
“Blame it on Bob and Ralf”

or

Generic Typed Intermediate

Languages for the Masses

A partially solved problem

Norman Ramsey
Harvard University & Microsoft Research

Typed compilation can be tedious

Write code again and again:
• Every IL requires its own type checker
• Checker needs support functions for that IL
• Capture-avoiding substitution, which I get wrong

Ralf can make things better

My hopes:
• Write “standard” substitution once and for all
• Write new type checker only if there’s a new idea

Type checking in a particular setting: 2D

Plan for this talk:
1. Problem: Compile to 2D
2. Problem: Too many ILs
3. Problem: Too much boring code
4. Solution: a Generics!

aPartial

The problem

Genesis of a particular multi-IL compiler

How I got into this mess (and why you might too):
1. I liked TIL
2. I liked “generics for the masses”
3. I entered the 2006 ICFP Programming Contest
4. I had to teach 1st-year PhD students

Fused into one idea:
Read cool papers; compile to 2D

2D = real PL content + cute hackery

An “esoteric” language for the 2006 contest:
• Classic first-order values:

v ::= () | (v, v) | Inl v | Inr v

• Computation by circuits (boxes and arrows):

let E = Inl W

• Named circuits with recursive instantiation
(First-order functional language)

• Single box: 0 to 2 inedges, may do one of
– Multiple assignment (0 to 2 outedges)
– Function call
– Pair elimination or sum elimination

2D list reversal w/accumulating parameter

Output from my compiler, run through dot:

revapp

ArgW case W of S,E
x

ArgN
let E, S = W, Wy

Result

Result

let E = Inr (W,N)]

l2

let E = N

l1 split W
cons

_

car

revapp(W,N)cdr

t1

t2

y

2D: Fundamentals lurk beneath surface

Lots of PL here:
• Data coded by sums and products
• “Syntax” driven by introduction & elimination
• “Wires” are linear variables
• Control dependence coded via data dependence
• A circuit is a (linear!) A-normal form

“Hell is other programming languages” —Sartran

2D compiler motivates lots of good papers

Compiling 2D requires reading:
• Parsing combinators (Hutton 1992; Fokker 1995)
• Type inference (Peyton Jones et al. 2007)
• Typed defunctionalization

(Pottier and Gauthier 2005)
• A-normalization (Flanagan et al. 1993)
• Linearity (Wadler 1993)

And to help with the grunt work
• Generics for the masses (Hinze 2004)

Typed intermediate languages proliferate

• Abstract syntax (partially typed)
• Target of type inference (mutable ref cells)
• Language supporting defunctionalization

(need GADTs)
• First-order target language
• Language of A-normal forms

(Also used for linearization)
• Boxes and arrows (dot, untyped)

Lots of commonality with System F

Four TILs needn’t mean drudgery

Much can be done generically!

In any language, manipulate names:
freeVars :: (Language a) => a -> [Name]
isFreeIn :: (Language a) => Name -> a -> Bool
substName :: (Language a) => (Name, Name) -> a -> a

In some languages, map name to term:
subst :: (Mapable e a) => (Name, e) -> a -> a

Can even linearize generically:
linearize :: (Language e) => [Name] -> e -> e
-- 1st arg is list of names to be consumed

Four TILs needn’t mean drudgery

Much can be done generically!

In any language, manipulate names:
freeVars :: (Language a) => a -> [Name]
isFreeIn :: (Language a) => Name -> a -> Bool
substName :: (Language a) => (Name, Name) -> a -> a

In some languages, map name to term:
subst :: (Mapable e a) => (Name, e) -> a -> a

Can even linearize generically:
linearize :: (Language e) => [Name] -> e -> e
-- 1st arg is list of names to be consumed

Four TILs needn’t mean drudgery

Much can be done generically!

In any language, manipulate names:
freeVars :: (Language a) => a -> [Name]
isFreeIn :: (Language a) => Name -> a -> Bool
substName :: (Language a) => (Name, Name) -> a -> a

In some languages, map name to term:
subst :: (Mapable e a) => (Name, e) -> a -> a

Can even linearize generically:
linearize :: (Language e) => [Name] -> e -> e
-- 1st arg is list of names to be consumed

Four TILs needn’t mean drudgery

Much can be done generically!

