Contexts in reFLECt:
A Theorem Proving Meta-Language

Jim Grundy Intel Corporation, Strategic CAD Labs
Tom Melham Oxford University, Computing Laboratory
John O’Leary Intel Corporation, Strategic CAD Labs

Sava Krsti¢ Intel Corporation, Strategic CAD Labs

October 2005

Language Overview

reFleCt s

» 2nd version of FL with reflection
» adialect of ML used at Intel for applications including

» correctness preserving design transformations
» interactive theorem proving of design properties

Language Overview

reFleCt s

» 2nd version of FL with reflection

» adialect of ML used at Intel for applications including
» correctness preserving design transformations
» interactive theorem proving of design properties

» reFleClis typed A-calculus +

» A quotation mechanism, like: {this|
» An anti-quotation mechanism, like: “this

Language Overview

reFleCt s

» 2nd version of FL with reflection

» adialect of ML used at Intel for applications including
» correctness preserving design transformations
» interactive theorem proving of design properties

» reFleClis typed A-calculus +

» A quotation mechanism, like: {this|
» An anti-quotation mechanism, like: “this

» Quoted expressions denote values of type term

intgl

Language Overview

reFleCt s

» 2nd version of FL with reflection

» adialect of ML used at Intel for applications including
» correctness preserving design transformations
» interactive theorem proving of design properties

» reFleClis typed A-calculus +

» A quotation mechanism, like: {this|
» An anti-quotation mechanism, like: “this

» Quoted expressions denote values of type term
» Values of type term are ASTs of well-typed expressions

intgl

Language Overview

reFleCt s

» 2nd version of FL with reflection

» adialect of ML used at Intel for applications including
» correctness preserving design transformations
» interactive theorem proving of design properties

» reFleClis typed A-calculus +

» A quotation mechanism, like: {this|
» An anti-quotation mechanism, like: “this

» Quoted expressions denote values of type term

» Values of type term are ASTs of well-typed expressions
» 1+ 2 and 2 + 1 are equal, they both describe the number 3

intgl

Language Overview

reFleCt s

» 2nd version of FL with reflection
» adialect of ML used at Intel for applications including
» correctness preserving design transformations
» interactive theorem proving of design properties
» reFleClis typed A-calculus +
» A quotation mechanism, like: {this|
» An anti-quotation mechanism, like: “this
» Quoted expressions denote values of type term

» Values of type term are ASTs of well-typed expressions
» 1+ 2 and 2 + 1 are equal, they both describe the number 3
» {1+ 2] and {2 + 1)) are not equal, they are different ASTs

intgl

Language Overview

reFleCt s

» 2nd version of FL with reflection
» adialect of ML used at Intel for applications including
» correctness preserving design transformations
» interactive theorem proving of design properties
» reFleClis typed A-calculus +
» A quotation mechanism, like: {this|
» An anti-quotation mechanism, like: “this
» Quoted expressions denote values of type term

» Values of type term are ASTs of well-typed expressions

» 1+ 2 and 2 + 1 are equal, they both describe the number 3
{1+ 2] and {2 + 1)) are not equal, they are different ASTs
{"Q1D + 2] and (1 + (2] are equal, they describe {1 + 2|)

\/

\/

intgl

Example

letrec

comm {*x + “y)
comm {“f “x|
comm (A°p. “Db)

comm X

<@
—Jeit
(A p

X7

comm y) + ~(comm x)[)
comm f) * (comm x)|)
(comm b))

Example

- letrec

comm {*x + “y)
| comm ("f ~x|
| comm (A°p. “Db)
|
|

comm X
comm: term—term

<@
= (" (
(A p

X7

comm y) + ~(comm x)[)
comm f) * (comm x)|)
(comm b))

Example

— letrec

comm {"x + “y| = {" (comm y) + °~ (comm x)|
| comm Q“f ‘xD q (comm i) S8 e omm X)D
| comm (A°p. “Db) = {(A°p (comm b))
|
|

comm X = xX;

comm: term—term
- comm {y = m*x + c|);

intgl

Example

letrec

comm {"x + “y| = {" (comm y) + °~ (comm x)|
comm Q“f ‘xD q (comm i) S8 e omm X)D
comm (A°p. “Db) = {(A°p (comm b))

comm X = xX;

comm: term—term

- comm {y = m*x + c|);

v

intgl

= Cc t m*xb: term

The Higher Order Logic of reFLECt

The HOL Logic

A — calculus
+
constants: =, true, false
+
axioms, inference rules
+
L definitions

