…

WG2.8 ‘08 45

Talk Outline

Motivation for HARTS

Verifying Garbage Collectors

Verifying Imperative Pointer Programs

Verifying Using Deep Embeddings,
Separation Logic, and Tactics

WG2.8 ‘08 46

HARTS project approach

• Hired Andrew McCreight!

• Using a deep embedding of Cminor

• Using separation logic

• Building a substantial tactic framework

• Have already used it to prove a Cheney-
style collector

• Fairly realistic features

– especially: true machine arithmetic

• Fairly high level of automation

WG2.8 ‘08 47

Framework Overview

Abstract machine:
Cminor syntax and

semantics

Program logic:
verified verification
condition generator

Separation logic:
reasoning about heap &

stack

Utility libraries:
32 bit integers;

modular arithmetic;
etc…

Everything is implemented in the Coq proof assistant

WG2.8 ‘08 48

• Logic for reasoning about heaps [Reynolds, O’Hearn]

• Key predicates:

• P * Q Heap is split into two disjoint parts

P holds on one part, Q on the other
• x a v Holds on a heap containing only

address x that contains value v

• Neatly encapsulates complexities of reasoning about
pointer-based programming (aliasing, etc.)

Separation Logic

WG2.8 ‘08 49

• Relating list values to in-memory representation:

Inductive Plist : val -> list val -> mem -> Prop :=
 | Plist_nil : Plist null_ptr nil m
 | Plist_cons : forall x xs t m,
 (lexists v, x a v * ((x+4) a t) * Plist t xs) m ->

 Plist x (x::xs) m.

• Separating conjunction enforces that elements are
disjoint (and hence lists are acyclic)

Example: Linked Lists

WG2.8 ‘08 50

Separation Logic Tactics
• Simplification: sle/sli

((B * true) * (emp * D) * true) m

 ! (B * D * true) m

• Re-arrangement: assocPerm [3, [4, 1], 2]

 (A * B * C * D) m !

 (C * (D * A) * B) m

• Matching:

 Hypothesis: (A * B * C * D) m

 Goal: (B * C * A * D) m

 searchMatch solves this immediately

1 2 3 4

1 23 4

WG2.8 ‘08 51

• Hoare-style reasoning using pre- and post-
conditions

• Similar to program logic of [Appel&Blazy07]

• Verified verification condition generation

– Generator calculates a VC for each
statement

– Generated VC proven consistent with
original operational semantics

Program Logic

WG2.8 ‘08 52

• Example: vc (x := e) Q s
 = " v. e # v

 $ Q(s{x:=v})

• Extra predicate arguments are added for
return, call, and jump

• Infrastructure provides tools for helping to
prove VCs automatically

Verification Conditions

precondition of
next statement

initial state
s

WG2.8 ‘08 53

VC Proof Tactics
• Automatically analyze the VC

– Break down a complex expression into substeps

– Look for hypothesis to solve a single step

• e.g. if loading from x, do we know what x
contains?

– Often need to manually transform a hypothesis

• e.g. to apply elimination rules for data
structures like Plist

• Branch splitting

– Analyze the result of the branch

• e.g. if test is (x >=4), then in true branch we
know x is defined and x ! 4

WG2.8 ‘08 54

Lemma reverseOk : fdefOk reversePre reversePost reverseDef.

Proof Example: List Reverse

Pre-condition:
Definition
 reversePre is args:=
 lexists i, !(args=i::nil) *

 plist i is.

Post-condition:
Definition
 reversePost is result :=
 plist result (rev is).

Loop Invariant:
Definition inv is (s:cstate) :=

 exists w, exists v,

 (vfEqv (xv :: xw :: xt :: nil) ((xw,w) :: (xv, v) :: nil) (cvfOf s) /\

 (lexists vl, lexists wl,

 plist v vl * plist w wl * !(rev vl ++ wl = rev is)) (cmemOf s)).

WG2.8 ‘08 55

• Main proof: ~ 45 lines

• Similar length and
complexity as for our
proof of the same
result using shallow
embedding

• Program logic and
Separation logic
tactics make this
possible.

Proof Details: DEMO!!

WG2.8 ‘08 56

Infrastructure Line Counts

Abstract machine:
definitions and properties;

reasoning about Cminor
programs.

Program logic:
(verified)

verification condition
generator

Separation logic
reasoning about memory

Utility libraries:
32 bit integers;

modular arithmetic;
etc…

Cheney GC:

~3,300 ~5,750

~4,100~1,550

5,000

WG2.8 ‘08 57

Lemma cheneyCollectorOk :
fdefOk cheneyCollectorPre cheneyCollectorPost cheneyCollectorDef.

