Fun With String Lenses

Benjamin C. Pierce
University of Pennsylvania

WG 2.8, July 2007

My usual obsession...

The View Update Problem

- We transform source structure C to target structure A
c

The View Update Problem

- We transform source structure C to target structure A
- Someone updates A

The View Update Problem

- We transform source structure C to target structure A
- Someone updates A
- We must now translate this update to obtain an appropriately updated C

A Bad "Solution"

We could just write such pairs of functions in any old programming language.

- But this would be ugly and unmaintainable!

A Good Solution

Better: take a linguistic approach.

- Design a bi-directional programming language, in which every expression can be read...
- from left to right as a get function
- from right to left as the corresponding put function

Pieces of the puzzle:

- A semantic space of pairs of functions that "behave well together" (dubbed lenses)
- Natural, convenient syntax with a compositional semantics
- Static type system guaranteeing well-behavedness and totality

Lenses For Trees [POPL 2005, PLANX 2007]

Data model: Trees (XML, etc.)
Computation model: Local tree manipulation combinators, plus mapping, conditionals, recursion.

Type system: Based on regular tree automata

- with some interesting side-conditions

Lenses For Relations [PODS 2006]

Data model: Relational databases (named collections of tables)
Computation model: Operators from relational algebra, each augmented with enough parameters to determine put behavior.

Type system: Built using standard tools from databases

- predicates on rows of tables
- functional dependencies between columns

Lenses for Strings [in progress]

Data model: Strings over a finite alphabet
Computation model: Finite-state string transducers, described using regular-expression-like operators

Type system: Regular expressions

- with some interesting side conditions

What We're Up To

1. string lens combinators

- intuitive semantics and typing rules
- based on familiar regular operators (union, concatenation, Kleene-star).

2. dictionary lenses (and two more combinators) for dealing with ordered data
3. Boomerang: a full-blown bidirectional programming language
4. Pretty big examples

- e.g., SwissProt ascii \longleftrightarrow XML (2Kloc)

Bottom line: Finally, a bi-directional language that is (pretty) easy to learn and (a lot of) fun to use.

String Lenses

Semantics of Basic Lenses

A basic lens / from C to A is a triple of functions

$$
\begin{array}{ll}
\text { l.get } & \in C \longrightarrow A \\
\text { I.put } & \in A \longrightarrow C \longrightarrow C \\
\text { l.create } & \in A \longrightarrow C
\end{array}
$$

obeying three "round-tripping" laws:

$$
\begin{aligned}
& \text { I.put }(\text { I.get } c) c=c \\
& \text { I.get }(\text { I.put a } c)=a
\end{aligned}
$$

$$
\text { I.get }(\text { I.create } a)=a \quad \text { (CREATEGET })
$$

[Switch to demo]

String Lens Primitives

Copy

$E \in \mathcal{R}$	
$c p E \in \mathbb{I E \rrbracket}$	$\Longleftrightarrow \llbracket \mathbb{E} \rrbracket$
get c	$=c$
put a c	$=a$
create a	$=$

Const

$E \in \mathcal{R} \quad u \in \Sigma^{*} \quad v \in \llbracket E \rrbracket$	
const $E u v \in \llbracket E \rrbracket$	$\Longleftrightarrow\{u\}$
get $c=u$	
put a $c=c$	
create $a=v$	

Derived Forms

$$
\begin{aligned}
E \leftrightarrow u & \in \llbracket E \rrbracket \Longleftrightarrow\{u\} \\
E \leftrightarrow u & =\text { const } E u(\text { choose }(E)) \\
\text { del } E & \in \llbracket E \rrbracket \Longleftrightarrow\{\epsilon\} \\
\operatorname{del} E & =E \leftrightarrow \epsilon \\
\text { ins } u & \in\{\epsilon\} \Longleftrightarrow\{u\} \\
\text { ins } u & =\epsilon \leftrightarrow u
\end{aligned}
$$

Concatenation

$$
\begin{aligned}
& C_{1} \cdot{ }^{!} C_{2} \quad A_{1} \cdot{ }^{!} A_{2} \\
& \frac{I_{1} \in C_{1} \Longleftrightarrow A_{1} \quad I_{2} \in C_{2} \Longleftrightarrow A_{2}}{I_{1} \cdot I_{2} \in C_{1} \cdot C_{2} \Longleftrightarrow A_{1} \cdot A_{2}} \\
& \operatorname{get}\left(c_{1} \cdot c_{2}\right)=\left(l_{1} \cdot \text { get } c_{1}\right) \cdot\left(l_{2} \cdot \text { get } c_{2}\right) \\
& \text { put }\left(a_{1} \cdot a_{2}\right)\left(c_{1} \cdot c_{2}\right)=\left(I_{1} \cdot \text { put } a_{1} c_{1}\right) \cdot\left(I_{2} \cdot \text { put } a_{2} c_{2}\right) \\
& \text { create }\left(a_{1} \cdot a_{2}\right)=\left(I_{1} \cdot \text { create } a_{1}\right) \cdot\left(l_{2} \cdot \text { create } a_{2}\right)
\end{aligned}
$$