The Higher Order Logic of reFLECt

The HOL Logic The reFI€Ct Logic
A — calculus (reFlect
+ 4
constants: =, true, false constants: =, true, false
+ i
axioms, inference rules axioms, inference rules
+ s
L definitions definitions

The Higher Order Logic of reFLECt

The HOL Logic The reFLeCt Logic
A — calculus (reFLect
+ 4+
constants: =, true, false constants: =, true, false
+ f
axioms, inference rules axioms, inference rules
+ -
definitions definitions

Common to Both

» Not everything that may be discussed may be executed
» let V£=f=(Ax.true)
» Reductions in the language are valid inferences in the logic

i » IfA — true,thenk A
il

Levels and Their Relationships

» A deep embedding of LTL in HOL:
0: ML
1: HOL logic, deeply embedded in ML
2: LTL logic, deeply embedded in HOL
Use the prover (level 0 program) to reason about what HOL
functions (level 1) do to LTL expressions (level 2)

Levels and Their Relationships

» A deep embedding of LTL in HOL:
0: ML
1: HOL logic, deeply embedded in ML
2: LTL logic, deeply embedded in HOL
Use the prover (level 0 program) to reason about what HOL
functions (level 1) do to LTL expressions (level 2)
» A shallow embedding of LTL in reFl€Ct
0: reFlect

1: quoted reFI€Ct expressions
2: twice quoted reF[€Ct expressions

Use the prover (level 0 program) to reason about what
reF1€Ct functions (level 1) do to reFIECt expressions (level 2)

intgl

Levels are Separate

We want the same relationship between level n and n + 1
reFI€Ct expressions as between ML and HOL
(or between HOL and LTL, the deeply embedded language)

» Level n expressions can manipulate level n + 1 expressions

Levels are Separate

We want the same relationship between level n and n + 1

reFI€Ct expressions as between ML and HOL

(or between HOL and LTL, the deeply embedded language)

» Level n expressions can manipulate level n + 1 expressions

» Level n expressions don't interpret those above level n + 1
(We don’t implement LTL reasoning directly in ML.)

Levels are Separate

We want the same relationship between level n and n + 1
reFI€Ct expressions as between ML and HOL
(or between HOL and LTL, the deeply embedded language)
» Level n expressions can manipulate level n + 1 expressions
» Level n expressions don't interpret those above level n + 1
(We don’t implement LTL reasoning directly in ML.)
» They do not, usually, become level n + 1 expressions
(ML does not become HOL)

Levels are Separate

We want the same relationship between level n and n + 1
reFI€Ct expressions as between ML and HOL
(or between HOL and LTL, the deeply embedded language)

» Level n expressions can manipulate level n + 1 expressions

» Level n expressions don't interpret those above level n + 1
(We don’t implement LTL reasoning directly in ML.)

» They do not, usually, become level n + 1 expressions
(ML does not become HOL)

» Level n + 1 expressions do not, usually,

become level n expressions
(HOL does not become ML)

Levels are Separate

We want the same relationship between level n and n + 1
reFI€Ct expressions as between ML and HOL
(or between HOL and LTL, the deeply embedded language)
» Level n expressions can manipulate level n + 1 expressions
» Level n expressions don't interpret those above level n + 1
(We don’t implement LTL reasoning directly in ML.)
» They do not, usually, become level n + 1 expressions
(ML does not become HOL)
» Level n + 1 expressions do not, usually,
become level n expressions
(HOL does not become ML)

» Variables are bound within a level, not across levels

» Want (x)) different to (1] E (X = 1) V]
» Want usual quantifier rules EVx o({x) = (1)) [VE]
intel > Do notwantthis & F=(q1h = (1))

reF1eCt Abstract Syntax

AMN = k — Constant
| v — Variable
| AAM — Abstraction
| AA.M|N —Alternation
| AM — Application
| {A) — Quotation
| AT — Anti-quotation

Note:

» Arbitrary expressions may be patterns
» Lambda abstractions may have match alternatives
» Omitting whole story about type annotations checking

intgl

reF1eCt Abstract Syntax

AMN = k — Constant
| v — Variable
| AAM — Abstraction
| AA.M|N —Alternation
| AM — Application
| {A) — Quotation
| AT — Anti-quotation

On the path from the root of an AST to some subexpression:

» the level of the subexpression is the number of quotations on
the path — the number of antiquotes

» an expression is well formed if no subexpression has
negative level

intgl

We Don’t Do This

We could make values of term appear as if defined as follows:

lettype term

VAR string

CONST val

APPLY term term
ABS term term

ALT termtite nmesEeiam
QUOTE: term

ANTIQ term

A

// k

// AM

/] AAM
// AA.M|N
/7 {A)

7 A

We Don’t Do This

We could make values of term appear as if defined as follows:

lettype term = VAR string |/
| CONST val /] k
| APPLY term term /] AM
| ABS term term /] AA.M
| ALT term term term // AA.M|N
I @uehts ez /7 {A)
| ANTIQ term 7€/ i

Consider how to find the free variables in a term

intgl

We Don’t Do This

We could make values of term appear as if defined as follows:

lettype term = VAR string |/
| CONST val /] k
| APPLY term term /] AM
| ABS term term /] AA.M
| ALT term term term // AA.M|N
| QUOTE term /7 (A
| ANTIQ term 7€/ i

Consider how to find the free variables in a term
» just those at level 0
» variables at higher level are somebody else’s problem

intgl

Example: What We Don’t Do

let frees trm =

letrec
£f 0 (VAR nam) = {VAR nam}
| £ (n+l) (VAR nam) = {4
| £ (CONST idn) =81/}
| £ (APP fun argqg) =

(
n
n
i ol agwkel U GE e sueg
| £ 0 (ABS pat bod) =
e (0 Joroel = & 0 et
(n+tl) (ABS pat bod) =
£ (n+l) pat UNEE(mESEeE

| £ n (QUOTE quo) = f (n+l) quo
| £ (n+l) (ANTIQ ant) = f n ant
in

intel f 0 trm;

Why Don’t We Do It?

» The definition of frees was overly complex

» |t had to be careful to remember what to look at and what not to
» It traversed regions it didn’t need to look at

Why Don’t We Do It?

» The definition of frees was overly complex
» It had to be careful to remember what to look at and what not to
» It traversed regions it didn’t need to look at

» QUOTE and ANTIQ move expressions up and down levels
without restriction

Why Don’t We Do It?

The definition of frees was overly complex

» |t had to be careful to remember what to look at and what not to
» It traversed regions it didn’t need to look at

QUOTE and ANTIQ move expressions up and down levels
without restriction

Programs can, and must, inspect arbitrarily higher levels

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

"o+ 1D (- +-) -+ 1D

(x+.)

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v ("o + 1) (L {-+ 1D

(x+.)

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v ("o + 1) v (L+2) {-+ 1D

(x+.)

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v ("o + 1) v (L+.) X {-+1)

(x+.)

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v ("o + 1) v (L+.) X {-+1)

X (Cx+.)

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v ("o + 1) v (L+.) X {-+1) X Cx+.)

We assume the usual hole filling operation on contexts

intgl

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v (. +1) v (.+.) X o+ 1) X (x+.)
We assume the usual hole filling operation on contexts

(- +2)[2,1] is

intgl

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v (. +1) v (.+.) X o+ 1) X (x+.)
We assume the usual hole filling operation on contexts

(- +)[2.1] is 241

intgl

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v (. +1) v (.+.) X o+ 1) X (x+.)
We assume the usual hole filling operation on contexts

(- +)[2.1] is 241
("~ +1pl2p] is

intgl

What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v (. +1) v (.+.) X o+ 1) X (x+.)
We assume the usual hole filling operation on contexts

(- +)[2.1] is 241

- +1pl2p1 s Q2D +2)

intgl

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example

Expression Factors

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example

Expression Factors

("x + "y

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example

Expression Factors

("x + "y (v +2) [x. y]

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example

Expression Factors

("x + "y (v +2) [x. y]
{x+ D

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example
Expression Factors
{"x + "y (- +2) [x,y]
{x+ D (x+) I

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example
Expression Factors
"+ "y (o +2) [x.5]
{x +) (x+) I
(Cx+7O0D

