
Motivation
Results

Summary

Amortized Heap-Space Analysis
for First-Order Functional Programs

O. Shkaravska

Inst. of Cybernetics
at Tallinn Univ. of Technology

Kalvi, 2005

Amortization for Heap Consumption

Motivation
Results

Summary

Outline

1 Motivation
Amortization-based Evaluation of Heap Consumption
Previous Work

2 Results
Heap-aware Type System for Programs over Lists
Soundness Theorem

Some problems are reported “on-line”...

Amortization for Heap Consumption

Motivation
Results

Summary

Outline

1 Motivation
Amortization-based Evaluation of Heap Consumption
Previous Work

2 Results
Heap-aware Type System for Programs over Lists
Soundness Theorem

Some problems are reported “on-line”...

Amortization for Heap Consumption

Motivation
Results

Summary

Outline

1 Motivation
Amortization-based Evaluation of Heap Consumption
Previous Work

2 Results
Heap-aware Type System for Programs over Lists
Soundness Theorem

Some problems are reported “on-line”...

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Practical Aspect

Heap-space deficit in run-time leads to crash.

Small devices: smartcards, mobile phones, ...

a few programs are expected to be run on one machine,

Solution: evaluate heap consumption before running programs.

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

What is Amortization

Given: a sequence of operations.

Find: the cost of the entire sequence.
Remark:

The actual cost ti , not that important!
The amortized cost ai , s.t.

� j
i � 1ai � � j

i � 1ti .

Banker’s View

If ci ��� ai � ti � 0, it is called a credit.

Physicist’s View

Data: D0 �
	�	�	�� Di �
	�	�	
A Potential Function � Di ���� i � 0.

ci ��� i ��� i � 1

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

What is Amortization

Given: a sequence of operations.

Find: the cost of the entire sequence.
Remark:

The actual cost ti , not that important!
The amortized cost ai , s.t.

� j
i � 1ai � � j

i � 1ti .

Banker’s View

If ci ��� ai � ti � 0, it is called a credit.

Physicist’s View

Data: D0 �
	�	�	�� Di �
	�	�	
A Potential Function � Di ���� i � 0.

ci ��� i ��� i � 1

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

What is Amortization

Given: a sequence of operations.

Find: the cost of the entire sequence.
Remark:

The actual cost ti , not that important!
The amortized cost ai , s.t.

� j
i � 1ai � � j

i � 1ti .

Banker’s View

If ci ��� ai � ti � 0, it is called a credit.

Physicist’s View

Data: D0 �
	�	�	�� Di �
	�	�	
A Potential Function � Di ���� i � 0.

ci ��� i ��� i � 1

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

What is Amortization

Given: a sequence of operations.

Find: the cost of the entire sequence.
Remark:

The actual cost ti , not that important!
The amortized cost ai , s.t.

� j
i � 1ai � � j

i � 1ti .

Banker’s View

If ci ��� ai � ti � 0, it is called a credit.

Physicist’s View

Data: D0 �
	�	�	�� Di �
	�	�	
A Potential Function � Di ���� i � 0.

ci ��� i ��� i � 1

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

What is Amortization

Given: a sequence of operations.

Find: the cost of the entire sequence.
Remark:

The actual cost ti , not that important!
The amortized cost ai , s.t.

� j
i � 1ai � � j

i � 1ti .

Banker’s View

If ci ��� ai � ti � 0, it is called a credit.

Physicist’s View

Data: D0 �
	�	�	�� Di �
	�	�	
A Potential Function � Di ���� i � 0.

ci ��� i ��� i � 1

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Amortization � fine computable(!) resource bounds,
resource information in types

f x � match x with Nil � cons
�
1 � Nil ��

cons
�
h � t ��� cons

�
1 � cons

�
2 � Nil ���

The bound is: T
�
length � �

�
1 � length � 0
2 � length � 1 �

Typing: L
�
Int � k � � 1 � L

�
Int � 0 � � 0

We assign:

1 extra heap unit before the computation,

An extra heap unit to the first element: k
�
1 � � 1,

Other elements do not need extras: k
�
i � � 0, i � 2.

