
Formal verification of a compiler front-end for mini-ML

Zaynah Dargaye, Xavier Leroy, Andrew Tolmach

INRIA Paris-Rocquencourt

WG 2.8, july 2007

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 1 / 34

Formal verification of compilers

Apply formal methods to a compiler. Prove a semantic preservation
property:

Theorem

For all source codes S,
if the compiler generates machine code C from source S,
without reporting a compilation error,
and if S has well-defined semantics,
then C has well-defined semantics
and S and C have the same observable behaviour.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 2 / 34

Formal verification of compilers

Motivations:

Useful for high-assurance software, verified (at the source level) using
formal methods.

A challenge for mechanized program proof.

For fun!
(compilers + pure F.P. + mechanized proof,
all in one easy-to-explain project).

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 3 / 34

The Compcert effort
INRIA/CNAM/Paris 7, since 2003

Develop and prove correct a realistic compiler, usable for critical embedded
software.

Source language: a subset of C.

Target language: PowerPC assembly.

Generates reasonably compact and fast code
⇒ some optimizations.

This is “software-proof codesign” (as opposed to proving an existing
compiler).

We use the Coq proof assistant to conduct the proof of semantic
preservation and to write most of the compiler.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 4 / 34

The Compcert effort – status

A prototype compiler that executes (under MacOS X).

From Clight AST to PowerPC assembly AST:

entirely verified in Coq (40000 lines);

entirely programmed in Coq, then automatically extracted to
executable Caml code.
Uses monads, persistent data structures, etc.

Performances of generated code: better than gcc -O0, close to gcc -O1.

Compilation times: comparable to those of gcc -O1.

References: X. Leroy, POPL 2006 (back-end); S. Blazy, Z. Dargaye, X.
Leroy, Formal Methods 2006 (C front-end).

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 5 / 34

Front-ends for other source languages

Cminor PPCClight

Cminor could be a reasonable I.L. for other source languages.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 7 / 34

A flavor of Cminor

"quicksort"(lo, hi, a): int -> int -> int -> void
{
var i, j, pivot, temp;
if (! (lo < hi)) return;
i = lo; j = hi; pivot = int32[a + hi * 4];
block { loop {
if (! (i < j)) exit;
block { loop {
if (i >= hi || int32[a + i * 4] > pivot) exit;
i = i + 1;

} }
/* ... */

} }
temp = int32[a + i * 4];
int32[a + i * 4] = int32[a + hi * 4];
int32[a + hi * 4] = temp;
"quicksort"(lo, i - 1, a) : int -> int -> int -> void;
tailcall "quicksort"(i + 1, hi, a) : int -> int -> int -> void;

}
Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 9 / 34

Front-ends for other source languages

Cminor PPCClight

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 11 / 34

Front-ends for other source languages

Cminor PPCClight

Reactive
language?

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 11 / 34

Front-ends for other source languages

Cminor PPCClight

Reactive
language?

Mini-ML

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 11 / 34

Front-ends for other source languages

Cminor PPCClight

Reactive
language?

Mini-MLCoq specs

Towards a trusted execution path for programs written and proved in Coq.

This includes the Compcert compiler itself . . . (bootstrap!)

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 11 / 34

mini-ML: syntax

Pure, call-by-value, datatypes + shallow pattern matching.

Terms: a ::= n variable (de Bruijn)
| λ.a | a1 a2

| µ.λ.a recursive function
| let a1 in a2

| C (a1, . . . , an) data constructor
| match a with p1 → a1 . . . pn → an

Patterns: p ::= Cn i.e. C (n, . . . , 1)

Also: constants and arithmetic operators.

More or less the output language for Coq’s extraction, minus
mutually-recursive functions.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 12 / 34

mini-ML: dynamic semantics

Big-step operational semantics with environments

e ` a ⇒ v

with v ::= C (v1, . . . , vn) | (λ.a)[e] | (µ.λ.a)[e] and e = v1 . . . vn.

Entirely standard.

Big-step semantics with substitutions also used in some of the proofs.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 14 / 34

mini-ML: (no) type system

Our Mini-ML is untyped:

Makes it easier to translate various typed F.P.L. to mini-ML, e.g. Coq
with its extremely powerful type system.

