
1 JJ J I II 2

Generic grouping and sorting

RALF HINZE

Institut für Informatik III, Universität Bonn

Römerstraße 164, 53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de

Homepage: http://www.informatik.uni-bonn.de/~ralf

October, 2005

(Pick up the slides at .../~ralf/talks.html#T45.)

2 JJ J I II 2

Equivalence relation over a type

Capture equivalence relations using a generalized algebraic data type (GADT):

data Equiv :: ?→ ? where
Char :: Equiv Char
IgnoreCase :: Equiv Char

Unit :: Equiv ()
Sum :: Equiv τ1 → Equiv τ2 → Equiv (τ1 + τ2)
Pair :: Equiv τ1 → Equiv τ2 → Equiv (τ1 × τ2)

List :: Equiv τ → Equiv [τ]
Bag :: Equiv τ → Equiv [τ]

☞ Set omitted.

3 JJ J I II 2

Overview

related :: (Equiv τ)→ τ → τ → Bool

sort :: (Equiv τ)→ [τ]→ [τ]

group :: (Equiv τ)→ [(τ , ν)]→ [(τ , [ν])]

4 JJ J I II 2

Are two elements related?

related :: (Equiv τ)→ τ → τ → Bool

related (Char) x y = x y
related (IgnoreCase) x y = toUpper x toUpper y

related (Unit) x y = True

related (Sum r1 r2) (Inl x1) (Inl y1) = related (r1) x1 y1
related (Sum r1 r2) (Inl x1) (Inr y2) = False
related (Sum r1 r2) (Inr x2) (Inl y1) = False
related (Sum r1 r2) (Inr x2) (Inr y2) = related (r2) x2 y2

related (Pair r1 r2) (x1, x2) (y1, y2)
= related (r1) x1 y1 ∧ related (r2) x2 y2

related (Bag r) xs ys
= related (List r) (sort (r) xs) (sort (r) ys)

☞ The List case can be done generically (not shown). The IgnoreCase and
the Bag case are done via normalization.

5 JJ J I II 2

Generic sorting

sort :: (Equiv τ)→ [τ]→ [τ]

sort (Char) xs = sortChar xs
sort (IgnoreCase) xs = sort (Char) [toUpper x | x ← xs]

sort (Unit) xs = xs

sort (Sum r1 r2) xs = [Inl y1 | y1 ← sort (r1) [x1 | Inl x1 ← xs]]
++ [Inr y2 | y2 ← sort (r2) [x2 | Inr x2 ← xs]]

sort (Pair r1 r2) xs = [(x1, y2) | (x1, ys2)← group (r1) xs
, y2 ← sort (r2) ys2]

sort (Bag r) xs = sort (List r) [sort (r) x | x ← xs]

6 JJ J I II 2

Generic grouping

group :: (Equiv τ)→ [(τ , ν)]→ [(τ , [ν])]

group (Char) xs = groupChar xs
group (IgnoreCase) xs = group (Char) [(toUpper x , v) | (x , v)← xs]

group (Unit) xs = make ((), [v | ((), v)← xs])

group (Sum r1 r2) xs
= [(Inl y1, vs) | (y1, vs)← group (r1) [(x1, v) | (Inl x1, v) ← xs]]
++ [(Inr y2, vs) | (y2, vs)← group (r2) [(x2, v) | (Inr x2, v)← xs]]

group (Pair r1 r2) xs
= [((a1, a2), vs)
| (a1, ys)← group (r1) [(a1, (a2, v)) | ((a1, a2), v)← xs]
, (a2, vs) ← group (r2) ys]

group (Bag r) xs = group (List r) [(sort (r) x , v) | (x , v)← xs]

7 JJ J I II 2

Generic grouping — continued

make :: (τ , [ν])→ [(τ , [ν])]
make (a, []) = []
make (a, xs) = [(a, xs)]

8 JJ J I II 2

Dealing with arbitrary data types
The top-level structure of a list:

fromList :: [τ] → () + τ × [τ]
fromList [] = Inl ()
fromList (x : xs) = Inr (x , xs)

toList :: () + τ × [τ] → [τ]
toList (Inl ()) = []
toList (Inr (x , xs)) = x : xs

An equivalence relation for the top-level structure:

list :: Equiv τ → Equiv (() + τ × [τ])
list r = Sum Unit (Pair r (List r))

The missing piece for related :

related (List r) xs ys = related (list r) (fromList xs) (fromList ys)