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Amortization � fine computable(!) resource bounds,
resource information in types

f x � match x with Nil � cons
�
1 � Nil ��

cons
�
h � t ��� cons

�
1 � cons

�
2 � Nil ���

The bound is: T
�
length � �

�
1 � length � 0
2 � length � 1 �

Typing: L
�
Int � k � � 1 � L

�
Int � 0 � � 0

We assign:

1 extra heap unit before the computation,

An extra heap unit to the first element: k
�
1 � � 1,

Other elements do not need extras: k
�
i � � 0, i � 2.

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Amortization � fine computable(!) resource bounds,
resource information in types

f x � match x with Nil � cons
�
1 � Nil ��

cons
�
h � t ��� cons

�
1 � cons

�
2 � Nil ���

The bound is: T
�
length � �

�
1 � length � 0
2 � length � 1 �

Typing: L
�
Int � k � � 1 � L

�
Int � 0 � � 0

We assign:

1 extra heap unit before the computation,

An extra heap unit to the first element: k
�
1 � � 1,

Other elements do not need extras: k
�
i � � 0, i � 2.

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Amortization (mainly for Time) - Reading in Progress

Basic:
Cormen, Leiserson, Rivest - “Introduction to algorithms”
Okasaki - “Purely Functional Data Structures “

fine treatment of recursive calls
(binary increment in logarithm)
Okasaki: lazy-eval. with suspesnions

Schoenmakers - PhD thesis “Data Structures
and Amortized Complexity in a Functional Setting”:

algebraic approach
linear usage
fine treatment of compositions/recursive calls
time

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Amortization (mainly for Time) - Reading in Progress

Basic:
Cormen, Leiserson, Rivest - “Introduction to algorithms”
Okasaki - “Purely Functional Data Structures “

fine treatment of recursive calls
(binary increment in logarithm)
Okasaki: lazy-eval. with suspesnions

Schoenmakers - PhD thesis “Data Structures
and Amortized Complexity in a Functional Setting”:

algebraic approach
linear usage
fine treatment of compositions/recursive calls
time

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Amortization (mainly for Time) - Reading in Progress

Basic:
Cormen, Leiserson, Rivest - “Introduction to algorithms”
Okasaki - “Purely Functional Data Structures “

fine treatment of recursive calls
(binary increment in logarithm)
Okasaki: lazy-eval. with suspesnions

Schoenmakers - PhD thesis “Data Structures
and Amortized Complexity in a Functional Setting”:

algebraic approach
linear usage
fine treatment of compositions/recursive calls
time

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Amortization (mainly for Time) - Reading in Progress

Basic:
Cormen, Leiserson, Rivest - “Introduction to algorithms”
Okasaki - “Purely Functional Data Structures “

fine treatment of recursive calls
(binary increment in logarithm)
Okasaki: lazy-eval. with suspesnions

Schoenmakers - PhD thesis “Data Structures
and Amortized Complexity in a Functional Setting”:

algebraic approach
linear usage
fine treatment of compositions/recursive calls
time

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Problem: Fine Treatment of Recursive Calls

I can not type-check the increment-for-logarithm example
in the presented type system!
The solution exists, but it leads to singleton types.
May be there are other solutions: later ...

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Hofmann-Jost System for Linear Heap Bounds

Example

The program “copy”
copy x � match x with

Nil � Nil�
cons

�
h � t ��� let y � copy t

in cons
�
h � y �

has typing: L
�
Int � 1 � � 0 � L

�
Int � 0 � � 0:

assign to each element of an input list - 1 extra heap unit.

Semantics

Typing L
�
Int � k � � k0 � L

�
Int � k � � � k �0 means

heap consumption k l
�

k0,

gain k � l �
�

k �0

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Hofmann-Jost System for Linear Heap Bounds

Example

The program “copy”
copy x � match x with

Nil � Nil�
cons

�
h � t ��� let y � copy t

in cons
�
h � y �

has typing: L
�
Int � 1 � � 0 � L

�
Int � 0 � � 0:

assign to each element of an input list - 1 extra heap unit.

Semantics

Typing L
�
Int � k � � k0 � L

�
Int � k � � � k �0 means

heap consumption k l
�

k0,

gain k � l �
�

k �0

Amortization for Heap Consumption

Motivation
Results

Summary

Amortization-based Evaluation of Heap Consumption
Previous Work

Hofmann-Jost System for Linear Heap Bounds

Example

The program “copy”
copy x � match x with

Nil � Nil�
cons

�
h � t ��� let y � copy t

in cons
�
h � y �

has typing: L
�
Int � 1 � � 0 � L

�
Int � 0 � � 0:

assign to each element of an input list - 1 extra heap unit.