Iteration

$$
\begin{aligned}
& \frac{I \in C \Longleftrightarrow A \quad C^{!*} \quad A^{!*}}{I^{*} \in C^{*} \Longleftrightarrow A^{*}} \\
& \operatorname{get}\left(c_{1} \cdots c_{n}\right) \quad=\left(\text { I.get } c_{1}\right) \cdots\left(\text { l.get } c_{n}\right) \\
& \operatorname{put}\left(a_{1} \cdots a_{n}\right)\left(c_{1} \cdots c_{m}\right)=c_{1}^{\prime} \cdots c_{n}^{\prime} \\
& \text { where } c_{i}^{\prime}= \begin{cases}\text { I.put } a_{i} c_{i} & i \in\{1, \ldots, \min (m, n)\} \\
\text { l.create } a_{i} & i \in\{m+1, \ldots, n\}\end{cases} \\
& \text { create }\left(a_{1} \cdots a_{n}\right) \quad=\left(\text { I.create } a_{1}\right) \cdots\left(\text { I.create } a_{n}\right)
\end{aligned}
$$

Union

$$
\begin{aligned}
& C_{1} \cap C_{2}=\emptyset \\
& \begin{array}{c}
I_{1} \in C_{1} \Longleftrightarrow A_{1} \quad I_{2} \in C_{2} \Longleftrightarrow A_{2} \\
I_{1} \mid I_{2} \in C_{1} \cup C_{2} \Longleftrightarrow A_{1} \cup A_{2}
\end{array} \\
& \text { get } c= \begin{cases}I_{1} \cdot \text { get } c & \text { if } c \in C_{1} \\
I_{2} \cdot \text { get } c & \text { if } c \in C_{2}\end{cases} \\
& \text { put a } c= \begin{cases}I_{1} \text {. put } a c & \text { if } c \in C_{1} \wedge a \in A_{1} \\
I_{2} \text {. puts } c & \text { if } c \in C_{2} \wedge a \in A_{2}\end{cases} \\
& I_{1} \text {.create } a \text { if } c \in C_{2} \wedge a \in A_{1} \backslash A_{2} \\
& \text { I } 2 \text {.create } a \text { if } c \in C_{1} \wedge a \in A_{2} \backslash A_{1} \\
& \text { create } a= \begin{cases}I_{1} . \text { create } a & \text { if } a \in A_{1} \\
I_{2} . \text { create } a & \text { if } a \in A_{2} \backslash A_{1}\end{cases}
\end{aligned}
$$

[back to demo]

Dictionary Lenses

Semantics of Dictionary Lenses

$I \in C \stackrel{S, D}{\Longleftrightarrow} A$ if...

$$
\begin{aligned}
& \text { I.get } \in C \longrightarrow A \\
& \text { I.parse } \in C \longrightarrow S \times D \\
& \text { I.key } \in A \longrightarrow K \\
& \text { I.create } \in A \longrightarrow D \longrightarrow C \times D \\
& \text { I.put } \in A \longrightarrow S \times D \longrightarrow C \times D
\end{aligned}
$$

...obeying...

$$
\begin{aligned}
& \frac{s, d^{\prime}=I \text {.parse } c \quad d \in D}{\text { I.put }(\text { I.get } c)\left(s,\left(d^{\prime}+d\right)\right)=c, d} \\
& \frac{c, d^{\prime}=\text { I.put } a(s, d)}{\text { l.get } c=a} \\
& \text { (GetPut) } \\
& \text { (PutGet) } \\
& \frac{c, d^{\prime}=\text { I.create a } d}{\text { l.get } c=a}
\end{aligned}
$$

Boomerang

A full-blown language based on dictionary lenses

- A simply typed functional language with base types:
- string
- regexp
- dlens
- ... and primitives:

```
get : dlens -> string -> string
put : dlens -> string -> string -> string
create : dlens -> string -> string
union : dlens -> dlens -> dlens
concat : dlens -> dlens -> dlens
```

...

Two-stage typechecking

Problem:

- Our lens combinators have types involving regular expressions
- The functional component of Boomerang involves arrow types
- Not clear how to mix them!

Two-stage typechecking

A pretty reasonable solution:

- Typecheck functional program (using simple types)
- Executing it involves applying operators like concat to dlens values
- dlens values include (functional) components get, put, etc., and (regular expression) components domain, codomain, etc.
- evaluating concat dynamically applies the static typing rule for lens concatenation (using
- if this succeeds, then the resulting dlens can be further composed, or applied to a string using get, etc.

Thank You!

Collaborators on this work: Aaron Bohannon, Nate Foster, Alexandre Pilkiewicz, Alan Schmitt
Other Harmony contributors: Ravi Chugh, Malo Denielou, Michael Greenwald, Owen Gunden, Martin Hofmann, Sanjeev Khanna, Keshav Kunal, Stéphane Lescuyer, Jon Moore, Jeff Vaughan, Zhe Yang

Resources: Papers, slides, (open) source code, and online demos:
http://www.seas.upenn.edu/~harmony/

The Real Semantics of Dictionary Lenses

A dictionary lens from C to A with skeleton type S and dictionary type D has components...

$$
\begin{aligned}
& \text { I.get } \in C \longrightarrow A \\
& \text { I.parse } \in C \longrightarrow S \times D(L) \\
& \text { I. } \in e y \in A \longrightarrow K \\
& \text { I.create } \in A \longrightarrow D(L) \longrightarrow C \times D(L) \\
& \text { I.put } \in A \longrightarrow S \times D(L) \longrightarrow C \times D(L)
\end{aligned}
$$

... where...

$$
\begin{aligned}
& \frac{s, d^{\prime}=\text { I. parse } c \quad d \in D(L)}{\text { I.put }(\text { I.get } c)\left(s,\left(d^{\prime}+d\right)\right)=c, d} \quad \text { (GetPut) } \\
& \frac{c, d^{\prime}=1 . \text { put } a(s, d)}{\text { l.get } c=a} \\
& \text { (PutGet) } \\
& \frac{c, d^{\prime}=\text { I.create a } d}{\text { l.get } c=a}
\end{aligned}
$$

