The Monad of Strict Computation

A Categorical Framework for the Semantics of Languages in which Strict and Non-strict computation rules are mixed

> Dick Kieburtz Portland State University WG2.8 Meeting July 16-20, 2007

The Problem, illustrated

- Consider the Haskell datatype:
 data Slist a = Nil | Scons !a (Slist a)
 - What is an appropriate denotation for *Scons*?
 - Scons can be used to define the seq function

seq x y = case Scons x Nil of { _ -> y}

- Scons should be modeled by a curried function, but its uncurried equivalent is *not* simply the injection of a cartesian product of types.
- What domain structure models the data type *Slist*?
 - *Slist* can be modeled by a sum, but it's not a sum of products.
- Is there a simple structure with which to characterize a domain for *Slist*?

Frame Semantics (a quick review)

- A *frame* category is a type-indexed, cartesian category, \mathcal{D} , with the additional structure
 - \mathcal{D} is equipped with a family of operations,

• τ :: $\forall \tau$ '. $(D_{\tau}'_{\to \tau} \times D_{\tau}') \to D_{\tau}$

- A frame category, \mathcal{D} , is extensional if $\forall \tau, \tau'. \forall f, g \in D_{\tau' \to \tau}. (\forall d \in D_{\tau}. f \bullet_{\tau} d = g \bullet_{\tau} d) \Rightarrow f = g$
- An arrow $\varphi \in D_{\tau}' \to D_{\tau}$ is representable if $\exists f \in D_{\tau}' \to \tau$. $\forall d \in D_{\tau}'$. $\varphi(d) = f \bullet_{\tau} d$

Partial-Order Categories

- Objects of the category *CPO* are sets with complete partial orders.
 - A p.o. set is ω-complete if it contains limits of finite and enumerable chains; *pointed* if it contains a least element.
- Generalize c.p.o. sets to categories
 - Arrows represent \sqsubseteq , manifesting the order relation
 - Least element, \perp , of a c.p.o. becomes an initial object in a p-o category
 - Defn: (*Barr* & *Wells*) A category is said to be ω-cocomplete if every (small) diagram has a colimit.
 - Characterization of domain objects as partial-order categories is due to
 - Wand, 1979, further elaborated by Smyth-Plotkin, 1982
- An abstract domain for modeling semantics is a category with products and sums whose objects are ω -cocomplete categories
 - Its functors preserve order and colimits. (*i.e.* they are *continuous*)
 - Continuous functors are *representable*
 - An ω -cocomplete frame category is *extensional*
- We take for a semantics domain a *CPO* category, \mathcal{D} , with all products, an initial object, \bot , and finite sums
 - \mathcal{D} is ω -cocomplete (*Smyth-Plotkin*)

The Monad of Strict Computation

Strict :: D → D is analogous to a Maybe monad without its explicit data constructors

data Maybe a = Nothing | Just a

monad Maybe where

return = Just Nothing >>= f = Nothing Just x >>= f = f x

monad Strict where

return = id

 $\perp >>= f = \perp$

x >>= f = f x when $x \neq \bot$

 Strict induces a monad transformer, analogous to MaybeT

The tensor product, \otimes , and sum, \oplus

- The product in *Strict* becomes a tensor in \mathcal{D}

$$(_,_)_{\otimes} :: Strict \ a \to Strict \ b \to Strict \ (a \times b)$$
$$(x,y)_{\otimes} = x >>= (\lambda x' \to y >>= (\lambda y' \to (x',y')))$$

- The tensor product has strict projections $p_1(x,y)_{\otimes} = x, \quad p_2(x,y)_{\otimes} = y$ where $x \neq \bot \land y \neq \bot$ $p_1(x,y)_{\otimes} = p_2(x,y)_{\otimes} = \bot$ when $x = \bot \lor y = \bot$
- The sum in Strict is a coalesced sum in \mathcal{D} $inl_{\oplus} :: Strict a \rightarrow Strict (a+b) \quad inr_{\oplus} :: Strict b \rightarrow Strict (a+b)$ $inl_{\oplus} x = x >>= (\lambda x' \rightarrow inl x') \quad inr_{\oplus} y = y >>= (\lambda y' \rightarrow inr y')$

The Lifted functor

• Lifted :: $\mathcal{D} \rightarrow \mathcal{D}$

lift :: $I \rightarrow Lifted$

is a natural transformation that injects a pointed type frame, D_{τ} into a domain that adds a new bottom element under \perp_{τ} drop :: Lifted $\rightarrow I$

is the natural transformation that identifies the bottom element of *Lifted* D_{τ} with the bottom element of D_{τ} .