Semantics

Typing L
�
Int � k � � k0 � L

�
Int � k � � � k �0 means

heap consumption k l
�

k0,

gain k � l �
�

k �0

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

What Amortization Brings to Types

Credits are type annotaions carrying resource information.

Zero-Order, Sized and Unsized, Annotated Types

T � Int
�
Ll
�
T � k � � L � T � k �

k �
�
���

�
k
�
i � is the credit of the i th cons-cell.� l
i � 1 k

�
i � is the potential of a list of integers

k is a constant in HJ system.

The hint for Type-checking

Unary Functions over Lists.
Let F has a bounded on ��� �
	�� derivaive, with 0 ���� 1.
Perform type-checking for input with k

�
x � � F �

�
x � .

Total consumption is
� l

i � 1 k
�
i ����� l

i ��� k
�
x � d x � F

�
x � � F

� � �
Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

What Amortization Brings to Types

Credits are type annotaions carrying resource information.

Zero-Order, Sized and Unsized, Annotated Types

T � Int
�
Ll
�
T � k � � L � T � k �

k �
�
���

�
k
�
i � is the credit of the i th cons-cell.� l
i � 1 k

�
i � is the potential of a list of integers

k is a constant in HJ system.

The hint for Type-checking

Unary Functions over Lists.
Let F has a bounded on ��� �
	�� derivaive, with 0 ���� 1.
Perform type-checking for input with k

�
x � � F �

�
x � .

Total consumption is
� l

i � 1 k
�
i ����� l

i ��� k
�
x � d x � F

�
x � � F

� � �
Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

What Amortization Brings to Types

Credits are type annotaions carrying resource information.

Zero-Order, Sized and Unsized, Annotated Types

T � Int
�
Ll
�
T � k � � L � T � k �

k �
�
���

�
k
�
i � is the credit of the i th cons-cell.� l
i � 1 k

�
i � is the potential of a list of integers

k is a constant in HJ system.

The hint for Type-checking

Unary Functions over Lists.
Let F has a bounded on ��� �
	�� derivaive, with 0 ���� 1.
Perform type-checking for input with k

�
x � � F �

�
x � .

Total consumption is
� l

i � 1 k
�
i ����� l

i ��� k
�
x � d x � F

�
x � � F

� � �
Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

What Amortization Brings to Types

Credits are type annotaions carrying resource information.

Zero-Order, Sized and Unsized, Annotated Types

T � Int
�
Ll
�
T � k � � L � T � k �

k �
�
���

�
k
�
i � is the credit of the i th cons-cell.� l
i � 1 k

�
i � is the potential of a list of integers

k is a constant in HJ system.

The hint for Type-checking

Unary Functions over Lists.
Let F has a bounded on ��� �
	�� derivaive, with 0 ���� 1.
Perform type-checking for input with k

�
x � � F �

�
x � .

Total consumption is
� l

i � 1 k
�
i ����� l

i ��� k
�
x � d x � F

�
x � � F

� � �
Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

What Amortization Brings to Types

Credits are type annotaions carrying resource information.

Zero-Order, Sized and Unsized, Annotated Types

T � Int
�
Ll
�
T � k � � L � T � k �

k �
�
���

�
k
�
i � is the credit of the i th cons-cell.� l
i � 1 k

�
i � is the potential of a list of integers

k is a constant in HJ system.

The hint for Type-checking

Unary Functions over Lists.
Let F has a bounded on ��� �
	�� derivaive, with 0 ���� 1.
Perform type-checking for input with k

�
x � � F �

�
x � .

