
Boxy types: Inference for higher-rank types and
impredicativity

Dimitrios Vytiniotis1

Simon Peyton Jones2

Stephanie Weirich1

1Computer and Information Science Department
University of Pennsylvania

2Microsoft Research

Kalvi, October 2005

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Future of FP

What will the type system of future functional programming
languages look like?

I GADTs

I Poymorphic recursion

I Higher-rank

I Impredicativity

I Type-level lambdas

I Equi-recursive types

I Effects

I Dependent types

How can we reconcile HM-type inference with all of these?

And should we? (If not, this is the end of the talk.)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Future of FP

What will the type system of future functional programming
languages look like?

I GADTs

I Poymorphic recursion

I Higher-rank

I Impredicativity

I Type-level lambdas

I Equi-recursive types

I Effects

I Dependent types

How can we reconcile HM-type inference with all of these?
And should we? (If not, this is the end of the talk.)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Programming in System F

There is a good chance that future programming languages will be
based on System F .
Type inference for System F lacks principal types. For some terms,
there is no “best” type

Two choices:

I Enrich type system

I Require user annotation to disambiguate

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Programming in System F

There is a good chance that future programming languages will be
based on System F .
Type inference for System F lacks principal types. For some terms,
there is no “best” type
Two choices:

I Enrich type system

I Require user annotation to disambiguate

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Our proposal

Boxy types:

I An extension of Haskell with higher-rank and impredicative
polymorphism.

I Basic idea: propagate type annotations and contextual
information using local type inference.

I Single pass, unlike Rémy’s stratified type inference.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Goals

Design goal:

I Type check all Haskell code (use unification for monotypes)

I Not too fancy: use annotations for polytypes
I Reach all of System F

I Use annotations to mark polymorphic instantiations and
generalizations

I Compilation to System F (GHC core language)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Boxy Types

Idea: Make the type checker understand about “partially known
and partially unknown types”

I Combine Γ `↑ e : ρ and Γ `↓ e : ρ into single judgment form:
Γ ` e : ρ ′.

σ ::= ∀a.ρ
ρ ::= σ → σ | τ

τ ::= a | τ → τ

σ ′ ::= ∀a.ρ ′ | σ

ρ ′ ::= σ ′ → σ ′ | ρ | τ

I Constraints: No nested boxes, no quantified vars free inside
boxes, no boxes in the type context.

I Reminiscent of coloured local type inference (Odersky, Zenger,
and Zenger, 2001).

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

By-reference parameters

Typing judgment form: Γ ` e : ρ ′.

I Boxes in ρ ′ are filled in by the algorithm during this call by
the type checker. The rest of ρ ′ is checkable information.

I The specification includes the appropriate types that are the
“output” of the algorithm.

I If a box meets known information somewhere in the
specification, then it may be filled in by a polytype.

I If not, the box is filled in by a guessed monotype.

Examples:

I Completely inference: Γ ` t : ρ

I Completely checking: Γ ` t : ρ

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Typing rules

I Typing rules are syntax-directed: instantiation occurs at
variable occurrences, and generalization at let expressions.

` σ ≤ ρ ′ x : σ ∈ Γ

Γ ` x : ρ ′ var

Γ ` u : ρ

a = ftv(ρ) − ftv(Γ)

Γ, x : ∀a.ρ ` t : ρ ′

Γ ` let x = u in t : ρ ′

let

I A lot of trickyness in ≤, we’ll get to that.

I Unbox ρ in let.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Application typing rules

Γ ` t : σ → ρ ′

Γ `poly
u : σ

Γ ` t u : ρ ′
app

Γ ` t : ρ ′

a /∈ ftv(Γ)

Γ `poly
t : ∀a.ρ ′

gen1

I Check the function argument type (possibly polymorphic).

I More to come for `poly .

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Type annotations

Type annotations let us introduce unboxed polytypes.

Γ `poly u : σ Γ, x : σ ` t : ρ ′

let x :: σ = u in t : ρ ′ siglet

I Note: type annotations do not contain boxes

I This rule has been simplified, in the full system we support
lexically-scoped type variables.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Abstraction rules

Γ ` (λx .t) : σ1 → σ2

Γ ` (λx .t) : σ1 → σ2
abs1

` σ ′
1 ∼ σ1

Γ, x : σ1 `
poly

t : σ ′
2

Γ ` (λx .t) : σ ′
1 → σ ′

2

abs2

Γ ` t : ρ

Γ `poly
t : ρ

gen2

I Note higher rank

I The relation ∼ is boxy-matching.

I Don’t generalize in inference mode.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Boxy matching

I The two types complement eachother.

I Symmetric, but not reflexive or transitive.

I For monotypes, an equivalence relation.

I Walk down structure of type, filling in holes on either side.

Examples:

` ∀a.a → a ∼ ∀a.a → a

` ∀a.a → a → ∀a.a → a ∼ (∀a.a → a) → ∀a.a → a

6` ∀a.a → a ∼ ∀a.a → a

` Int ∼ Int

` Int → Int ∼ Int → Int

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Boxes for impredicativity

Recall the rule for variables.