 $drop \circ lift = id$

lift \circ *drop* \supseteq *id*_{*Lifted*}

The meanings of a data constructor

- A data constructor (of arity *N*) has two formal aspects
 - It maps a sequence of N types to a new type;
 - It maps N appropriately typed values to a value in its codomain type
- This suggests its semantic interpretation by a functor
 - Interpretation is in a type-indexed category
 - The object mapping takes *N* type frames to another type frame;
 - The arrow mapping takes *N* typed arrows (elements of *N* type frames) to an arrow (element in the frame of its codomain type)
- An interpretation functor

 $[[_]] :: \mathsf{Type} \to (tyvar \to \mathsf{Strict} \ \mathcal{D}) \to \mathsf{Strict} \ \mathcal{D}$

where *Type* is a "free" category of syntactically well-formed type expressions and compatibly typed term expressions;

 \mathcal{D} is a frame category (objects are type frames);

(*tyvar* \rightarrow *Strict* \mathcal{D}) is a type-variable environment.

Formal semantics of a Haskell data type

- An explicit representation of strictness annotations data $T a_1 \dots a_m = \dots | C (s_1, \gamma_1) \dots (s_n, \gamma_n) | \dots$
- Meaning of a strictness annotated type expression
 [[(s, γ)]] η = [[γ]] η when s = "!"
 [[(s, γ)]] η = Lifted([[γ]] η) when s = ""
- Meaning of a saturated data constructor application (object mapping) $[[C^{(n)}(s_1,\gamma_1)...(s_n,\gamma_n)]] \eta = [[(s_1,\gamma_1)]] \eta \otimes ... \otimes [[(s_n,\gamma_n)]] \eta$
- Meaning of a list of alternative type constructions $\begin{bmatrix} \gamma_1 & \dots & \gamma_p \end{bmatrix} \eta = \begin{bmatrix} \gamma_1 \end{bmatrix} \eta \oplus \dots \oplus \begin{bmatrix} \gamma_1 \end{bmatrix} \eta$ where \oplus is the sum in category \mathcal{D} (coalesced bottoms)
- Meaning of a (non-recursive) type constructor declaration $\begin{bmatrix} T a_1 \dots a_m = \gamma \end{bmatrix}_{Decl} DE \Rightarrow$ $(T = \Lambda \tau_1 \dots \tau_m \cdot \begin{bmatrix} \gamma \end{bmatrix} [(a_1 \mapsto \tau_1), \dots, (a_m \mapsto \tau_m)]) \in DE,$ where *DE* is a declaration environment

I've omitted showing data constructor definitions entered into DE

Example: a data constructor with strictness annotation

data *S a b* = ... | *S*1 !*a* b | ...

– What's the meaning of the constructor S1?

As the object mapping part of a functor: [[S1]] $\eta = \Lambda \gamma_1 \gamma_2$. [[γ_1]] $\eta \otimes Lifted([[\gamma_2]] \eta)$

As a data constructor, at a type $S \tau_1 \tau_2$: [[S1]]_{*Exp*} $\rho = \lambda x \in D_{\tau_1} y \in D_{\tau_2}$. (x, lift y)_{\otimes} where $\rho : var_{\tau} \to D_{\tau}$ is a typed valuation environment

Tuple, alternative and arrow types

- Haskell type tuples are lifted products $[[(\gamma_1,\gamma_2)]] \eta = Lifted ([[\gamma_1]] \eta \times [[\gamma_2]] \eta)$
- Haskell alternatives are coalesced sums $\begin{bmatrix} (\gamma_1 | \gamma_2) \end{bmatrix} \eta = \begin{bmatrix} \gamma_1 \end{bmatrix} \eta \oplus \begin{bmatrix} \gamma_2 \end{bmatrix} \eta$
- Haskell arrow types are lifted encodings of the elements of hom-sets
 [[(γ₁ → γ₂)]] η = Lifted (code_{γ1,γ2} (Hom_D([[γ₁]] η, [[γ₂]] η)))
 where code :: Hom(D) → Obj(D) is a bi-natural transformation
 that codes continuous functions into representations as data