Total consumption is
� l

i � 1 k
�
i ����� l

i ��� k
�
x � d x � F

�
x � � F

� � �
Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Typing Judgement

Judgement�
� n � �

e � T� � � n ��
�
�

– annotated contexts,
T – an annotated type, n � n � – nonnegative numbers

Example – destructive length

length � x �
match x with Nil � 0�

cons
�
h � t ��� _ � let y � length � t

in 1
�
y

x � Ll
�
Int � 0 � � 0 � �

length � x � Int
x � Ll

�
Int � 1 � � � 0

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Typing Judgement

Judgement�
� n � �

e � T� � � n ��
�
�

– annotated contexts,
T – an annotated type, n � n � – nonnegative numbers

Example – destructive length

length � x �
match x with Nil � 0�

cons
�
h � t ��� _ � let y � length � t

in 1
�
y

x � Ll
�
Int � 0 � � 0 � �

length � x � Int
x � Ll

�
Int � 1 � � � 0

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Typing Judgement

Judgement�
� n � �

e � T� � � n ��
�
�

– annotated contexts,
T – an annotated type, n � n � – nonnegative numbers

Example – destructive length

length � x �
match x with Nil � 0�

cons
�
h � t ��� _ � let y � length � t

in 1
�
y

x � Ll
�
Int � 0 � � 0 � �

length � x � Int
x � Ll

�
Int � 1 � � � 0

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Some Rules: Constructor

h � T � t � Ll
�
T � k � � k

�
l

�
1 � �

1 � �
cons

�
h � t � � Ll

�
1
�
T � k �

h � Z
�
T � � t � Z

�
Ll
�
T � k ��� � � 0

where zero-annotation map is efined incductively:

Z
�
Int � ��� Int ,

Z
�
Ll
�
T � k ��� ��� Ll

�
Z
�
T � � 0 � ,

� Z � � � � � x � ��� Z
� � �

x ��� .

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

First-Order Types and Function Call

Ll
�
T � k � k � � � � k0 � Ll �

�
T � � k � � � k �0

� ��� �
l � l � � k � k � � � k0 � k � � k �0 �� �

l � l � � k � k � � � k0 � k � � k �0 �
x � Ll

�
T � k � � k0 � �

f
�
x � � Ll �

�
T � � k � �

x � Ll
�
T � k � � � � � k �0

l is the length of input,
l � is the length of output

The predicate
�

manages mutual and recursive calls.
For type-checking may have, say, the form l � � p

�
l � .

HJ system: no need, because annotations are constants,
no dependency on the position of an element.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

First-Order Types and Function Call

Ll
�
T � k � k � � � � k0 � Ll �

�
T � � k � � � k �0

� ��� �
l � l � � k � k � � � k0 � k � � k �0 �� �

l � l � � k � k � � � k0 � k � � k �0 �
x � Ll

�
T � k � � k0 � �

f
�
x � � Ll �

�
T � � k � �

x � Ll
�
T � k � � � � � k �0

l is the length of input,
l � is the length of output

The predicate
�

manages mutual and recursive calls.
For type-checking may have, say, the form l � � p

�
l � .

HJ system: no need, because annotations are constants,
no dependency on the position of an element.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

First-Order Types and Function Call

Ll
�
T � k � k � � � � k0 � Ll �

�
T � � k � � � k �0

� ��� �
l � l � � k � k � � � k0 � k � � k �0 �� �

l � l � � k � k � � � k0 � k � � k �0 �
x � Ll

�
T � k � � k0 � �

f
�
x � � Ll �

�
T � � k � �

x � Ll
�
T � k � � � � � k �0

l is the length of input,
l � is the length of output

The predicate
�

manages mutual and recursive calls.
For type-checking may have, say, the form l � � p

�
l � .

HJ system: no need, because annotations are constants,
no dependency on the position of an element.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

First-Order Types and Function Call

Ll
�
T � k � k � � � � k0 � Ll �

�
T � � k � � � k �0

� ��� �
l � l � � k � k � � � k0 � k � � k �0 �� �

l � l � � k � k � � � k0 � k � � k �0 �
x � Ll

�
T � k � � k0 � �

f
�
x � � Ll �

�
T � � k � �

x � Ll
�
T � k � � � � � k �0

l is the length of input,
l � is the length of output

The predicate
�

manages mutual and recursive calls.
For type-checking may have, say, the form l � � p

�
l � .