` σ ≤ ρ ′ x : σ ∈ Γ

Γ ` x : ρ ′ var

Suppose that f : ∀a.a → a in the context. Then our goal is:

Γ ` f : τ → τ but not Γ 6` f : σ → σ

On, the other hand we should be able to check arbitrary
polytypes:

Γ ` f : σ → σ

So we want:

∀a.a → a ≤ τ → τ ∀a.a → a 6≤ σ → σ ∀a.a → a ≤ σ → σ

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

More Examples of subsumption

I Guess monotype instantiations:

` ∀a.a → a ≤ Int → Int

` ∀a.a → a ≤ Int → Int

I Even in result type of functions:

` (∀ab.a → b) → (∀a.a → a) ≤ (∀ab.a → b) → (Int → Int)

I Pull quantifiers out: ` Int → ∀a.a → a ≤ ∀a.Int → a → a
I Require guessed polytypes to meet known information:

6` ∀a.a → a ≤ ∀a.a → a ` ∀a.a → a ≤ ∀a.a → a

I Monotypes may be boxed ` τ ≤ τ
I All together:

` (∀ab.a → b) → ∀a.a → a ≤ ∀ab.a → b → (Int → Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

More Examples of subsumption

I Guess monotype instantiations:

` ∀a.a → a ≤ Int → Int

` ∀a.a → a ≤ Int → Int

I Even in result type of functions:

` (∀ab.a → b) → (∀a.a → a) ≤ (∀ab.a → b) → (Int → Int)

I Pull quantifiers out: ` Int → ∀a.a → a ≤ ∀a.Int → a → a
I Require guessed polytypes to meet known information:

6` ∀a.a → a ≤ ∀a.a → a ` ∀a.a → a ≤ ∀a.a → a

I Monotypes may be boxed ` τ ≤ τ
I All together:

` (∀ab.a → b) → ∀a.a → a ≤ ∀ab.a → b → (Int → Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

More Examples of subsumption

I Guess monotype instantiations:

` ∀a.a → a ≤ Int → Int

` ∀a.a → a ≤ Int → Int

I Even in result type of functions:

` (∀ab.a → b) → (∀a.a → a) ≤ (∀ab.a → b) → (Int → Int)

I Pull quantifiers out: ` Int → ∀a.a → a ≤ ∀a.Int → a → a

I Require guessed polytypes to meet known information:

6` ∀a.a → a ≤ ∀a.a → a ` ∀a.a → a ≤ ∀a.a → a

I Monotypes may be boxed ` τ ≤ τ
I All together:

` (∀ab.a → b) → ∀a.a → a ≤ ∀ab.a → b → (Int → Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

More Examples of subsumption

I Guess monotype instantiations:

` ∀a.a → a ≤ Int → Int

` ∀a.a → a ≤ Int → Int

I Even in result type of functions:

` (∀ab.a → b) → (∀a.a → a) ≤ (∀ab.a → b) → (Int → Int)

I Pull quantifiers out: ` Int → ∀a.a → a ≤ ∀a.Int → a → a
I Require guessed polytypes to meet known information:

6` ∀a.a → a ≤ ∀a.a → a ` ∀a.a → a ≤ ∀a.a → a

I Monotypes may be boxed ` τ ≤ τ
I All together:

` (∀ab.a → b) → ∀a.a → a ≤ ∀ab.a → b → (Int → Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

More Examples of subsumption

I Guess monotype instantiations:

` ∀a.a → a ≤ Int → Int

` ∀a.a → a ≤ Int → Int

I Even in result type of functions:

` (∀ab.a → b) → (∀a.a → a) ≤ (∀ab.a → b) → (Int → Int)

I Pull quantifiers out: ` Int → ∀a.a → a ≤ ∀a.Int → a → a
I Require guessed polytypes to meet known information:

6` ∀a.a → a ≤ ∀a.a → a ` ∀a.a → a ≤ ∀a.a → a

I Monotypes may be boxed ` τ ≤ τ

I All together:

` (∀ab.a → b) → ∀a.a → a ≤ ∀ab.a → b → (Int → Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

More Examples of subsumption

I Guess monotype instantiations:

` ∀a.a → a ≤ Int → Int

` ∀a.a → a ≤ Int → Int

I Even in result type of functions:

` (∀ab.a → b) → (∀a.a → a) ≤ (∀ab.a → b) → (Int → Int)

I Pull quantifiers out: ` Int → ∀a.a → a ≤ ∀a.Int → a → a
I Require guessed polytypes to meet known information:

6` ∀a.a → a ≤ ∀a.a → a ` ∀a.a → a ≤ ∀a.a → a

I Monotypes may be boxed ` τ ≤ τ
I All together:

` (∀ab.a → b) → ∀a.a → a ≤ ∀ab.a → b → (Int → Int)

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Subsumption relation

I Defines when a type is “at least as general” as another.

I Instantiate type variables with boxy polytypes.