In any language, manipulate names:
freeVars :: (Language a) => a -> [Name]
isFreeIn :: (Language a) => Name -> a -> Bool
substName :: (Language a) => (Name, Name) -> a -> a

In some languages, map name to term:
subst :: (Mapable e a) => (Name, e) -> a -> a

Can even linearize generically:
linearize :: (Language e) => [Name] -> e -> e
-- 1st arg is list of names to be consumed

The solution

Ralf’s nice idea: Encode by isomorphism

Make algebraic data type ADT ' v where

v ::= () j (v;v) j Inl v j Inr v j (iso;ADT) j b

Where iso is (ADT ! �;� ! ADT)
(iso supplied by client)

My gloss: encode a language

Ralf’s nice idea: Encode by isomorphism

Make algebraic data type ADT ' v where

v ::= () j (v;v) j Inl v j Inr v j (iso;ADT) j b

Where iso is (ADT ! �;� ! ADT)
(iso supplied by client)

My gloss: encode a language

Ralf’s nice idea: Encode by isomorphism

Make algebraic data type ADT ' v where

v ::= () j (v;v) j Inl v j Inr v j (iso;ADT) j b

Where iso is (ADT ! �;� ! ADT)
(iso supplied by client)

My gloss: encode a language

Encoding basics: Data

Ralf says:

data Unit = Unit

data Plus a b = Inl a | Inr b

data Pair a b = Pair a b

data Iso a b = Iso { fromData :: b -> a

, toData :: a -> b }

I added

data Lit a = Lit a -- no vars or subterms

N.B. Unit ' Lit ()

Encoding free and bound variables

My contribution (so far):

data Occurrence e = Free Name

| Substituted e

data Binder e = Bind Name e

(Linearity too, but not in this talk)

Defining generic functions

Definition by cases over encoding :
class Generic g where
unit :: g Unit
plus :: (Language a, Language b) =>

g (Plus a b)
pair :: (Language a, Language b) =>

g (Pair a b)
binder :: (Language a) => g (Binder a)
occurrence :: (Language a) => g (Occurrence a)
datatype :: (Language a) => Iso a b -> g b
lit :: g (Lit a)

Example instance (free vars):
g a ' Name -> a -> Bool

Defining generic functions

Definition by cases over encoding :
class Generic g where
unit :: g Unit
plus :: (Language a, Language b) =>

g (Plus a b)
pair :: (Language a, Language b) =>

g (Pair a b)
binder :: (Language a) => g (Binder a)
occurrence :: (Language a) => g (Occurrence a)
datatype :: (Language a) => Iso a b -> g b
lit :: g (Lit a)

Example instance (free vars):
g a ' Name -> a -> Bool

A generic function applies to any language

Language a holds if generic can be inferred

class Language a where
generic :: (Generic g) => g a

Infer by grabbing the right method of class Generic

instance Language Unit
where generic = unit

instance (Language a, Language b) =>
Language (Plus a b)

where generic = plus

instance (Language a, Language b) =>
Language (Pair a b)

where generic = pair
...

Define by instantiating Generic

Example: variable free in term (removed type tags)
isFreeIn :: (Language a) => Name -> a -> Bool
isFreeIn = generic

instance Language a => Generic (Name -> a -> Bool)
where
unit = \x Unit -> False
plus = \x e -> case e of Inl l -> isFreeIn x l

Inr r -> isFreeIn x r
pair = \x (Pair e1 e2) ->

isFreeIn x e1 || isFreeIn x e2
binder = \x (Bind x’ e) -> x /= x’ && isFreeIn x e
occurrence = \x t -> case t of Free x’ -> x == x’

Substituted t’ -> ...
datatype iso = \x e -> isFreeIn x (fromData iso e)
lit = \ _ _ -> False

The miracle of mutual recursion!