HJ system: no need, because annotations are constants,
no dependency on the position of an element.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

�
is complex to infer

We want to use the type system for

“parametric type-checking”

.
E.g. : I expect that my program

has something like quadratic heap consumption,
the task: to obtain � a x2 � � b x

� � c for heap,

and has the length of the output is linear
w.r.t. the length of an input,
the task: to obtain � d x

� � d � for output length.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

�
is complex to infer

We want to use the type system for

“parametric type-checking”

.
E.g. : I expect that my program

has something like quadratic heap consumption,
the task: to obtain � a x2 � � b x

� � c for heap,

and has the length of the output is linear
w.r.t. the length of an input,
the task: to obtain � d x

� � d � for output length.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

�
is complex to infer

We want to use the type system for

“parametric type-checking”

.
E.g. : I expect that my program

has something like quadratic heap consumption,
the task: to obtain � a x2 � � b x

� � c for heap,

and has the length of the output is linear
w.r.t. the length of an input,
the task: to obtain � d x

� � d � for output length.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Skip it: Destructive match

�
� n � �

e1 � T �� � � n ��
� h � T � t � Ll � 1

�
T � k � � n �

1
�

k
�
l � � �

e2 � T ��
� h � T � t � Ll � 1

�
T � k � � � n k l���

the benign sharing for Match
� �

�
� t � Ll

�
T � k � � n �

��������
�

match x with
Nil � e1�
cons

�
h � t ��� _ � e2

� T

�
� x � Ll

�
T � k � �

���������
� �

n �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Let: Sharing is not a Monster

Int � Int � Int
Ll
�
T1 � k1 ��� Ll

�
T2 � k2 � � Ll

�
T1 � T2 � k1

�
k2 �

L
�
T1 � k1 ��� L

�
T2 � k2 � � L

�
T1 � T2 � k1

�
k2 �� �

1 � �
2 � � x � � �

1
�
x � x � dom

� �
1 ��� dom

� �
2 ��

2
�
x � x � dom

� �
2 ��� dom

� �
1 ��

1
�
x � � �

2
�
x � x � dom

� �
1 ��� dom

� �
2 �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Skip it: Let

�
1 � n � �

e1 � T0�
1

� � n0�
2 � x � T0 � n0 � �

e2 � T�
2 � x � Z

�
T0 � � � n ����

the benign sharing for Let
� �

�
1 � �

2 � n �
���
�
let x � e1

in e2

� T

�
1 � �

2

����
� � n �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Some Rules: Budget

�
� n � �

e � T� � � n �

n r r � n�
� r � �

e � T�
�

� � r �

r � 0�
� n � �

e � T� � � n �

�
� n

�
r � �

e � T� � � n �
�

r

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Shuffle

�
� x � Ll

�
T � k � � n � �

e � T ��
� x � Ll

�
T � k � � � � n � k � k � �

�
� x � Ll

�
T � k � k � � � � n

� � l
i � 1 k � �

�
i � � �

e � T ��
� x � Ll

�
T � k � � � � n �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Some Rules: Weakening

�
� n � �

e � T� � � n �

�
��� � n � �

e � T�
���

� � n �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Well-defined First-Order Signature

A first-order signature � is well-defined
if for any function f � dom

�
� � with �

�
f � �

Ll
�
T � k � k � � � � k0 � Ll �

�
T � � k � � � k �0

� � �
l � l � � k � k � � � k0 � k � � k �0 �

one can successfully type-check the body ef of f:

x � Ll
�
T � k � � k0 � �

ef
�
x � � Ll �

�
T � � k � �

x � Ll
�
T � k � � � � � k �0

provided that
� �

l � l � � k � k � � � k0 � k � � k �0 � holds.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Well-defined First-Order Signature

A first-order signature � is well-defined
if for any function f � dom

�
� � with �

�
f � �

Ll
�
T � k � k � � � � k0 � Ll �

�
T � � k � � � k �0

� � �
l � l � � k � k � � � k0 � k � � k �0 �

one can successfully type-check the body ef of f:

x � Ll
�
T � k � � k0 � �

ef
�
x � � Ll �

�
T � � k � �

x � Ll
�
T � k � � � � � k �0

provided that
� �

l � l � � k � k � � � k0 � k � � k �0 � holds.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Example: Destructive Half
leaves every 2nd element of an input list

half x � match x with
Nil � Nil�
cons

�
h � t ��� _ � match t with

Nil � Nil�
cons

�
hh � tt ��� _ �

let y � half tt
in cons

�
hh � y �

has typing Ll
�
T � k � k � � � � 0 � Ll �

�
T � k � � � 0

� �
l � � p

�
l � ,

where p
�
l � ��� l2

�
and k � k ��� 0, k � ��� 1

2
.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Example: Destructive Half
leaves every 2nd element of an input list