` τ ≤ τ
mono

` ∀a.ρ ′
1 ≤ ρ ′

2 b /∈ ftv(∀a.ρ ′
1)

` ∀a.ρ ′
1 ≤ ∀b.ρ ′

2

skol

` [a 7→ σ]ρ ′
1 ≤ ρ ′

2

` ∀a.ρ ′
1 ≤ ρ ′

2

spec

I More rules to come, but note, with τ instead of σ this is HM
subsumption relation.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Copying into boxes

When box meets non-box, the algorithm copies the information
into the box.

` σ ≤ σ
sboxy-simpl

Generalize this rule to allow boxes on the right hand side.

` σ ∼ σ ′

` σ ≤ σ ′ sboxy

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Copying into boxes

When box meets non-box, the algorithm copies the information
into the box.

` σ ≤ σ
sboxy-simpl

Generalize this rule to allow boxes on the right hand side.

` σ ∼ σ ′

` σ ≤ σ ′ sboxy

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

A subtle point

I What if we add this (suggestively-named) rule:

` σ ′ ∼ σ

` σ ′ ≤ σ
sboxy-wrong

I Overlap between sboxy-wrong and spec. If a polytype
meets a box, what should we do?

` [a 7→ σ]ρ ′
1 ≤ ρ ′

2

` ∀a.ρ ′
1 ≤ ρ ′

2

spec

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

A subtle point

I What if we add this (suggestively-named) rule:

` σ ′ ∼ σ

` σ ′ ≤ σ
sboxy-wrong

I Overlap between sboxy-wrong and spec. If a polytype
meets a box, what should we do?

` [a 7→ σ]ρ ′
1 ≤ ρ ′

2

` ∀a.ρ ′
1 ≤ ρ ′

2

spec

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Can’t restrict spec

Could restrict spec so that the RHS cannot be a box:

` [a 7→ σ]ρ ′
1 ≤ ρ ′

2 ρ ′
2 6= ρ

` ∀a.ρ ′
1 ≤ ρ ′

2

spec-nobox

but then we would lose some Haskell programs:

id : ∀a.a → a ` id : Int → Int

requires ` ∀a.a → a ≤ Int → Int

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Tension between higher-rank and impredicativity

Standard subsumption rule for higher-rank types:

` σ ′
3 ≥ σ ′

1 ` σ ′
2 ≤ σ ′

4

` σ ′
1 → σ ′

2 ≤ σ ′
3 → σ ′

4
f2

But we aren’t going to use this rule.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Subsumption and function types

Want to encode all of System F type instantiations using type
annotations.

I Need ` ∀a.ρ ≤ ρ[σ/a]

I spec introduces boxes on the left. If we are to fill them, they
better stay on the left.

I Invariance for the argument of a function type.

` σ ′
3 ∼ σ ′

1 ` σ ′
2 ≤ σ ′

4

` σ ′
1 → σ ′

2 ≤ σ ′
3 → σ ′

4
f2

I Essential to show:

∀a.a → a ≤ (∀a.a → a) → ∀a.a → a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Properties of the type system

I Type-safety through translation to System F.

I Algorithm computes principal types.

I Type system extends Hindley-Milner.

I Monotypes can be unboxed/boxed arbitrarily. Unification
takes care of that.

I Can embed System F.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Expressiveness

There are several programs that don’t typecheck, that we really
would like to.
For example:

id : ∀a.a → a

sing : ∀a.a → [a]

Even if we know the result type:

Γ 6` sing id : [∀a.a → a]

This requires that:

` ∀a.a → [a] ≤ ∀a.a → a → [∀a.a → a]

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Smart application

We have been exploring alternative rules for application.

x : ∀a.σ → σ ∈ Γ

ac = a ∩ ftv(σ) ae = a − ac

` [ac 7→ σc]σ ≤ ρ ′

Γ `poly
ui : [ae 7→ σe , ac 7→ σc]σi

Γ ` x u : ρ ′

Not quite satisfactory:

I Completeness problem

I Can’t typecheck Γ ` hd ids : a → a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Typing rules
Boxy matching
Subsumption

Smart application

We have been exploring alternative rules for application.

x : ∀a.σ → σ ∈ Γ

ac = a ∩ ftv(σ) ae = a − ac

` [ac 7→ σc]σ ≤ ρ ′

Γ `poly
ui : [ae 7→ σe , ac 7→ σc]σi

Γ ` x u : ρ ′

Not quite satisfactory:

I Completeness problem

I Can’t typecheck Γ ` hd ids : a → a

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

Questions

I Is this the right tradeoff between expressiveness and
simplicity?

I Stratified vs. monolithic type inference?

I Is there a different strategy altogether?

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

More questions

I Is System F the right “core” language?

I Can the user understand when the program type checks?
“Simple” specification vs. powerful inference vs. good error
messages?

I Is it easy to modify programs if there are a lot of type
annotations all over the place?

I Why is thinking about type inference addictive?

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

Introduction
Semantics of Boxy Types

Conclusion and Future Work

More information

Draft paper available at:

www.cis.upenn.edu/~dimitriv/boxy

Revision appearing soon.

D Vytiniotis, S Peyton Jones, S Weirich Boxy types

	Introduction
	Semantics of Boxy Types
	Typing rules
	Boxy matching
	Subsumption

	Conclusion and Future Work