Define by instantiating Generic

Example: variable free in term (removed type tags)
isFreeIn :: (Language a) => Name -> a -> Bool
isFreeIn = generic

instance Language a => Generic (Name -> a -> Bool)
where
unit = \x Unit -> False
plus = \x e -> case e of Inl l -> isFreeIn x l

Inr r -> isFreeIn x r
pair = \x (Pair e1 e2) ->

isFreeIn x e1 || isFreeIn x e2
binder = \x (Bind x’ e) -> x /= x’ && isFreeIn x e
occurrence = \x t -> case t of Free x’ -> x == x’

Substituted t’ -> ...
datatype iso = \x e -> isFreeIn x (fromData iso e)
lit = \ _ _ -> False

The miracle of mutual recursion!

Define by instantiating Generic

Example: variable free in term (removed type tags)
isFreeIn :: (Language a) => Name -> a -> Bool
isFreeIn = generic

instance Language a => Generic (Name -> a -> Bool)
where
unit = \x Unit -> False
plus = \x e -> case e of Inl l -> isFreeIn x l

Inr r -> isFreeIn x r
pair = \x (Pair e1 e2) ->

isFreeIn x e1 || isFreeIn x e2
binder = \x (Bind x’ e) -> x /= x’ && isFreeIn x e
occurrence = \x t -> case t of Free x’ -> x == x’

Substituted t’ -> ...
datatype iso = \x e -> isFreeIn x (fromData iso e)
lit = \ _ _ -> False

The miracle of mutual recursion!

Define by instantiating Generic

Example: variable free in term (removed type tags)
isFreeIn :: (Language a) => Name -> a -> Bool
isFreeIn = generic

instance Language a => Generic (Name -> a -> Bool)
where
unit = \x Unit -> False
plus = \x e -> case e of Inl l -> isFreeIn x l

Inr r -> isFreeIn x r
pair = \x (Pair e1 e2) ->

isFreeIn x e1 || isFreeIn x e2
binder = \x (Bind x’ e) -> x /= x’ && isFreeIn x e
occurrence = \x t -> case t of Free x’ -> x == x’

Substituted t’ -> ...
datatype iso = \x e -> isFreeIn x (fromData iso e)
lit = \ _ _ -> False

The miracle of mutual recursion!

Capture-avoiding substitution, generically
class Mapable e a where
subst :: (Name :|-->: e) -> a -> a

Interesting case is the binder
instance (Language a, Language e, Mapable e a) =>

Mapable e (Binder a)
where
subst s@(x :|-->: y) (Bind x’ e)

| x == x’ || not (x ‘isFreeIn‘ e) = Bind x’ e
| x’ ‘isFreeIn‘ y =

subst s $ rename (freeVars y) (Bind x’ e)
| otherwise = Bind x’ (subst s e)

Other cases trivial, e.g.:
(Mapable e a, Mapable e b) => Mapable e (Pair a b) where
subst s (Pair a b) = Pair (subst s a) (subst s b)

Capture-avoiding substitution, generically
class Mapable e a where
subst :: (Name :|-->: e) -> a -> a

Interesting case is the binder
instance (Language a, Language e, Mapable e a) =>

Mapable e (Binder a)
where
subst s@(x :|-->: y) (Bind x’ e)

| x == x’ || not (x ‘isFreeIn‘ e) = Bind x’ e
| x’ ‘isFreeIn‘ y =

subst s $ rename (freeVars y) (Bind x’ e)
| otherwise = Bind x’ (subst s e)

Other cases trivial, e.g.:
(Mapable e a, Mapable e b) => Mapable e (Pair a b) where
subst s (Pair a b) = Pair (subst s a) (subst s b)

Capture-avoiding substitution, generically
class Mapable e a where
subst :: (Name :|-->: e) -> a -> a

Interesting case is the binder
instance (Language a, Language e, Mapable e a) =>

Mapable e (Binder a)
where
subst s@(x :|-->: y) (Bind x’ e)

| x == x’ || not (x ‘isFreeIn‘ e) = Bind x’ e
| x’ ‘isFreeIn‘ y =

subst s $ rename (freeVars y) (Bind x’ e)
| otherwise = Bind x’ (subst s e)