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example
Expression Factors
{"x + "y (- +2) [x,y]
{x+) (x+) I
" +"0ODD (- +2) [x, D]

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example
Expression Factors
("x + "y (v +2) [x. y]
{x -+) (x+) I
"x +"QDD (- +-) [x. {yD]
F 7x+ 750D

The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example
Expression Factors
("x + "y (v +2) [x. y]
{x -+) (x+) I
"x +"QDD (- +2) [x. {yD]
(Fx+ CO-+72)) [Fxl

A Context Centric Term View

lettype term

= VAR string | CONST val // v | k

| APPLY term term /] AM

| ABS term term /] AA. M

| ALT term term term /] AA. M

| QUOTE context (term list)# 7/ {CE Avs:.< ALl

» No term ever changes level with these constructions

A Context Centric Term View

lettype term

= VAR string | CONST val // v | k

| APPLY term term // AM

| ABS term term /] AA. M

| ALT term term term /] AA. M

| QUOTE context (term list) // (C[*Ay,... A

» No term ever changes level with these constructions
» From level n | can construct any level n + 1 expression | want

intgl

A Context Centric Term View

lettype term

= VAR string | CONST val // v | k

| APPLY term term // AM

| ABS term term /] AA. M
| ALT term term term /] AA. M
|

QUOTE context (term list) // {C[*A1,... " Al])

» No term ever changes level with these constructions
» From level n | can construct any level n + 1 expression | want

» All | can do with expressions above n + 1 is access the n + 1
subexpressions

intgl

Free Variables Revisited

letrec
frees (VAR nam) = {VAR nam}
| frees (CONST idn) =

frees (APP fun arqg)
frees fun U frees arg
frees (ABS pat bod)
frees bod - frees pat
frees (ALT pat bod alt) =
(frees bod = freestpathlU@ETFRcc/SIEaSNES)
frees (QUOTE ctx tms) =
fold (U) {} (map ‘Freesmems)y;

Free Variables Revisited

letrec
frees (VAR nam) = {VAR nam}
| frees (CONST idn) =

| frees (APP fun arg)
frees fun U frees arg
| frees (ABS pat bod)
frees bod - frees pat
| frees (ALT pat bod alt) =
(frees bod - freesfpath@UEEFEcclSIaNIEY)
| frees (QUOTE ctx tms) =
fold (U) {} (map ‘Freesmems)y;

Contexts hide what you don’t to see behind an SEP field.
» no need to for the . ..to fit it now

intgl

Free Variables Revisited

letrec
frees (VAR nam) = {VAR nam}
| frees (CONST idn) =

| frees ("fun “arg) =
frees fun U frees arg
| frees {A~abs. “bod)
frees bod - frees pat
| frees {A"pat. “bod | “alt) =
(frees bod = freestpathlU@ETRccSIEaSNES)
| frees (QUOTE ctx tms) =
fold (U) {} (map fFreesmenms)y;

Contexts hide what you don’t to see behind an SEP field.
» no need to for the . ..to fit it now

intgl

Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done
- eval {(Alx,y]. x +y) [1,21);

Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done

- eval {(Alx,y]l. x +y) [1,2]]);
(3): term

Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done

- eval {(Alx,y]l. x +y) [1,2]]);
(3): term

» How do we do anti-quote based term construction?

- eval (" (fst (1D, 42D)) + “{3DDD;

Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done
- eval {(Alx,y]l. x + yv) [1,21];
{3): term

» How do we do anti-quote based term construction?

- eval (" (fst (1D, 42D)) + “{3DDD;

(41 + 3PP: term

Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done
- eval {(Alx,y]l. x + vy) [1,21);
{3): term

» How do we do anti-quote based term construction?

- eval ({"(fst (1D, q42D)) + “{3DD);

(1 + 3DP): term

Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done

- eval ((Alx,y]l. x + y) [1,21);
(3): term

» How do we do anti-quote based term construction?

- eval ({"(fst (1D, q42D)) + “{3DD);

(1 + 3DP): term
» How do we do anti-quote based term destruction?
- eval ((A{"x + “yD. x) {1 + 2));

intgl

Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done

- eval ((Alx,y]l. x + y) [1,21);
(3): term

» How do we do anti-quote based term construction?

