
Towards Interface Types for Haskell
Work in Progress

Peter Thiemann

Joint work with Stefan Wehr
Universität Freiburg, Germany

WG 2.8 Meeting, Nesjavellir, Island, 17.07.2007



What is a type class?

I A type class is a signature of an abstract data type.
I But where is the abstract type?



What is a type class?

I A type class is a signature of an abstract data type.
I But where is the abstract type?



What is a type class?

I A type class is a signature of an abstract data type.
I But where is the abstract type?



Example: HDBC interface

I Signature of abstract data type

module HDBC where
class Connection conn where

exec :: conn −> String −> IO QueryResult

I Implementation of abstract data type

module PostgreSQLDB where
import HDBC
instance Connection PostgreSQLConnection where

exec = pgsqlExec

I Extending the abstract data type

class Connection conn => BetterConnection conn where
notify :: conn −> String −> IO ()



Example: HDBC interface

I Signature of abstract data type

module HDBC where
class Connection conn where

exec :: conn −> String −> IO QueryResult

I Implementation of abstract data type

module PostgreSQLDB where
import HDBC
instance Connection PostgreSQLConnection where

exec = pgsqlExec

I Extending the abstract data type

class Connection conn => BetterConnection conn where
notify :: conn −> String −> IO ()



Example: HDBC interface

I Signature of abstract data type

module HDBC where
class Connection conn where

exec :: conn −> String −> IO QueryResult

I Implementation of abstract data type

module PostgreSQLDB where
import HDBC
instance Connection PostgreSQLConnection where

exec = pgsqlExec

I Extending the abstract data type

class Connection conn => BetterConnection conn where
notify :: conn −> String −> IO ()



Why want an abstract type?

I Encapsulation
What is a good type for connect?

I Can do with

connectWith :: URL −> (forall c. Connection c => c −> IO a) −> IO a

I but: requires user code in continuation
I no “connection value” that can be stored
I not possible as member of class Connection

I How about

connect :: URL −> IO Connection

where Connection behaves like a Java interface type?



Why want an abstract type?

I Encapsulation
What is a good type for connect?

I Can do with

connectWith :: URL −> (forall c. Connection c => c −> IO a) −> IO a

I but: requires user code in continuation
I no “connection value” that can be stored
I not possible as member of class Connection

I How about

connect :: URL −> IO Connection

where Connection behaves like a Java interface type?



Why want an abstract type?

I Encapsulation
What is a good type for connect?

I Can do with

connectWith :: URL −> (forall c. Connection c => c −> IO a) −> IO a

I but: requires user code in continuation
I no “connection value” that can be stored
I not possible as member of class Connection

I How about

connect :: URL −> IO Connection

where Connection behaves like a Java interface type?



Interfaces for Haskell
A Design Proposal

I Type class I ⇒ interface type I
I Type I is exists c. (I c) => c
I Subtyping for interface types

if I is a subclass of J,
then I ≤ J

I Subtyping for instance types
if t is an instance type of J,
then t ≤ J

I Introduction by type annotation
⇒ no new syntax



Interfaces for Haskell
A Design Proposal

I Type class I ⇒ interface type I
I Type I is exists c. (I c) => c
I Subtyping for interface types

if I is a subclass of J,
then I ≤ J

I Subtyping for instance types
if t is an instance type of J,
then t ≤ J

I Introduction by type annotation
⇒ no new syntax



Interfaces for Haskell
A Design Proposal

I Type class I ⇒ interface type I
I Type I is exists c. (I c) => c
I Subtyping for interface types

if I is a subclass of J,
then I ≤ J

I Subtyping for instance types
if t is an instance type of J,
then t ≤ J

I Introduction by type annotation
⇒ no new syntax



Example Patterns of Use
I Create a connection

betterConnect :: URL −> IO BetterConnection
betterConnect url =

do c <− pgconnect url
−− c :: PGSQLConnection
return (c :: BetterConnection)

I Wrapper
dbwrapper :: URL −> (URL −> IO Connection) −> IO Result
dbwrapper url connect =

do c <− connect url
do something c

... dbwrapper url betterConnect ...

I Worker
worker :: Connection −> IO Result
withBetterConnection :: (BetterConnection −> IO a) −> IO a

... withBetterConnection worker ...



