The Monad of Strict Computation

A Categorical Framework for the Semantics of Languages in which Strict and Non-strict computation rules are mixed

Dick Kieburtz
Portland State University
WG2.8 Meeting
July 16-20, 2007

The Problem, illustrated

- Consider the Haskell datatype:
data Slist a = Nil | Scons !a (Slist a)
- What is an appropriate denotation for Scons?
- Scons can be used to define the seq function seq $x y=$ case Scons x Nil of $\left\{{ }_{-}->y\right\}$
- Scons should be modeled by a curried function, but its uncurried equivalent is not simply the injection of a cartesian product of types.
- What domain structure models the data type Slist?
- Slist can be modeled by a sum, but it's not a sum of products.
- Is there a simple structure with which to characterize a domain for Slist?

Frame Semantics (a quick review)

- A frame category is a type-indexed, cartesian category, \mathcal{D}, with the additional structure
- \mathcal{D} is equipped with a family of operations,
${ }^{\bullet} \tau:: \forall \tau^{\prime} .\left(D_{\tau^{\prime} \rightarrow \tau} \times D_{\tau^{\prime}}\right) \rightarrow D_{\tau}$
- A frame category, \mathcal{D}, is extensional if

$$
\forall \tau, \tau^{\prime} . \forall f, g \in D_{\tau^{\prime} \rightarrow \tau} .\left(\forall d \in D_{\tau} . f{ }_{\tau} d=g{ }_{\tau} d\right) \Rightarrow f=g
$$

- An arrow $\varphi \in D_{\tau^{\prime}} \rightarrow D_{\tau}$ is representable if $\exists f \in D_{\tau^{\prime} \rightarrow \tau} . \forall d \in D_{\tau^{\prime}} \cdot \varphi(d)=f \bullet \tau d$

Partial-Order Categories

- Objects of the category CPO are sets with complete partial orders.
- A p.o. set is ω-complete if it contains limits of finite and enumerable chains; pointed if it contains a least element.
- Generalize c.p.o. sets to categories
- Arrows represent \sqsubseteq, manifesting the order relation
- Least element, \perp, of a c.p.o. becomes an initial object in a p-o category
- Defn: (Barr \& Wells) A category is said to be ω-cocomplete if every (small) diagram has a colimit.
- Characterization of domain objects as partial-order categories is due to
- Wand, 1979, further elaborated by Smyth-Plotkin, 1982
- An abstract domain for modeling semantics is a category with products and sums whose objects are ω-cocomplete categories
- Its functors preserve order and colimits. (i.e. they are continuous)
- Continuous functors are representable
- An ω-cocomplete frame category is extensional
- We take for a semantics domain a CPO category, \mathcal{D}, with all products, an initial object, \perp, and finite sums
- \mathcal{D} is ω-cocomplete (Smyth-Plotkin)

The Monad of Strict Computation

- Strict :: $\mathcal{D} \rightarrow \mathcal{D}$ is analogous to a Maybe monad without its explicit data constructors

```
data Maybe a = Nothing | Just a
monad Maybe where
    return = Just
    Nothing >>=f = Nothing
    Just x >>=f = fx
```

monad Strict where
return = id
$\perp \gg=f=\perp$
$x \gg=f=f x$ when $x \neq \perp$

- Strict induces a monad transformer, analogous to MaybeT

The tensor product, \otimes, and sum, \oplus

- The product in Strict becomes a tensor in \mathcal{D}

$$
\begin{aligned}
& (,,-)_{\otimes}:: \text { Strict } a \rightarrow \text { Strict } b \rightarrow \text { Strict }(a \times b) \\
& (x, y)_{\otimes}=x \gg=\left(\lambda x^{\prime} \rightarrow y \gg=\left(\lambda y^{\prime} \rightarrow\left(x^{\prime}, y^{\prime}\right)\right)\right)
\end{aligned}
$$

- The tensor product has strict projections

$$
\begin{gathered}
p_{1}(x, y)_{\otimes}=x, \quad p_{2}(x, y)_{\otimes}=y \\
\text { where } x \neq \perp \wedge y \neq \perp \\
p_{1}(x, y)_{\otimes}=p_{2}(x, y)_{\otimes}=\perp \\
\text { when } x=\perp \vee y=\perp
\end{gathered}
$$