Semantics of Haskell expressions

 $[[_]]_{Exp} :: Exp \to (Var \to \mathcal{D}) \to (\mathcal{D} \to r) \to r$ $[[e_1 e_2]]_{Exp} \rho \kappa =$ $[[e_1]]_{Exp} \rho (\lambda v_1. [[e_2]]_{Exp} \rho (\lambda v_2. \kappa (drop v_1 \bullet v_2)))$ $[[\lambda x.e]]_{Exp} \rho \kappa = \kappa (lift (code (\lambda v. [[e]]_{Exp} \rho [x \mapsto v])))$ $[[(e_1, e_2)]]_{Exp} \rho \kappa =$ $[[e_1]]_{Exp} \rho (\lambda v_1. [[e_2]]_{Exp} \rho (\lambda v_2. \kappa (lift (v_1, v_2)))$ $[[fst]]_{Exp} \rho \kappa$ = κ (lift ($\pi_1 \circ drop$)) $[[addInt]]_{Exp} \rho \kappa = \kappa (lift (\lambda x. lift (\lambda y. (+) (x,y)_{\otimes})))$ $[[C^{(1)} :: (s,\tau)]]_{Exp} \rho \kappa = \kappa \text{ lift, where } s = "!"$ $[[C^{(1)} :: (s,\tau)]]_{Exp} \rho \kappa = \kappa id, \text{ where } s = ""$ [[if e_0 then e_1 else e_2]]_{Exp} $\rho \kappa$ = $[[e_0]]_{Exp} \rho (\lambda b. b >>=_{Strict} (\lambda b'. case b' of$ *True* \rightarrow [[e_1]]_{*Exp*} $\rho \kappa$ False $\rightarrow [[e_2]]_{Fxp} \rho \kappa))$

Semantics of Haskell expressions

 $[[_]]_{Exp} :: Exp \to (Var \to Strict \mathcal{D}) \to (\mathcal{D} \to Strict r) \to Strict r$ $[[e_1 e_2]]_{Exp} \rho \kappa =$ $[[e_1]]_{Exp} \rho \gg_{Strict} (\lambda v_1, [[e_2]]_{Exp} \rho \gg_{Strict} (\lambda v_2, \kappa(drop v_1 \bullet v_2)))$ $[[\lambda x.e]]_{Exp} \rho \kappa = \kappa (lift (code (\lambda v. [[e]]_{Exp} \rho [x \mapsto v])))$ $[[(e_1, e_2)]]_{Exp} \rho \kappa =$ $[[e_1]]_{Exp} \rho >>=_{Strict} (\lambda v_1 . [[e_2]]_{Exp} \rho >>=_{Strict} (\lambda v_2 . \kappa (lift (v_1, v_2)))$ = κ (lift (code ($\pi_1 \circ drop$))) $[[fst]]_{Exp} \rho \kappa$ $[[addInt]]_{Exp} \rho \kappa = \kappa (lift (code (\lambda x. lift (code (\lambda y. x+y))))$ $[[C^{(1)} :: (s,\tau)]]_{Exp} \rho \kappa = \kappa (lift (code id)), \quad where s = "!"$ $[[C^{(1)} :: (s,\tau)]]_{Exp} \rho \kappa = \kappa (lift (code lift)), \quad where s = ""$ [[if e_0 then e_1 else e_2]]_{Exp} $\rho \kappa$ = $[[e_0]]_{Exp} \rho >>=_{Strict} (\lambda b. \text{ case } b \text{ of})$ *True* \rightarrow [[e_1]]_{*Exp*} $\rho \kappa$ False $\rightarrow [[e_2]]_{Fxp} \rho \kappa))$

Recursive Datatype Definitions Part 1: Simple recursion; ground types

- Returning to our example, let's substitute for the type parameter:
 data Slist_Int = Nil | Scons !Int (Slist_Int)
 - Replace the recursive instance on the RHS by a new tyvar

data Slist_Int = Nil | Scons !Int s

where *s* = *Slist_Int*

The RHS of the declaration is an expression

[s]. Nil | Scons !Int s that designates a functor in Type \rightarrow Type

- Map the expression to the semantic interpretation domain, μ -binding the variable, ζ , which ranges over objects of \mathcal{D}

 $[[\mu s. Nil | Scons !Int s]] \emptyset = \mu \zeta. Lifted_1 \oplus (D_{Int} \otimes Lifted \zeta)$ which designates the least fixed-point of a functor in $\mathcal{D} \to \mathcal{D}$

 The least fixed-point, computed by iteration, is the meaning of *Slist_Int*, entered into the declaration environment.

Conclusions

- A categorical framework for semantic domains has some advantages
 - Avoids irrelevant details of representation
 - Dual aspect of a functor (mapping objects & arrows) provides an integrated meaning for constructors
- The *Strict* monad provides a coherent framework in which to model computation rules
 - Simplifies explanation of Haskell's strictness-annotated data constructors
- Simply recursive data types are modeled as initial fixed points of functors that interpret data type declarations
 - An initial fixed point yields an initial algebra in a category of functor algebras
 - Categorical basis for generic programming derivations

End