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Indexed Types
Indexed families of types are useful!

• list(t) where t type

• array(n) where n nat

• proof(p) where p prop

Uniform and non-uniform families.

• array(int) = int_array
array(t*u) = array(t) * array(u)



Indexed Types
Many applications, more every day.

• Bounds checking (Xi, Pfenning)

• Flat data representations (Chak. & Keller)

• Code certification (Sarkar)

• GADT’s (Xi, Hinze, ...)

• Access control (Harper & Kumar)

• Imperative verification (Morrisett)



Some Characteristics

One or more index domains.

• types (qua data)

• numbers, strings

• propositions

• proofs

Typically built-in (and/or abused).



Some Characteristics

Index expressions.

• constants, such as numbers

• variables

• operations, such as arithmetic

• binders, such as propositions or proofs

Varies from one domain to the next.



Some Characteristics

Constraints = predicates on indices.

• definitional equality

• propositional equality

• inequality, entailment

Constraints influence type checking!

• i = j implies array(i) = array(j)



Some Characteristics

Constrained types.

• { a : nat(n) | 0 ≤ n ≤ 10 }

• 0 ≤ n ≤ 10 ⇒ nat(n) → array(n) → nat

• pf(may-access(p,r)) ⇒ file(r) → string

Impose restrictions on callers.



Some Characteristics

Constraint satisfaction / verification.

• Fragments of arithmetic (Presburger, omega 
test, integer programs)

• Decision procedures for other domains.

Fundamentally, demand evidence for the validity 
of a constraint (a proof).



Extensible Index 
Domains

Would like to have programmer-defined 
index domains and logics.

• Ad hoc logics for reasoning about ADT’s (a 
little goes a long way).

• Rich language of modeling types for 
specifications.

Each abstraction comes with a “theory” of why 
it works.



Extensible Indexing
signature SETS = sig

fam ind : Type % elements of sets
fam set : Type % finite sets

obj void : set.
obj sing : ind → set.
objs union, diff : set → set → set.

fam prop : Type % propositions
objs eq, neq : set → set → prop.

fam pf : prop → Type % proofs
...

end



Extensible Indexing
signature QUEUE = sig

import Sets : SETS

typ elt : ind ⇒ type

typ queue : set ⇒ type

val empty : queue[void]
val enq :
∀ i:ind ∀ s:set

elt[i] → queue[s] → queue[union(s,sing(i))]
val deq :
∀ s:set ∀ :pf(neq(s,void)) queue[s] →
∃ i:ind elt[i] × queue[diff(s,sing(i))]

end



Extensible Indexing
Goal: integrate an extensible framework for 
indexing into an ML-like language.

• Run-time language may have effects.

• Type system permits introduction of new 
families, expressions, constraints, proofs, 
logics.

Approach: extend ML with a sufficiently 
expressive logical framework.



Integrating a Logical 
Framework

Which logical framework?

• Long-term: Full LF.

• Here:  Abstract Binding Trees

Enrich programming language with

• a kind of abt’s (inducing a type of abt’s)

• constructors and expressions over abt’s



Abstract Binding Trees
Generalize abstract syntax trees to account for 
binding and scope.

• variables, x

• operators, o∙(a1, ..., an)

• abstractors, x.a

The valence of an abt is the # of binders.

The arity of an operator is a sequence of 
valences.



Abstract Binding Trees

For example, the signature of lambda:

• app : (0,0)

• lam : (1)

Thus λx.xx is represented by lam∙(x.app∙(x,x)).

Abt’s are identified up to renaming of bound 
variables!



Abstract Binding Trees

The judgement Ψ ⊦ a ~ I means a is an abt of 

valence I with free variables Ψ=x1,...,xn.

• Inductively defined by a set of rules.

Sufficient to handle many interesting examples.

• But eventually we need full LF.



Structural Induction 
Modulo α

To show PΨ(a~I) whenever Ψ ⊦ a ~ I, show

• for every x st Ψ= Ψ1,x, Ψ2, show PΨ(x~0)

• if PΨ(a1~I1),...,PΨ(an~In), then PΨ(o∙(a1,...,an)~0), 
whenever o ~ (i1,...,in)

• if PΨ,x(a~I) then PΨ(x.a~I+1) for “fresh” x

Infinitary simultaneous induction!



Structural Induction

For example, to show P(a) for every lambda 
term a with vars x1, ..., xn,

• show P(xi) for every variable xi

• if P(a1) and P(a2), then P(app∙(a1,a2))

• for “fresh” x, if P(a), then P(lam∙(x.a))

(Context and valence suppressed for clarity.)