We are doing semantic-preserving compilation, which subsumes all
the guarantees that type-preserving compilation provides.

Exception: we demand that constructors are grouped into “datatype
declarations” to facilitate pattern-matching compilation (see example).

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 15 / 34

Example of mini-ML

type list = Nil | Cons

program

let map = µmap. λx.
match x with
| Nil -> Nil
| Cons(hd, tl) -> Cons(f hd, map f tl)

in
map (λx. Cons(x, Nil)) Nil

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 17 / 34

Overview of the compiler

mini-ML
w/ numbered

constructors

w/ n-ary

functions

w/ closed,

toplevel fns
Cminor

NQANF

pat-match

“compilation”

uncurrying

closure

conversion

naming

of roots

CPS conversion

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 18 / 34

Uncurrying

let-bound curried functions are turned into n-ary functions.

let f = λx.λy. ... in Pair(f 1 2, f 1)

⇓

let f = λ(x, y). ... in
Pair(f(1, 2), ((λx.λy.f(x,y))(1)))

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 20 / 34

Generation of Cminor code

Quite straightforward if Cminor had dynamic memory allocation with
garbage collection.

(Mostly, represent constructor applications and closures as pointers to
appropriately-filled memory blocks.)

But Cminor has no memory allocator, no GC, and no run-time system of
any kind. . .

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 21 / 34

Run-time systems: the bane of high-level languages

Run-time systems are big (e.g. 50000 lines), messy, written in C,
system-dependent, often buggy, . . .

Yet, the run-time system must be proved correct in the context of a
verified compiler for a high-level language.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 22 / 34

What needs to be done

For the memory allocator and (tracing) garbage collector:

The algorithms must be proved correct.
(Mostly routine.)

The actual implementation (typically in Cminor) must be proved
correct.
(Painful, like all proofs of imperative programs.)

This proof must be connected to that of the compiler:

Compiler-generated code must respect GC contract
(Data representation conventions, don’t touch block headers, etc)

GC must be able to find the memory roots
(among the compiler-managed registers, call stack, etc)

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 23 / 34

What needs to be done

For the memory allocator and (tracing) garbage collector:

The algorithms must be proved correct.
(Mostly routine.)

The actual implementation (typically in Cminor) must be proved
correct.
(Painful, like all proofs of imperative programs.)

This proof must be connected to that of the compiler:

Compiler-generated code must respect GC contract
(Data representation conventions, don’t touch block headers, etc)

GC must be able to find the memory roots
(among the compiler-managed registers, call stack, etc)

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 23 / 34

What needs to be done

For the memory allocator and (tracing) garbage collector:

The algorithms must be proved correct.
(Mostly routine.)

The actual implementation (typically in Cminor) must be proved
correct.
(Painful, like all proofs of imperative programs.)

This proof must be connected to that of the compiler:

Compiler-generated code must respect GC contract
(Data representation conventions, don’t touch block headers, etc)

GC must be able to find the memory roots
(among the compiler-managed registers, call stack, etc)

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 23 / 34

Example: finding roots using frame descriptors

Registers

Stack

Heap
size=20

#roots=3

r0=reg4

r1=stk8

r2=stk12

size=8

#roots=1

r0=stk4

Frame
descriptors

code addr

root

root

code addr

root

root

hash
hash

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 24 / 34

Possible approaches

Plan A: prove the “frame descriptor” approach.
Extensive work needed on the back-end: tracking of roots through
compiler passes, proving preservation of the GC contract, etc

Plan B: revert to “lesser” GC technology.
Conservative tracing collection.
Or even reference counting.

Plan C: explicit root registration.
Instrument generated Cminor code to keep track of memory roots and
to communicate them to the allocator.
A good match for a GC and allocator written in Cminor themselves.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 25 / 34

Possible approaches

Plan A: prove the “frame descriptor” approach.
Extensive work needed on the back-end: tracking of roots through
compiler passes, proving preservation of the GC contract, etc

Plan B: revert to “lesser” GC technology.
Conservative tracing collection.
Or even reference counting.