- The sum in Strict is a coalesced sum in \mathcal{D}

$$
\begin{array}{ll}
\inf _{\oplus}:: \text { Strict } a \rightarrow \text { Strict }(a+b) & \text { inr }_{\oplus}:: \text { Strict } b \rightarrow \text { Strict }(a+b) \\
\text { inl }_{\oplus} x=x \gg=\left(\lambda x^{\prime} \rightarrow \text { inl } x^{\prime}\right) & \text { inr }_{\oplus} y=y \gg=\left(\lambda y^{\prime} \rightarrow \text { inr } y^{\prime}\right)
\end{array}
$$

The Lifted functor

- Lifted $:: \mathcal{D}$-> \mathcal{D}
lift $:: I \rightarrow$ Lifted
is a natural transformation that injects a pointed type frame,
D_{τ} into a domain that adds a new bottom element under \perp_{τ} drop :: Lifted \rightarrow I
is the natural transformation that identifies the bottom element of Lifted D_{τ} with the bottom element of D_{τ}.
drop \circ lift $=i d$
lift \circ drop $\sqsupseteq i d_{\text {Lifted }}$

The meanings of a data constructor

- A data constructor (of arity N) has two formal aspects
- It maps a sequence of N types to a new type;
- It maps N appropriately typed values to a value in its codomain type
- This suggests its semantic interpretation by a functor
- Interpretation is in a type-indexed category
- The object mapping takes N type frames to another type frame;
- The arrow mapping takes N typed arrows (elements of N type frames) to an arrow (element in the frame of its codomain type)
- An interpretation functor
$\left.\left[[]_{~}\right]\right]::$ Type $\rightarrow($ tyvar \rightarrow Strict $\mathcal{D}) \rightarrow$ Strict \mathcal{D}
where Type is a "free" category of syntactically well-formed type expressions and compatibly typed term expressions;
\mathcal{D} is a frame category (objects are type frames); (tyvar \rightarrow Strict \mathcal{D}) is a type-variable environment.

Formal semantics of a Haskell data type

- An explicit representation of strictness annotations

$$
\text { data } T a_{1} \ldots a_{m}=\ldots\left|C\left(s_{1}, \gamma_{1}\right) \ldots\left(s_{n}, \gamma_{n}\right)\right| \ldots
$$

- Meaning of a strictness annotated type expression

$[[(s, \gamma)]] \eta=[[\gamma]] \eta$	when $s="!"$
$[[(s, \gamma)]] \eta=\operatorname{Lifted}([[\gamma]] \eta)$	when $s=$ ""

- Meaning of a saturated data constructor application (object mapping)
$\left[\left[C^{(n)}\left(s_{1}, \gamma_{1}\right) \ldots\left(s_{n}, \gamma_{n}\right)\right]\right] \eta=\left[\left[\left(s_{1}, \gamma_{1}\right)\right]\right] \eta \otimes \ldots \otimes\left[\left[\left(s_{n}, \gamma_{n}\right)\right]\right] \eta$
- Meaning of a list of alternative type constructions
$\left[\left[\gamma_{1}|\ldots| \gamma_{p}\right]\right] \eta=\left[\left[\gamma_{1}\right]\right] \eta \oplus \ldots \oplus\left[\left[\gamma_{1}\right]\right] \eta$
where \oplus is the sum in category \mathcal{D} (coalesced bottoms)
- Meaning of a (non-recursive) type constructor declaration

$$
\begin{aligned}
& {\left[\left[T a_{1} \ldots a_{m}=\gamma\right]\right]_{\text {Dec }} D E \Rightarrow} \\
& \quad\left(T=\Lambda \tau_{1} \ldots \tau_{m} .[[\gamma]]\left[\left(a_{1} \mapsto \tau_{1}\right), \ldots,\left(a_{m} \mapsto \tau_{m}\right)\right]\right) \in D E,
\end{aligned}
$$

where $D E$ is a declaration environment
l've omitted showing data constructor definitions entered into DE

Example: a data constructor with strictness annotation

data $S a b=\ldots|S 1!a b| \ldots$

- What's the meaning of the constructor S1?