Other cases trivial, e.g.:
(Mapable e a, Mapable e b) => Mapable e (Pair a b) where
subst s (Pair a b) = Pair (subst s a) (subst s b)

Works for lots of languages

Will show you Type language in a few minutes

Also works for compilation to 2D:
data M’ x v m g = Return x

| Consume x m
| Let Name v m g
| Let2 Name v Name v m g
| Split Name Name x m g
| Call1 Name Name x m g
| Call2 Name Name x x m
| Case x (Name, m) (Name, m) g

Recursive knot tied two ways:
1. Full first-order function body
2. A-normal form

Works for lots of languages

Will show you Type language in a few minutes

Also works for compilation to 2D:
data M’ x v m g = Return x

| Consume x m
| Let Name v m g
| Let2 Name v Name v m g
| Split Name Name x m g
| Call1 Name Name x m g
| Call2 Name Name x x m
| Case x (Name, m) (Name, m) g

Recursive knot tied two ways:
1. Full first-order function body
2. A-normal form

Works for lots of languages

Will show you Type language in a few minutes

Also works for compilation to 2D:
data M’ x v m g = Return x

| Consume x m
| Let Name v m g
| Let2 Name v Name v m g
| Split Name Name x m g
| Call1 Name Name x m g
| Call2 Name Name x x m
| Case x (Name, m) (Name, m) g

Recursive knot tied two ways:
1. Full first-order function body
2. A-normal form

Review: Have achieved something

Claims:
1. Free variables and capture-avoiding substitution

can be tedious (even wrong!)
2. I have written them generically
3. All a user need do is write isomorphisms

But writing isomorphisms is not so fun :-(

Review: Have achieved something

Claims:
1. Free variables and capture-avoiding substitution

can be tedious (even wrong!)
2. I have written them generically
3. All a user need do is write isomorphisms

But writing isomorphisms is not so fun :-(

The solution, continued

Writing isomorphisms can be tedious

From Ralf’s paper:

data Tree a = Leaf a | Fork (Tree a) (Tree a)

fromTree :: Tree a -> Plus a (Pair (Tree a) (Tree a))
fromTree (Leaf x) = Inl x
fromTree (Fork l r) = Inr (Pair l r)

toTree :: Plus a (Pair (Tree a) (Tree a)) -> Tree a
toTree (Inl x) = Leaf x
toTree (Inr (Pair l r)) = Fork l r

This style does not scale

Real languages have more constructors

Types (Peyton Jones et al. 2007, with variation):

data Type = ForAll [TyVar] Type

| Fun Type Type

| TyApp TyCon [Type]

| TyVar TyVar

(Real version has two more value constructors)

(Showed 2D target with eight value constructors)

Encoding uses sum-injection helpers

From Type to “ Language”:
fromTy (ForAll [] t) = L.c1 t

fromTy (ForAll (a:tvs) t) =

L.c2 (L.Bind (tyName a) (ForAll tvs t))

fromTy (Fun t1 t2) = L.c3 (t1 ‘L.Pair‘ t2)

fromTy (TyApp c []) = L.c4 (L.Lit c)

fromTy (TyApp c (t:ts)) = L.c5 (t ‘L.Pair‘ TyApp c ts)

fromTy (TyVar a) = L.c6last (L.Free (tyName a))

Helpers:
L.c1 = Inl
L.c2 = Inr . Inl
L.c3 = Inr . Inr . Inl
L.c4 = Inr . Inr . Inr . Inl
L.c5 = Inr . Inr . Inr . Inr . Inl
L.c6last = Inr . Inr . Inr . Inr . Inr

Decoding uses just one helper
toTy =
(\t -> ForAll [] t) |+|
(\(L.Bind x (ForAll xs t)) -> ForAll (tyvar x:xs) t)

|+|
(\(L.Pair t1 t2) -> Fun t1 t2) |+|
(\(L.Lit c) -> TyApp c []) |+|
(\(t ‘L.Pair‘ TyApp c ts) -> TyApp c (t:ts)) |+|
(\x -> case x of L.Free a -> TyVar (tyvar a)