- eval ({"(fst (1D, q42D)) + “{3DD);

(1 + 3DP): term
» How do we do anti-quote based term destruction?
- eval ((A{"x + “yD. x) {1 + 2));

(Q1D): term
intgl

Filling Context Holes

We require the following primitive function, to implement eval:

fill: context — term list — term
This is a version of the primitive context hole filling operation
~

(. + o) : context

- £i11 c [QqQ1bD, q42DhD1;

Filling Context Holes

We require the following primitive function, to implement eval:

fill: context — term list — term

This is a version of the primitive context hole filling operation

- c;
(. + o) : context

- £i11 c [QqQ1bD, q42DhD1;

(41 + 2p): term

Filling Context Holes

We require the following primitive function, to implement eval:

fill: context — term list — term

This is a version of the primitive context hole filling operation

- c;
(. + o) : context

- £i11 c [QqQ1bD, q42DhD1;

(41 + 2p): term

fill is similar to QUOTE:
but removes quotes, doesn’t add anti-quote to balance levels

- QuotE c [{q1ph, (42DD1;

intgl

Filling Context Holes

We require the following primitive function, to implement eval:

fill: context — term list — term
This is a version of the primitive context hole filling operation
~

(. + o) : context

- £i11 c [QqQ1bD, q42DhD1;

(41 + 2p): term

fill is similar to QUOTE:
but removes quotes, doesn’t add anti-quote to balance levels

- QUOTE c [{{1Dp), (42DD1;
47410 + ~2DD):term

intgl

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =
fill ¢ (map eval tms)

.« o7

eval (" (fst (1), 420)) + “{3DD)

(g1 + 3bD

intgl

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

intgl

fill ¢ (map eval tms)

.« o7

eval (" (£st (1D, q{20)) + ~{3]DD)
eval (QUOTE (. + =) [{fst 1D, 420D, (43bh1)
fill (o + o)
(map eval [{fst {1}, 420 D, {43DD1)
fill (o + o)
leval (fst (1], 420), eval ({3D)1]
£i11 (o + o) 04DD, (43D
1 + 3bD

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

fill ¢ (map eval tms)

I

eval ({" (fst ({1], 42D + ~{3DD
eval (QUOTE (. + .) fst (41h, 20 D, (43bD1)
£i1l (o + o)
(map eval [{fst {1), Q2D), (43PD1)
Al (o
[eval (fst (1D, q42D)), eval ({3}
£i11 (o + o) [42DD, (43DD1
({1 + 3pD

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

fill ¢ (map eval tms)

I

eval ({~(fst (dlMZD + “(3DDD
eval (QUOTE (. + .) fst (41h, 20 D, (43bD1)
£i11 (o + Q)
(map eval [{fst ({1),{2]) 13p) 1)
£i1l (o + _)
[eval (fst (1D, q42D)), eval ({3}
£i11 (o + o) 41D, ({31
1 + 3bD

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

fill ¢ (map eval tms)

I

eval (" (£st (1D, q{20)) + ~{3]DD)
eval (QUOTE (. + =) [{fst 1D, 420D, (43PD1)
£ill (o + u)
(map eval [{fst ({1),{2]) 13p) 1)
fill (o + _)
leval (fst (1], 420), eval ({3])1]
£111 (o + o) [q1bb, (43DD?
(4 + 3pD

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

fill ¢ (map eval tms)

I

eval (" (£st (1D, q{20)) + ~{3]DD)
eval (QUOTE (. + =) [{fst 1D, 420D, (43PD1)
£ill (o + o)
(map eval [{fst {1), Q2D), (43PD1)
fill (o + o)
[eval (fst (1], 420), eval ({3])1]
£ill (o + o) 041D), 43P
(4 + 3pD

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

fill ¢ (map eval tms)

.« o7

eval (" (£st (1D, q{20)) + ~{3]DD)
eval (QUOTE (. + =) [{fst 1D, 420D, (43bh1)
f£ill (o + o)
(map eval [{fst {1}, 420 D, {43DD1)
fill (o + o)
leval (fst (1], 420), eval ({3D)1]
£i1l (o + <) [442b), (43D)h1
{1 + 3)

Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

intgl

fill ¢ (map eval tms)