Collecting the Pieces

Surprise!

I Everything needed is (almost) there



Collecting the Pieces
Existential Types in Haskell

data T Connection where
T Connection :: forall conn.

Connection conn => conn −> T Connection
data T BetterConnection where

T BetterConnection :: forall conn.
BetterConnection conn => conn −> T BetterConnection

instance T Connection Connection where ...
instance T Connection BetterConnection where ...
instance T BetterConnection BetterConnection where ...

I Tagged existentials
I Need pattern match to unpack



Collecting the Pieces
Subtyping in Haskell

I There is no subtyping in Haskell!
I But, there is the generic instance relation:

forall c. BetterConnection c => c −> T
�
forall c. Connection c => c −> T

I And there is the double negation equivalence:

exists a. P => T = (forall a. P => T −> x) −> x

I Approach: Translate existential types to (higher-rank)
polymorphism where possible



Collecting the Pieces
Subtyping in Haskell

I There is no subtyping in Haskell!
I But, there is the generic instance relation:

forall c. BetterConnection c => c −> T
�
forall c. Connection c => c −> T

I And there is the double negation equivalence:

exists a. P => T = (forall a. P => T −> x) −> x

I Approach: Translate existential types to (higher-rank)
polymorphism where possible



Collecting the Pieces
Subtyping in Haskell

I There is no subtyping in Haskell!
I But, there is the generic instance relation:

forall c. BetterConnection c => c −> T
�
forall c. Connection c => c −> T

I And there is the double negation equivalence:

exists a. P => T = (forall a. P => T −> x) −> x

I Approach: Translate existential types to (higher-rank)
polymorphism where possible



Collecting the Pieces
Subtyping in Haskell

I There is no subtyping in Haskell!
I But, there is the generic instance relation:

forall c. BetterConnection c => c −> T
�
forall c. Connection c => c −> T

I And there is the double negation equivalence:

exists a. P => T = (forall a. P => T −> x) −> x

I Approach: Translate existential types to (higher-rank)
polymorphism where possible



Example Translation
Create a Connection

betterConnect :: URL −> IO BetterConnection
betterConnect url =

do c <− pgconnect url
−− c :: PGSQLConnection
return (c :: BetterConnection)

translates to

betterConnect’ :: URL −> IO T BetterConnection
betterConnect’ url =

do c <− pgconnect url
return (T BetterConnection c)



Example Translation
Wrapper

dbwrapper :: URL −> (URL −> IO Connection) −> IO Result
dbwrapper url connect =

do c <− connect url
do something c

... dbwrapper url betterConnect ...

translates to

dbwrapper’ :: URL −> forall c. Connection c => (URL −> IO c) −> IO Result
dbwrapper’ url connect =

do c <− connect url
do something c

betterConnect’ :: URL −> IO T BetterConnection
... dbwrapper’ url betterConnect’ ...



Example Translation
Worker

worker :: Connection −> IO Result
withBetterConnection :: (BetterConnection −> IO a) −> IO a

... withBetterConnection worker ...

translates to

worker’ :: forall c . Connection c => c −> IO Result
withBetterConnection’ :: (forall c. BetterConnection c => c −> IO a) −> IO a

... withBetterConnection’ worker’ ...



Interfaces for Haskell
Translational Approach

I Starting point: Haskell with higher-rank polymorphism (as
in current implementations)

I Extensions:
Extended syntax of types

s, t ::= · · · | I

Typing rules

(E-ann’)
P | Γ `′ e : s s ≤ t
P | Γ `′ (e :: t) : t

(E-sub’)
P | Γ `′ e : s s≤′t

P | Γ `′ e : t



Subtyping

(S-refl) t ≤ t (S-trans)
t1 ≤ t2 t2 ≤ t3

t1 ≤ t3

(S-subclass)
I ⇒C J
I≤ J

(S-instance)
m ∈I J
m ≤ J

(S-tycon)
s ≤ t

T s ≤ T t
(S-fun)

t1 ≤ s1 s2 ≤ t2
s1 −→ s2 ≤ t1 −→ t2

(S-qual)
s ≤ t

∀a.Q ⇒ s ≤ ∀a.Q ⇒ t



Restricted Subtyping

t ≤′ t
t1 ≤′ t2 t2 ≤′ t3

t1 ≤′ t3
s ≤′ t

T s ≤′ T t

t1 ≤ s1 s2 ≤′ t2
s1 −→ s2 ≤′ t1 −→ t2

Restricted subtyping vs generic instance

Lemma
If s ≤′ t and s ;′ s′ and t ;′ t ′ then true ` s′ � t ′.



