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Introduction
Semantics of Boxy Types

Conclusion and Future Work

Future of FP

What will the type system of future functional programming
languages look like?

I GADTs

I Poymorphic recursion

I Higher-rank

I Impredicativity

I Type-level lambdas

I Equi-recursive types

I Effects

I Dependent types

How can we reconcile HM-type inference with all of these?

And should we? (If not, this is the end of the talk.)
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Programming in System F

There is a good chance that future programming languages will be
based on System F .
Type inference for System F lacks principal types. For some terms,
there is no “best” type

Two choices:

I Enrich type system

I Require user annotation to disambiguate
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Our proposal

Boxy types:

I An extension of Haskell with higher-rank and impredicative
polymorphism.

I Basic idea: propagate type annotations and contextual
information using local type inference.

I Single pass, unlike Rémy’s stratified type inference.
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Goals

Design goal:

I Type check all Haskell code (use unification for monotypes)

I Not too fancy: use annotations for polytypes
I Reach all of System F

I Use annotations to mark polymorphic instantiations and
generalizations

I Compilation to System F (GHC core language)
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Typing rules
Boxy matching
Subsumption

Boxy Types

Idea: Make the type checker understand about “partially known
and partially unknown types”

I Combine Γ `↑ e : ρ and Γ `↓ e : ρ into single judgment form:
Γ ` e : ρ ′.

σ ::= ∀a.ρ
ρ ::= σ → σ | τ

τ ::= a | τ → τ

σ ′ ::= ∀a.ρ ′ | σ

ρ ′ ::= σ ′ → σ ′ | ρ | τ

I Constraints: No nested boxes, no quantified vars free inside
boxes, no boxes in the type context.

I Reminiscent of coloured local type inference (Odersky, Zenger,
and Zenger, 2001).
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By-reference parameters

Typing judgment form: Γ ` e : ρ ′.

I Boxes in ρ ′ are filled in by the algorithm during this call by
the type checker. The rest of ρ ′ is checkable information.

I The specification includes the appropriate types that are the
“output” of the algorithm.

I If a box meets known information somewhere in the
specification, then it may be filled in by a polytype.

I If not, the box is filled in by a guessed monotype.

Examples:

I Completely inference: Γ ` t : ρ

I Completely checking: Γ ` t : ρ
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Typing rules

I Typing rules are syntax-directed: instantiation occurs at
variable occurrences, and generalization at let expressions.

` σ ≤ ρ ′ x : σ ∈ Γ

Γ ` x : ρ ′ var

Γ ` u : ρ

a = ftv(ρ) − ftv(Γ)

Γ, x : ∀a.ρ ` t : ρ ′

Γ ` let x = u in t : ρ ′

let

I A lot of trickyness in ≤, we’ll get to that.

I Unbox ρ in let.
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Application typing rules

Γ ` t : σ → ρ ′

Γ `poly
u : σ

Γ ` t u : ρ ′
app

Γ ` t : ρ ′

a /∈ ftv(Γ)

Γ `poly
t : ∀a.ρ ′

gen1

I Check the function argument type (possibly polymorphic).

I More to come for `poly .
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Type annotations

Type annotations let us introduce unboxed polytypes.

Γ `poly u : σ Γ, x : σ ` t : ρ ′

let x :: σ = u in t : ρ ′ siglet

I Note: type annotations do not contain boxes

I This rule has been simplified, in the full system we support
lexically-scoped type variables.
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Typing rules
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Abstraction rules

Γ ` (λx .t) : σ1 → σ2

Γ ` (λx .t) : σ1 → σ2
abs1

` σ ′
1 ∼ σ1

Γ, x : σ1 `
poly

t : σ ′
2

Γ ` (λx .t) : σ ′
1 → σ ′

2

abs2

Γ ` t : ρ

Γ `poly
t : ρ

gen2

I Note higher rank

I The relation ∼ is boxy-matching.

I Don’t generalize in inference mode.
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Boxy matching

I The two types complement eachother.

I Symmetric, but not reflexive or transitive.

I For monotypes, an equivalence relation.

I Walk down structure of type, filling in holes on either side.

Examples:

` ∀a.a → a ∼ ∀a.a → a

` ∀a.a → a → ∀a.a → a ∼ (∀a.a → a) → ∀a.a → a

6` ∀a.a → a ∼ ∀a.a → a

` Int ∼ Int

` Int → Int ∼ Int → Int
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Boxes for impredicativity

Recall the rule for variables.