Cheney-style GC Proof Spec

 Definition cheneyCollectorPre objs fields cmap (rootp:addr) root C cl
 (frStart frEnd toStart toEnd:addr) (vv:list val) :=
 let objsAddrs := objs_addrs objs cl cmap in
 !(vv = (rootp:val)::nil /\
 (root = null_ptr \/ ptr_In root objs) /\
 contiguous frStart objsAddrs /\
 (Z_of_nat (AS.cardinal objsAddrs) < indexBound)%Z) **
 rootp |-> root **
 clDescrs C cmap ** gcInfo toStart toEnd frStart frEnd **

 okObjHp C cmap objs objs cl fields **
 buffer toStart (AS.cardinal objsAddrs).

Pre-condition

 Definition cheneyCollectorPost (objs:AS.t) (fields:addr->list val) cmap
 rootp root C (cl:addr->addr) (frStart frEnd toStart toEnd:addr) (v:val) :=
 lexists M, lexists phi,
 let objs' := AASetMap.map phi M in
 let cl' := seq (inv M phi) cl in
 let fields' := seq (inv M phi) fields in
 let objsAddrs := objs_addrs objs cl cmap in
 let objs'Addrs := objs_addrs objs' cl' cmap in
 let free := toStart + 4 * AS.cardinal objs'Addrs in

 !(map_inj M phi /\
 (forall x, AS.In x M -> vaReachable cmap cl fields root x) /\
 (root = null_ptr \/ ptr_In root M) /\
 AS.Subset M objs /\
 contiguous toStart objs'Addrs /\
 v = free) **
 rootp |-> fwd_ptr phi root **
 okObjHp C cmap objs' objs' cl' (fwd_objs_fields cmap cl' phi fields') **
 buffer frStart (AS.cardinal objsAddrs) **
 clDescrs C cmap ** gcInfo frStart frEnd toStart toEnd **

 buffer free (AS.cardinal objsAddrs - AS.cardinal objs'Addrs).

Post-condition

#define NULL_PTR 0

var "freep"[4]
var "toStartp"[4]
var "toEndp"[4]
var "frStartp"[4]
var "frEndp"[4]

"numFields" (x) : int -> int

{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int
{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void
{ var i;
 i = 0;
 while (I < len) {
 int32[dst + 4 * i] = int32[src + 4 * i];

 i = i + 1;
 }
 }

"scanPtrField" (xp,free) : int -> int -> int
{
 var x, len, hdr;

 x = int32[xp];

 if (x == NULL_PTR)
 return free;
 hdr = int32[x - 4];
 if (hdr != NULL_PTR) {
 len = "numFields"(hdr) : int -> int;
 "memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;
 int32[x] = free + 4;
 int32[x - 4] = NULL_PTR;
 free = free + 4 * len + 4;
 }

 int32[xp] = int32[x];
 return free;
}

"cheneyCollect" (rootp) : int -> int {
 var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;

 frStart = int32["toStartp"];
 toStart = int32["frStartp"];

 int32["toStartp"] = toStart;
 int32["frStartp"] = frStart;
 toEnd = int32["frEndp"];
 frEnd = int32["toEndp"];
 int32["toEndp"] = toEnd;
 int32["frEndp"] = frEnd;

 free = "scanPtrField"(root, toStart) : int -> int -> int;
 scan = toStart;
 while (scan != free) {

 hdr = int32[scan];
 scan = scan + 4;
 len = "numFields"(hdr) : int -> int;
 i = 0;
 while (I < len) {
 isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;
 if (isPtr)
 free = "scanPtrField"(scan,free) : int -> int -> int;
 scan = scan + 4;
 i = i + 1;

 }
 }
}

"cheneyAlloc"(hdr,root) : int -> int -> int
{
 var free,len;

 free = int32["freep"];

 len = "numFields"(hdr) : int -> int;
 len = len * 4;
 if (len == 0)
 return 0;
 if (free + len + 4 >= int32["toEndp"]) {
 free = "cheneyCollect"(root) : int -> int;
 if (free + len + 4 >= int32["toEndp"])
 return 0;
 }
 int32["freep"] = free + len + 4;

 int32[free] = hdr;
 return (free + 4);
}

Definition

WG2.8 ‘08 58

• We’ve proved correctness of a realistic GC
implementation written in Cminor

• Advances on our (McCreight’s) previous work:
– Uses true machine arithmetic
– Supports arbitrary record sizes
– Supports precise pointer information

• Next steps: Must ensure that mutator keeps to its
part of the GC contract …

• Next steps: Proof of generational collector

GC Achievements to Date

WG2.8 ‘08 59

• Assurance of programs written in high-level
languages requires assurance of underlying run-time
systems

• Tools and techniques for reasoning about run-time
system code are still young and little tested

• Results described today:
• A verified implementation of realistic GC
• A general verification infrastructure for GCs and

other code that manipulates the heap
• Essential use of tactics to automate reasoning

• An enabling step towards the use of high-level
languages for high-assurance applications.

Conclusions