As the object mapping part of a functor:
$[[S 1]] \eta=\Lambda \gamma_{1} \gamma_{2} \cdot\left[\left[\gamma_{1}\right]\right] \eta \otimes \operatorname{Lifted}\left(\left[\left[\gamma_{2}\right]\right] \eta\right)$
As a data constructor, at a type $S \tau_{1} \tau_{2}$:

[[S1]] $]_{E x \rho} \rho=\lambda x \in D_{\tau_{1}} y \in D_{\tau_{2}}(x, \text { lift } y)_{\otimes}$
where $\rho: \operatorname{var}_{\tau} \rightarrow D_{\tau}$ is a typed valuation environment

Tuple, alternative and arrow types

- Haskell type tuples are lifted products

$$
\left[\left[\left(\gamma_{1}, \gamma_{2}\right)\right]\right] \eta=\operatorname{Lifted}\left(\left[\left[\gamma_{1}\right]\right] \eta \times\left[\left[\gamma_{2}\right]\right] \eta\right)
$$

- Haskell alternatives are coalesced sums

$$
\left[\left[\left(\gamma_{1} \mid \gamma_{2}\right)\right]\right] \eta=\left[\left[\gamma_{1}\right]\right] \eta \oplus\left[\left[\gamma_{2}\right]\right] \eta
$$

- Haskell arrow types are lifted encodings of the elements of hom-sets
$\left[\left[\left(\gamma_{1} \rightarrow \gamma_{2}\right)\right]\right] \eta=\operatorname{Lifted}\left(\operatorname{code}_{\gamma_{1}, \gamma_{2}}\left(\operatorname{Hom}_{\mathcal{D}}\left(\left[\left[\gamma_{1}\right]\right] \eta,\left[\left[\gamma_{2}\right]\right] \eta\right)\right)\right)$ where code $:: \operatorname{Hom}(\mathcal{D}) \rightarrow \operatorname{Obj}(\mathcal{D})$ is a bi-natural transformation that codes continuous functions into representations as data

Semantics of Haskell expressions

```
\(\left.\left[[]_{-}\right]\right]_{\text {Exp }}:: \operatorname{Exp} \rightarrow(\operatorname{Var} \rightarrow \mathcal{D}) \rightarrow(\mathcal{D} \rightarrow r) \rightarrow r\)
\(\left[\left[e_{1} e_{2}\right]\right]_{\text {Exp }} \rho \kappa=\)
    \(\left[\left[e_{1}\right]\right]_{\text {Exp }} \rho\left(\lambda v_{1} \cdot\left[\left[e_{2}\right]\right]_{\text {Exp }} \rho\left(\lambda v_{2} \cdot \kappa\left(d r o p v_{1} \cdot v_{2}\right)\right)\right)\)
\([[\lambda x . e]]_{E x \rho} \rho \kappa \quad=\kappa\left(l i f t\left(\operatorname{code}\left(\lambda v .[[e]]_{E x p} \rho[x \mapsto v]\right)\right)\right)\)
\(\left[\left[\left(e_{1}, e_{2}\right)\right]\right]_{\text {Exp }} \rho \kappa=\)
    \(\left[\left[e_{1}\right]\right]_{\text {Exp }} \rho\left(\lambda v_{1} \cdot\left[\left[e_{2}\right]\right]_{\text {Exp }} \rho\left(\lambda v_{2} . \kappa\left(\right.\right.\right.\) lift \(\left.\left.\left(v_{1}, v_{2}\right)\right)\right)\)
\([[f s t]]_{\text {Exp }} \rho \kappa\)
    \(=\kappa\left(\right.\) lift \(\left(\pi_{1} \circ\right.\) drop \(\left.)\right)\)
\([[\text { addlnt }]]_{E x \rho} \rho \kappa \quad=\kappa\left(\right.\) lift \(\left(\lambda x\right.\). lift \(\left.\left.\left(\lambda y .(+)(x, y)_{\otimes}\right)\right)\right)\)
\(\left[\left[C^{(1)}::(s, \tau)\right]\right]_{\text {Exp }} \rho \kappa \quad=\kappa\) lift, where \(s=\) "!"
\(\left[\left[C^{(1)}::(s, \tau)\right]\right]_{\text {Exp }} \rho \kappa \quad=\kappa\) id, where \(s=">\)
[ [ if \(e_{0}\) then \(e_{1}\) else \(\left.\left.e_{2}\right]\right]_{E \times \rho} \rho \kappa=\)
\(\left[\left[e_{0}\right]\right]_{\text {Exp }} \rho\left(\lambda b . b \gg=_{\text {strict }}\left(\lambda b^{\prime}\right.\right.\). case \(b^{\prime}\) of
                                    True \(\rightarrow\left[\left[e_{1}\right]\right]_{\text {Exp }} \rho \kappa\)
False \(\left.\left.\rightarrow\left[\left[e_{2}\right]\right]_{\text {Exp }} \rho \kappa\right)\right)\)
```