Restricted Subtyping

t ≤′ t
t1 ≤′ t2 t2 ≤′ t3

t1 ≤′ t3
s ≤′ t

T s ≤′ T t

t1 ≤ s1 s2 ≤′ t2
s1 −→ s2 ≤′ t1 −→ t2

Restricted subtyping vs generic instance

Lemma
If s ≤′ t and s ;′ s′ and t ;′ t ′ then true ` s′ � t ′.



Translation of Types

a ;′ 2/a
ti ;′ C′

i /t ′
i

T t ;′ mapT (λx .C′
i [x ]) 2/T t ′

t1 ; π1 ] t ′
1 t2 ;′ C2/t ′

2
t1 −→ t2 ;′ λx .C2[2 x ]/π1(t ′

1 −→ t ′
2)

I ;′ KI 2/WI

t ;′ C′/t ′

∀a.P ⇒ t ;′ C′/∀a.P ⇒ t ′

a ; ∅ ] a
t ; π ] t ′

T t ; π ] T t ′
t1 ; π1 ] t ′

1 t2 ; π2 ] t ′
2

t1 −→ t2 ; π2 ] π1(t ′
1 −→ t ′

2)

I ; ∀c.I c ⇒ ]c
t ; π ] t ′

∀a.Q ⇒ t ; π ] ∀a.Q ⇒ t ′



Translation of Terms

x ↪→ x
e ↪→ e′

λx .e ↪→ λx .e′
e ↪→ e′ s ; ∅ ] s′

λ(x :: s).e ↪→ λ(x :: s′).e′

e ↪→ e′ s ; ∀c.Q ] s′ s ;′ C′/s′′

λ(x :: s).e ↪→ Λc(Q).λ(y :: s′).(λ(x :: s′′).e′) (C′[y ])

f ↪→ f ′ e ↪→ e′

f e ↪→ f ′ e′
e ↪→ e′ f ↪→ f ′

let x = e in f ↪→ let x = e′ in f ′

e ↪→ e′ s ;′ C′/s′

(e :: s) ↪→ (C′[e′] :: s′)



Results

I Let P | Γ′ ` e′ : s′ be the typing judgment for Haskell with
higher-rank qualified polymorphism.

I If P | Γ `′ e : s, s ;′ s′, Γ ;′ Γ′, and e ↪→ e′, then
P | Γ′ ` e′ : s′.



Conclusions

I Type translation maps subtyping to generic instantiation
I Term translation is typing preserving
I Both are purely syntactic
I Q: Is the term translation meaning preserving?
I Q: Is the translated term amenable to type inference?
I Q: Can we do direct inference and translation to F2?
I If Java interface types make sense for Haskell, then how

about type classes for Java? ⇒ JavaGI @ECOOP’07



Conclusions

I Type translation maps subtyping to generic instantiation
I Term translation is typing preserving
I Both are purely syntactic
I Q: Is the term translation meaning preserving?
I Q: Is the translated term amenable to type inference?
I Q: Can we do direct inference and translation to F2?
I If Java interface types make sense for Haskell, then how

about type classes for Java? ⇒ JavaGI @ECOOP’07



Digression: The ML way
1 signature CONNECTION =
2 sig type connection
3 val exec : connection −> string −> queryresult
4 end
5

6 signature BETTERCONNECTION =
7 sig type connection
8 val exec : connection −> string −> queryresult
9 val notify : connection −> string −> unit

10 end
11

12 structure PostgreSQL : BETTERCONNECTION =
13 struct type connection = postgreSQLConnection
14 val exec = ...
15 val notify = ...
16 end

I Encapsulation and Extensibility:
BETTERCONNECTION <: CONNECTION

I But: application code as a functor taking a connection.


	Introduction