Structural Induction

The “freshness” condition can always be met by 
alpha-conversion.

• cf Pierce/Weirich, Pitts, Pollack/McKinna, ...

Can be avoided using globally nameless 
representations.

• access the context positionally

• (more below)



Integrating ABT’s

Structure of the ambient PL:

• static part: constructors classified by kinds

• includes types qua data and indices

• restricted to be pure, decidable equiv.

• dynamic part: terms classified by types

• no restrictions on purity



Integrating ABT’s

Type families are indexed by constructors.

• uniform and non-uniform type operators

• indexed families such as array(n::nat)

• constraints and proofs (ensures adequacy)

• “modeling types” for specifications.

Decidedly not “true” dependent types!



Integrating ABT’s

Add a kind of abt’s of valence I.

• K ::= ... | abt[I]

Treat abt’s as constructors (of this kind).

• C ::= ... | a

Define a :: abt[I] to hold iff a ~ I.

• ABT’s provide a general form of static data



Computing With ABT’s

Internalize structural induction at the 
constructor and expression levels.

• Permits non-uniform families of types.

• Permits non-uniform recursion over such 
families.

(Also need propositional equality for GADT-
like examples.  See paper.)



Computing With ABT’s

Example: the size of a lambda term.
λu::abt[0].abtrec
  { var ⇒ 1
  | ops ⇒ { lam ⇒ λm.m+1,
                 app ⇒ λ(m,n).m+n+1 }
  | abs => λm.m } (u)

Deceptively simple!



Computing With ABT’s

Example: id :: abt[0] → abt[0].
λx.abtrec 
    { var ⇒ ... the variable ...
     | abs ⇒ λa. ...abstract free var of a...
     | ops ⇒ { lam ⇒ λa. ... lam(a) ...,
                    app⇒ λ(a1,a2). ... app(a1,a2) ...
                   }
     } (x)



Computing With ABT’s

Several issues arise:

• must consider variable valences

• must “compute” with abt’s

• what to do about free variables?

The first is easily handled, but variables create 
some complications.



Computing With ABT’s

How do we compute ABT’s?

• Create o∙(a1,...,an) from ai:abt.

• Create x.a from ??? and a:abt.

Central issue: handling variables and scope.

• Ensure respect for α-conversion.

• Avoid bureaucracy of names.



Managing Variables

Nominal approach (tried and abandoned):

• make names “first-class values”

• explicitly manage binding

• apartness conditions permeate

We use contextual modal type theory.

• cf Sarkar, Nanevski/Pientka



Managing Variables

Generalize kind of abt’s to abt[I][L]

• valence I (as before)

• arity L = context of free variables

Kind abt[0][x:0 * y:0] represents ground abt’s 
with free variables (parameters) x and y.

• eg, app∙(x,y) ::  abt[0][x:0 * y:0]



Managing Variables

Formally, arities are (chosen) products of 
(computed and fixed) valences.

• (Some technical complications arise here.)

Free variables are accessed by projection from 
the context.

• π1(π2(...(π2(it))...))

• globally nameless, locally nameful form!



Managing Variables

General instantiation of parameters:

• if P :: abt[I][L] and L’ ⊦ S :: L, then
P∙S :: abt[I][L’]

Example:

• u :: abt[0][x:0] ⊦ lam∙(y. u∙(y)) :: abt[0][]



Copying Identity

id : ∀w::ctx ∀i::val abt[i][w]→abt[i][w] = 

λw. λi. λu. abtrec 
    { var(x) ⇒ x     return the parameter itself
     | abs ⇒ λa. (x. a∙(x,it))    rebind after copy
     | ops ⇒ { lam ⇒ λa. lam∙(a∙(it)),
                   app ⇒ 
                      λ(a1,a2). app∙(a1∙(it), a2∙(it)) } }
    (u)



Copying Identity

What’s really happening with parameters:

• type check π1(π2(it)) relative to the context 
w * 0 * w’, for arbitrary w,w’::ctx

• ie, for each variable in the context

The globally name-free form avoids freshness 
conditions.

• in examples we “label” the variable



Further Examples

In the paper we present examples such as

• substitution and normalization

• Hinze’s tries, with “let”’s over types

• GADT of terms of a specified type

No further machinery required, except 
propositional equality for GADT’s.



Summary

A first step towards an integration of LF with 
ML to support extensible indexing.

• parameterization by a signature

• structural induction modulo α

• handling of free names during recursion

Please see the paper for many more details.