L.Substituted t -> t)

Helper |+| is either:
(|+|) :: (a -> c) -> (b -> c) -> (L.Plus a b) -> c
(|+|) f1 f2 (Inl x) = f1 x
(|+|) f1 f2 (Inr x) = f2 x

Decoding uses just one helper
toTy =
(\t -> ForAll [] t) |+|
(\(L.Bind x (ForAll xs t)) -> ForAll (tyvar x:xs) t)

|+|
(\(L.Pair t1 t2) -> Fun t1 t2) |+|
(\(L.Lit c) -> TyApp c []) |+|
(\(t ‘L.Pair‘ TyApp c ts) -> TyApp c (t:ts)) |+|
(\x -> case x of L.Free a -> TyVar (tyvar a)

L.Substituted t -> t)

Helper |+| is either:
(|+|) :: (a -> c) -> (b -> c) -> (L.Plus a b) -> c
(|+|) f1 f2 (Inl x) = f1 x
(|+|) f1 f2 (Inr x) = f2 x

Decoding uses just one helper
toTy =
(\t -> ForAll [] t) |+|
(\(L.Bind x (ForAll xs t)) -> ForAll (tyvar x:xs) t)

|+|
(\(L.Pair t1 t2) -> Fun t1 t2) |+|
(\(L.Lit c) -> TyApp c []) |+|
(\(t ‘L.Pair‘ TyApp c ts) -> TyApp c (t:ts)) |+|
(\x -> case x of L.Free a -> TyVar (tyvar a)

L.Substituted t -> t)

Helper |+| is either:
(|+|) :: (a -> c) -> (b -> c) -> (L.Plus a b) -> c
(|+|) f1 f2 (Inl x) = f1 x
(|+|) f1 f2 (Inr x) = f2 x

Types are less scary in infix

type (:+:) = L.Plus
type (:*:) = L.Pair

fromType :: Type -> Type :+:
L.Binder Type :+:
(Type :*: Type) :+:
L.Lit TyCon :+:
(Type :*: Type) :+:
L.Occurrence Type

toType :: Type :+:
L.Binder Type :+:
(Type :*: Type) :+:
L.Lit TyCon :+:
(Type :*: Type) :+:
L.Occurrence Type
-> Type

With isomorphisms in hand, all is easy

Using the isomorphisms:

instance L.Language Type where
generic = L.datatype (L.Iso fromType toType)

instance L.Mapable Type Type where
subst s = toType . L.subst s . fromType

Voil à! Free variables, capture-avoiding substitution

The next problem

To solve (this week?)

Perhaps something similar for a type checker. . .

Unlike name binding, no near-universal type system

But one is promising for many applications:
F! + fixed point + GADTs

To solve (this week?)

Perhaps something similar for a type checker. . .

Unlike name binding, no near-universal type system

But one is promising for many applications:
F! + fixed point + GADTs

To solve (this week?)

Perhaps something similar for a type checker. . .

Unlike name binding, no near-universal type system

But one is promising for many applications:
F! + fixed point + GADTs

First steps

New type classes and instances:
• LanguageOver e x

— Type e is a language with names x
• Useful instances:
instance LanguageOver Type TyVar -- as above
instance LanguageOver Term Var -- by analogy
instance LanguageOver Term TyVar -- don’t overlook

First steps

New type classes and instances:
• LanguageOver e x

— Type e is a language with names x
• Useful instances:
instance LanguageOver Type TyVar -- as above
instance LanguageOver Term Var -- by analogy
instance LanguageOver Term TyVar -- don’t overlook

The object of the exercise

Signature of a generic type checker

data Error a = ... -- error monad

class FwaTypeable e t x a where
typeOf :: (LanguageOver e x

, LanguageOver t a
, LanguageOver e a
) =>
Map a Kind -> Map x t -> e -> Error t

Do join me

I’ve been having fun
• Results are entertaining
• Might be useful