Plan C: explicit root registration.
Instrument generated Cminor code to keep track of memory roots and
to communicate them to the allocator.
A good match for a GC and allocator written in Cminor themselves.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 25 / 34

Possible approaches

Plan A: prove the “frame descriptor” approach.
Extensive work needed on the back-end: tracking of roots through
compiler passes, proving preservation of the GC contract, etc

Plan B: revert to “lesser” GC technology.
Conservative tracing collection.
Or even reference counting.

Plan C: explicit root registration.
Instrument generated Cminor code to keep track of memory roots and
to communicate them to the allocator.
A good match for a GC and allocator written in Cminor themselves.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 25 / 34

An example of root registration

ptr f(ptr x) {
ptr y, z, t;
...
/* Assume x, y are roots (must survive next allocation) */
{ struct { int nroots; ptr roots[2]; } rb;
rb.nroots = 2;
rb.roots[0] = x;
rb.roots[1] = y;
t = alloc(&rb, size);
x = rb.roots[0];
y = rb.roots[0];

}
...

}

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 27 / 34

Root passing style

If in direct style, need to chain root blocks for all active function
invocations.

ptr f(rootblock * roots, ptr x) {
ptr y, z, t;
...
/* Assume x, y are roots (must survive next call) */
{ struct { rootblock * next; int nroots; ptr roots[2]; } rb;
rb.next = roots;
rb.nroots = 2;
rb.roots[0] = x;
rb.roots[1] = y;
t = g(&rb, z);
x = rb.roots[0];
y = rb.roots[0];

}
...

}

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 29 / 34

Generating Cminor code with explicit root registration

Easier done from an I.L. where evaluation order is explicit and potential
roots are named (let-bound).

Inconvenient:
f (C (x),C (y), z)

More convenient:

let t1 = C (x) in let t2 = C (y) in f (t1, t2, z)

Candidate intermediate languages:

CPS (plus: no need for root-passing style)

ANF

Not-Quite-ANF

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 30 / 34

Roots in CPS

CPS with let-binding of allocations (of closures or constructors):

Atoms: a ::= x | fieldn(a)

Allocations: c ::= clos(f , a1, . . . , an) | C (a1, . . . , an)

Terms: t ::= a | a(a1, . . . , an)
| let x = c in t
| match a with pi → ti

The roots for the allocation c in let x = c in b are

FV (c) ∪ (FV (b) \ {x}) = FV (let x = c in b)

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 31 / 34

Roots in ANF

Atoms: a ::= x | fieldn(a)

Computations: c ::= clos(f , a1, . . . , an) | C (a1, . . . , an) | a(a1, . . . , an)

Terms: t ::= c
| let x = c in t
| match a with pi → ti

The roots for the allocation c in let x = c in b are

R(c) ∪ (FV (b) \ {x})

where

R(clos(f , a1, . . . , an)) = FV (clos(f , a1, . . . , an))

R(C (a1, . . . , an)) = FV (C (a1, . . . , an))

R(a(a1, . . . , an)) = ∅

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 32 / 34

Is ANF necessary?

Important feature: arguments to calls and allocations are atoms, i.e.
computations that never trigger a GC.

Disadvantage: prohibits left-nested let and match

let x = (let y = a in b) in c

match (match a with . . .) with . . .

Requires match-of-match normalization, which can duplicate code.

Conjecture: can track roots just as easily over “Not-Quite ANF”, i.e. ANF
where left-nested let and match are allowed.

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 33 / 34

Status

A Caml prototype of the mini-ML → Cminor chain
+ two GC in Cminor (mark-and-sweep, stop-and-copy).
Performances: 3 × slower than native OCaml, 3 × faster than bytecode OCaml.

Coq formalizations and proofs of mini-ML → NQANF.

In progress:

Coq mechanization of NQANF → Cminor.

Coq proof of the GC.

Mostly open: connecting the two proofs . . .

Dargaye, Leroy, Tolmach (INRIA) Verification of a mini-ML compiler WG 2.8, july 2007 34 / 34