half x � match x with
Nil � Nil�
cons

�
h � t ��� _ � match t with

Nil � Nil�
cons

�
hh � tt ��� _ �

let y � half tt
in cons

�
hh � y �

has typing Ll
�
T � k � k � � � � 0 � Ll �

�
T � k � � � 0

� �
l � � p

�
l � ,

where p
�
l � ��� l2

�
and k � k ��� 0, k � ��� 1

2
.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Example: Logarithm

log x �
let y � half x

in match y with Nil � Nil�
cons

�
h � t � � let z � log y

in cons
�
1 � z �

If list x has length l , then the program frees l heap units
but consumes O

�
log2

�
l ��� .

Type-checked the credit functions k
�
x � � a

x
, k � �

�
x � � 1,

have found that a � 2.

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem(s): Is the Type System Refineable?

merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

non-strict sizes (if-rule is restrictive, ...)???

add the number of recursive calls as a parameter for
first-order types?

(very) dependent types for the fine “if”-rule and recursive
calls?

verify calls “in-the-context” for fine treatment of
compositions?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem(s): Is the Type System Refineable?

merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

non-strict sizes (if-rule is restrictive, ...)???

add the number of recursive calls as a parameter for
first-order types?

(very) dependent types for the fine “if”-rule and recursive
calls?

verify calls “in-the-context” for fine treatment of
compositions?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem(s): Is the Type System Refineable?

merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

non-strict sizes (if-rule is restrictive, ...)???

add the number of recursive calls as a parameter for
first-order types?

(very) dependent types for the fine “if”-rule and recursive
calls?

verify calls “in-the-context” for fine treatment of
compositions?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem(s): Is the Type System Refineable?

merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

non-strict sizes (if-rule is restrictive, ...)???

add the number of recursive calls as a parameter for
first-order types?

(very) dependent types for the fine “if”-rule and recursive
calls?

verify calls “in-the-context” for fine treatment of
compositions?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem(s): Is the Type System Refineable?

merge the “budget rules” with the syntactical ones as much
as possible, to reduce complexity of type-checking, find
heuristics for the “shuffle rules”,

non-strict sizes (if-rule is restrictive, ...)???

add the number of recursive calls as a parameter for
first-order types?

(very) dependent types for the fine “if”-rule and recursive
calls?

verify calls “in-the-context” for fine treatment of
compositions?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Potential = the sum of the credits of all nodes

The list � � 10 � 20 � 30 � � � 10 � �
of type L

�
L
�
Int � k1 � � k2 � with k1

�
x � � x � k2

�
x � � 2x

has the potential 2 � 1
� �

1 � �
2 � 2

� �
1

�
2

�
3 �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Potential = the sum of the credits of all nodes

The list � � 10 � 20 � 30 � � � 10 � �
of type L

�
L
�
Int � k1 � � k2 � with k1

�
x � � x � k2

�
x � � 2x

has the potential 2 � 1
� �

1 � �
2 � 2

� �
1

�
2

�
3 �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Potential = the sum of the credits of all nodes

The list � � 10 � 20 � 30 � � � 10 � �
of type L

�
L
�
Int � k1 � � k2 � with k1

�
x � � x � k2

�
x � � 2x

has the potential 2 � 1
� �

1 � �
2 � 2

� �
1

�
2

�
3 �

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Potential is a dynamic notion

 � Heap � Val � T � ���
�

is defined as

�
h � v � Int � ��� 0 �

�
h � null � L0

�
T � k � � ��� 0 �

�
h �

�
� Ll

�
T � k � � ��� � h � h 	

�
	 HD � T � �

k
�
l � �

�
h � h 	

�
	 TL � Ll � 1

�
T � k � �

for
���
� null �

�
h �

�
� L

�
T � k � � ��� � h � � � Ll

�
T � k � � � where l � D

�
h �

� � 	
Extended to stack environments and typing contexts:

�
h � E �

� � � � x � dom ���	�
�
h � E

�
x � � � �

x � � .