.« o7

eval (" (£st (1D, q{20)) + ~{3]DD)
eval (QUOTE (. + =) [{fst 1D, 420D, (43bh1)
fill (o + o)
(map eval [{fst {1}, 420 D, {43DD1)
fill (o + o)
leval (fst (1], 420), eval ({3D)1]
£i11 (o + o) 04DD, (43D
1 + 3bD

Pattern Matching Contexts

We require the following primitive function, to implement eval:

match: context — term — term list
For any context ¢, match cinverts fill c
- c;

(. + =) : context
- match ¢ {1 + 2D);

Pattern Matching Contexts

We require the following primitive function, to implement eval:

match: context — term — term list

For any context ¢, match cinverts fill c

- c;
(o + _): context
- match ¢ {1 + 2D);

[Q41DD, {4Q2D)1: term list

- match ¢ {{"x + “yD);

Pattern Matching Contexts

We require the following primitive function, to implement eval:

match: context — term — term list

For any context ¢, match cinverts fill c

- ¢;
(o + _): context

- match ¢ ({1 + 2));
[Q41DD, {4Q2D)1: term list
- match c {{"x + “yDp);

(442D, (Q"vDD1: term list
- match ¢ Q1 - 2B);

intgl

Pattern Matching Contexts

We require the following primitive function, to implement eval:

match: context — term — term list

For any context ¢, match cinverts fill c

- ¢;
(o + _): context

- match ¢ ({1 + 2));
[Q41DD, {4Q2D)1: term list
- match c {{"x + “yDp);

(442D, (Q"vDD1: term list
- match ¢ Q1 - 2B);

intgl

Auxiliary Function for Term Destruction

We need an auxiliary function to transform a list of quotes
to a quoted list

- pull [q1), {2D,qQ3D1;
(11,2,31): term

intgl

Auxiliary Function for Term Destruction

We need an auxiliary function to transform a list of quotes
to a quoted list

letrec pull [] =] D
| pull (h:t) = 40h: " (o isiiehe

- pull [q1), {2D,qQ3D1;

(11,2,31): term

intgl

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval (A0 x + “v). =) {1 + 2))

intgl 142DD

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval (A0 x + “v). =) {1 + 2))
= eval
(A" (QUOTE (= + o) [{dxD, qvp1). x> 1 + 2B)
= eval (A" (pull [{x), {vD1)
“(pull (match (< + o) {41 + 2pp)))
= eval ((A™{[x, viI). x)
“(pull (match (~ + o) {1 + 2pp)))
= eval
(A=, yi1h. x pull L41bD, 442bh 1))
= eval { A‘d [x, y1D. =) “Q041h, (2p1DD
eval ((Alx, yl. x) [Glbr Q2D1)

|nte:| qph

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval (A% + “v). =) {1 + 2))

= eval
(A" (QUOTE (- +) [{x], y .ox) Q1 o+ 2h)
= eval ((A" (pull [{x], dyb
" (pull (match (- 441 + 2pM)))

= eval ((A°{[x, vl). x)
“(pull (match (~ + o) {1 + 2pp)))
= eval
(A=, yi1). = pull (420D, (420D 1D
= eval { A‘d [x, y1D. =) “Q041h, (2p1DD
eval ((Alx, yl. x) [Glbr Q2D1)

|nte:| qph

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval ((A{*x + “v). =) (1 + 2)

= eval
(A" (QUOTE (= + o) =] Al aisiexsida s 2
= eval { (A" (pull [{x), {vD1). x)
“(pull (match (o + o) 41/ + 2h)))

= eval ((A™{[x, viI). x)
“(pull (match (~ + o) {1 + 2pp)))
= eval
(A=, yi1). = pull (420D, (420D 1D
= eval { AAQ[X, yib. x> “Qr41h, {2b1D)
eval ((Alx, yl. x) [Glbr Q2D1)

|nte:| qph

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval ((A"x + “y]). x) {1 + 2))
= eval
(A" (QUOTE (= + o) [{dxD, qvp1). x> 1 + 2B)
= eval (A" (pull [{x], {¥Dh1). =)
"(pull (match (. + o) {41 + 2PN
= eval 4 B al))s 5R)
“(pull (match (- + =) {41 + 2p))))
= eval
{A{rx, y1p. x pull [q1DD, (42bb1) D
= eval { A“Q[X, yib. =) “(rd1d, 2b1Dh
eval ((Alx, yl. x) [le, {2b1)