Semantics of Haskell expressions

```
\(\left[[]_{]_{E x p}}:: \operatorname{Exp} \rightarrow(\operatorname{Var} \rightarrow\right.\) Strict \(\mathcal{D}) \rightarrow(\mathcal{D} \rightarrow\) Strict \(r) \rightarrow\) Strict \(r\)
\(\left[\left[e_{1} e_{2}\right]\right]_{\text {Exp }} \rho \kappa=\)
    \(\left[\left[e_{1}\right]\right]_{E x p} \rho \gg=_{\text {strict }}\left(\lambda v_{1} \cdot\left[\left[e_{2}\right]\right]_{\text {Exp }} \rho \gg=_{\text {strict }}\left(\lambda v_{2} \cdot \kappa\left(d r o p v_{1} \cdot v_{2}\right)\right)\right)\)
\([[\lambda x . e]]_{\text {Exp }} \rho \kappa \quad=\kappa\left(\right.\) lift \(\left.\left(\operatorname{code}\left(\lambda v .[[e]]_{\text {Exp }} \rho[x \mapsto v]\right)\right)\right)\)
\(\left[\left[\left(e_{1}, e_{2}\right)\right]\right]_{\text {Exp }} \rho \kappa=\)
    \(\left[\left[e_{1}\right]\right]_{E x p} \rho \gg=_{\text {Strict }}\left(\lambda v_{1} \cdot\left[\left[e_{2}\right]\right]_{\text {Exp }} \rho \gg=_{\text {Strict }}\left(\lambda v_{2} . \kappa\left(\right.\right.\right.\) lift \(\left.\left.\left(v_{1}, v_{2}\right)\right)\right)\)
\([[\text { fst }]]_{E x \rho} \rho \kappa \quad=\kappa\left(\right.\) lift \(\left(\operatorname{code}\left(\pi_{1} \circ\right.\right.\) drop \(\left.\left.)\right)\right)\)
\([[\text { addlint }]]_{E x \rho} \rho \kappa \quad=\kappa(\) lift \((\operatorname{code}(\lambda x\). lift \((\operatorname{code}(\lambda y \cdot x+y)))\)
\(\left[\left[C^{(1)}::(s, \tau)\right]\right]_{\text {Exp }} \rho \kappa \quad=\kappa\) (lift (code id)), where \(s=\) "!"
\(\left[\left[C^{(1)}::(s, \tau)\right]\right]_{\text {Exp }} \rho \kappa \quad=\kappa\) (lift (code lift)), where \(s="\) "
[[ if \(e_{0}\) then \(e_{1}\) else \(\left.\left.e_{2}\right]\right]_{\text {Exp }} \rho \kappa=\)
    \(\left[\left[e_{0}\right]\right]_{E \times \rho} \rho \gg=_{\text {strict }}(\lambda b\). case \(b\) of
\[
\begin{aligned}
& \text { True } \rightarrow\left[\left[e_{1}\right]\right]_{\text {Exp }} \rho \kappa \\
& \text { False } \left.\left.\rightarrow\left[\left[e_{2}\right]\right]_{\text {Exp }} \rho \kappa\right)\right)
\end{aligned}
\]
```


Recursive Datatype Definitions
 Part 1: Simple recursion; ground types

- Returning to our example, let's substitute for the type parameter:
data Slist_Int = Nil | Scons !Int (Slist_Int)
- Replace the recursive instance on the RHS by a new tyvar
data Slist_Int = Nil | Scons !/nt s
where $s=$ Slist_Int
- The RHS of the declaration is an expression
[s]. Nil | Scons !/nt s
that designates a functor in Type \rightarrow Type
- Map the expression to the semantic interpretation domain, μ-binding the variable, ζ, which ranges over objects of \mathcal{D}
$[[\mu$ s. Nil | Scons ! /nt s $]] \varnothing=\mu \zeta$. Lifted_1 $\oplus\left(D_{I n t} \otimes\right.$ Lifted $\left.\zeta\right)$
which designates the least fixed-point of a functor in $\mathcal{D} \rightarrow \mathcal{D}$
- The least fixed-point, computed by iteration, is the meaning of Slist_Int, entered into the declaration environment.

Conclusions

- A categorical framework for semantic domains has some advantages
- Avoids irrelevant details of representation
- Dual aspect of a functor (mapping objects \& arrows) provides an integrated meaning for constructors
- The Strict monad provides a coherent framework in which to model computation rules
- Simplifies explanation of Haskell's strictness-annotated data constructors
- Simply recursive data types are modeled as initial fixed points of functors that interpret data type declarations
- An initial fixed point yields an initial algebra in a category of functor algebras
- Categorical basis for generic programming derivations

End