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Potential is a dynamic notion

 � Heap � Val � T � ���
�

is defined as

�
h � v � Int � ��� 0 �

�
h � null � L0

�
T � k � � ��� 0 �

�
h �

�
� Ll

�
T � k � � ��� � h � h 	

�
	 HD � T � �

k
�
l � �

�
h � h 	

�
	 TL � Ll � 1

�
T � k � �

for
���
� null �

�
h �

�
� L

�
T � k � � ��� � h � � � Ll

�
T � k � � � where l � D

�
h �

� � 	
Extended to stack environments and typing contexts:

�
h � E �

� � � � x � dom ���	�
�
h � E

�
x � � � �

x � � .

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

Soundness with the Feelist Model

�
n

����
�� �

��
�
h � E �

� ��
������ the intact part

of the freelist:
q units

eval 	 e
� �

�
n �� �� �� �� � 	

the output potential

�
h � � v � T �

�

�� �

�
h � E �

� �
�

������ the intact part
of the freelist:
q units

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem: Which Prover

I trust myself, but:
it would be more convenient to prove the soundness of the
present system using a proof assistant,
proviso: the operational semantics was already incoded.
... and the things become more complicated...

General question:
If one needs to encode the gentleman’s set:

the syntax of the language,

the operational semantics,

the semantics of a typing judgement,

the soundness proofs,

which prover to choose?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem: Which Prover

I trust myself, but:
it would be more convenient to prove the soundness of the
present system using a proof assistant,
proviso: the operational semantics was already incoded.
... and the things become more complicated...

General question:
If one needs to encode the gentleman’s set:

the syntax of the language,

the operational semantics,

the semantics of a typing judgement,

the soundness proofs,

which prover to choose?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem: Which Prover

I trust myself, but:
it would be more convenient to prove the soundness of the
present system using a proof assistant,
proviso: the operational semantics was already incoded.
... and the things become more complicated...

General question:
If one needs to encode the gentleman’s set:

the syntax of the language,

the operational semantics,

the semantics of a typing judgement,

the soundness proofs,

which prover to choose?

Amortization for Heap Consumption

Motivation
Results

Summary

Heap-aware Type System for Programs over Lists
Soundness Theorem

The Problem: Which Prover

I trust myself, but:
it would be more convenient to prove the soundness of the
present system using a proof assistant,
proviso: the operational semantics was already incoded.
... and the things become more complicated...

General question:
If one needs to encode the gentleman’s set:

the syntax of the language,

the operational semantics,

the semantics of a typing judgement,

the soundness proofs,

which prover to choose?

Amortization for Heap Consumption

Motivation
Results

Summary

Summary

We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

It generalises Hofmann-Jost type system
by making annotations variable.

The system is sound.

Future Work

Conider other than lists data structures.

Adjust the approach for an object-oriented setting
(code structures which have funcional equivalents,
(co)algebraic data types,...)

Amortization for Heap Consumption

Motivation
Results

Summary

Summary

We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

It generalises Hofmann-Jost type system
by making annotations variable.

The system is sound.

Future Work

Conider other than lists data structures.

Adjust the approach for an object-oriented setting
(code structures which have funcional equivalents,
(co)algebraic data types,...)

Amortization for Heap Consumption

Motivation
Results

Summary

Summary

We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

It generalises Hofmann-Jost type system
by making annotations variable.

The system is sound.

Future Work

Conider other than lists data structures.

Adjust the approach for an object-oriented setting
(code structures which have funcional equivalents,
(co)algebraic data types,...)

Amortization for Heap Consumption

Motivation
Results

Summary

Summary

We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

It generalises Hofmann-Jost type system
by making annotations variable.

The system is sound.

Future Work

Conider other than lists data structures.

Adjust the approach for an object-oriented setting
(code structures which have funcional equivalents,
(co)algebraic data types,...)

Amortization for Heap Consumption

Motivation
Results

Summary

Summary

We have designed
the heap-space aware, amortization based, type system
for first-order functional programs over polymorphic lists.

It generalises Hofmann-Jost type system
by making annotations variable.

The system is sound.

Future Work

Conider other than lists data structures.

Adjust the approach for an object-oriented setting
(code structures which have funcional equivalents,
(co)algebraic data types,...)

Amortization for Heap Consumption

	Motivation
	Amortization-based Evaluation of Heap Consumption
	Previous Work

	Results
	Heap-aware Type System for Programs over Lists
	Soundness Theorem

	Summary