|nte:| qph

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval ((A"x + “y]). x) {1 + 2))
= eval
(A" (QUOTE (= + o) [{dxD, qvp1). x> 1 + 2B)
= eval ((A" (pull [{x), {yD1)
“(pull (match (= + =) {41 + 2bp)))
= eval ((A°{[x, yI]. x)
“(pull (match (. + o) {41 + 2p))))
= eval
(AQIx, yv1). x ~(pull [{Q1D), 4Q2b) 1))
= eval { /l‘d [x, y1D. =) (I 41I> 02b10)
eval ((Alx, yl. x) [le, {2b1)

|nte:| qph

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval ((Ad"x + “yp. x) {1 + 2))
= eval
(A" (QUOTE (= + o) [{dxD, qvp1). x> 1 + 2B)
= eval ((A" (pull [{x), {yD1)
“(pull (match (= + =) {41 + 2bp)))
= eval ((A°{[x, yI]. x)
“(pull (match (- + =) {41 + 2p))))

= eval
A=, vi). x pull L442DD, (420D 1) D
= eval | /vq [,/ cy ipees 41|> 42D)

eval ((Alx, yl. x) [Glbr Q2D1)
|nte:| 420D

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval ((Ad"x + “yp. x) {1 + 2))
= eval
(A" (QUOTE (= + o) [{dxD, qvp1). x> 1 + 2B)
= eval ((A" (pull [{x), {yD1)
“(pull (match (= + =) {41 + 2bp)))
= eval ((A°{[x, yI]. x)
“(pull (match (- + =) {41 + 2p))))

= eval
{A~ix, yib. = ~(eull {q1ph, (42bD1)D
= eval ((A°([x, yI). x) (41h, {2)1
eval ((Alx, y1. x) [{1), {2)]

|nte:| qph

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval ((A{*x + “v). =) (1 + 2)
= eval
(A" (QUOTE (= + o) [{dxD, qvp1). x> 1 + 2B)
= eval (A" (pull [{x), {vD1)
“(pull (match (< + o) {41 + 2pp)))
= eval ((A™{[x, viI). x)
“(pull (match (~ + o) {1 + 2pp)))
= eval
(A=, yi1). = pull L42DD, 42bh 1D
= eval ((A"{Ix, y1D. =) ~{i{1h, {2p1DD
eval ((Alx, yl. x) [419, (2D

"Th; (38)

Implementing Anti-Quote based Term Destruction

letrec eval ((A" (QUOTE ctx pts). “bdy) “vall) =
eval ((A" (pull pts). “bdy)
“(pull (match ctx val)))

eval (A0 x + “v). =) {1 + 2))
= eval
(A" (QUOTE (= + o) [{dxD, qvp1). x> 1 + 2B)
= eval (A" (pull [{x), {vD1)
“(pull (match (< + o) {41 + 2pp)))
= eval ((A™{[x, viI). x)
“(pull (match (~ + o) {1 + 2pp)))
= eval
(A=, yi1h. x pull L41bD, 442bh 1))
= eval { A‘d [x, y1D. =) “Q041h, (2p1DD
eval ((Alx, yl. x) [Glbr Q2D1)

|nte:| qph

The End

Conclusions

» quote/anti-quote are a convenient way to manipulate terms
» most common manipulations preserve the level of a term

» context term view makes level preserving manipulation easy
» implementation is straightforward

The End

Conclusions

» quote/anti-quote are a convenient way to manipulate terms
» most common manipulations preserve the level of a term

» context term view makes level preserving manipulation easy
» implementation is straightforward

Interesting Things | Didn’t Mention

» The type system and run-time type checking
» Manipulations that don’t preserve level: true reflection

intgl

The End

Conclusions

» quote/anti-quote are a convenient way to manipulate terms
» most common manipulations preserve the level of a term

» context term view makes level preserving manipulation easy
» implementation is straightforward

Interesting Things | Didn’t Mention

» The type system and run-time type checking
» Manipulations that don’t preserve level: true reflection

Ideas About The Future

» More advanced types to eliminate run-time type checking
.1 > Restrictions on reflection to ensure soundness
intgl