` σ ≤ ρ ′ x : σ ∈ Γ

Γ ` x : ρ ′ var

Suppose that f : ∀a.a → a in the context. Then our goal is:

Γ ` f : τ → τ but not Γ 6` f : σ → σ

On, the other hand we should be able to check arbitrary
polytypes:

Γ ` f : σ → σ

So we want:

∀a.a → a ≤ τ → τ ∀a.a → a 6≤ σ → σ ∀a.a → a ≤ σ → σ
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More Examples of subsumption

I Guess monotype instantiations:

` ∀a.a → a ≤ Int → Int

` ∀a.a → a ≤ Int → Int

I Even in result type of functions:

` (∀ab.a → b) → (∀a.a → a) ≤ (∀ab.a → b) → ( Int → Int )

I Pull quantifiers out: ` Int → ∀a.a → a ≤ ∀a.Int → a → a
I Require guessed polytypes to meet known information:

6` ∀a.a → a ≤ ∀a.a → a ` ∀a.a → a ≤ ∀a.a → a

I Monotypes may be boxed ` τ ≤ τ
I All together:

` (∀ab.a → b) → ∀a.a → a ≤ ∀ab.a → b → (Int → Int)
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Subsumption relation

I Defines when a type is “at least as general” as another.

I Instantiate type variables with boxy polytypes.

` τ ≤ τ
mono

` ∀a.ρ ′
1 ≤ ρ ′

2 b /∈ ftv(∀a.ρ ′
1)

` ∀a.ρ ′
1 ≤ ∀b.ρ ′

2

skol

` [a 7→ σ ]ρ ′
1 ≤ ρ ′

2

` ∀a.ρ ′
1 ≤ ρ ′

2

spec

I More rules to come, but note, with τ instead of σ this is HM
subsumption relation.
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Typing rules
Boxy matching
Subsumption

Copying into boxes

When box meets non-box, the algorithm copies the information
into the box.

` σ ≤ σ
sboxy-simpl

Generalize this rule to allow boxes on the right hand side.

` σ ∼ σ ′

` σ ≤ σ ′ sboxy
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Typing rules
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A subtle point

I What if we add this (suggestively-named) rule:

` σ ′ ∼ σ

` σ ′ ≤ σ
sboxy-wrong

I Overlap between sboxy-wrong and spec. If a polytype
meets a box, what should we do?

` [a 7→ σ ]ρ ′
1 ≤ ρ ′

2

` ∀a.ρ ′
1 ≤ ρ ′

2

spec
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Typing rules
Boxy matching
Subsumption

Can’t restrict spec

Could restrict spec so that the RHS cannot be a box:

` [a 7→ σ ]ρ ′
1 ≤ ρ ′

2 ρ ′
2 6= ρ

` ∀a.ρ ′
1 ≤ ρ ′

2

spec-nobox

but then we would lose some Haskell programs:

id : ∀a.a → a ` id : Int → Int

requires ` ∀a.a → a ≤ Int → Int
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Tension between higher-rank and impredicativity

Standard subsumption rule for higher-rank types:

` σ ′
3 ≥ σ ′

1 ` σ ′
2 ≤ σ ′

4

` σ ′
1 → σ ′

2 ≤ σ ′
3 → σ ′

4
f2

But we aren’t going to use this rule.
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Subsumption and function types

Want to encode all of System F type instantiations using type
annotations.

I Need ` ∀a.ρ ≤ ρ[σ/a]

I spec introduces boxes on the left. If we are to fill them, they
better stay on the left.

I Invariance for the argument of a function type.

` σ ′
3 ∼ σ ′

1 ` σ ′
2 ≤ σ ′

4

` σ ′
1 → σ ′

2 ≤ σ ′
3 → σ ′

4
f2

I Essential to show:

∀a.a → a ≤ (∀a.a → a) → ∀a.a → a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types



Introduction
Semantics of Boxy Types

Conclusion and Future Work
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Properties of the type system

I Type-safety through translation to System F.

I Algorithm computes principal types.

I Type system extends Hindley-Milner.

I Monotypes can be unboxed/boxed arbitrarily. Unification
takes care of that.

I Can embed System F.
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Expressiveness

There are several programs that don’t typecheck, that we really
would like to.
For example:

id : ∀a.a → a

sing : ∀a.a → [a]

Even if we know the result type:

Γ 6` sing id : [∀a.a → a]

This requires that:

` ∀a.a → [a] ≤ ∀a.a → a → [∀a.a → a]
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Smart application

We have been exploring alternative rules for application.

x : ∀a.σ → σ ∈ Γ

ac = a ∩ ftv(σ) ae = a − ac

` [ac 7→ σc ]σ ≤ ρ ′

Γ `poly
ui : [ae 7→ σe , ac 7→ σc ]σi

Γ ` x u : ρ ′

Not quite satisfactory:

I Completeness problem

I Can’t typecheck Γ ` hd ids : a → a
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Questions

I Is this the right tradeoff between expressiveness and
simplicity?

I Stratified vs. monolithic type inference?

I Is there a different strategy altogether?
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More questions

I Is System F the right “core” language?

I Can the user understand when the program type checks?
“Simple” specification vs. powerful inference vs. good error
messages?

I Is it easy to modify programs if there are a lot of type
annotations all over the place?

I Why is thinking about type inference addictive?
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More information

Draft paper available at:

www.cis.upenn.edu/~dimitriv/boxy

Revision appearing soon.
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