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» 2nd version of FL with reflection
» adialect of ML used at Intel for applications including
» correctness preserving design transformations
» interactive theorem proving of design properties
» reFleClis typed A-calculus +
» A quotation mechanism, like: {this|
» An anti-quotation mechanism, like: “this
» Quoted expressions denote values of type term

» Values of type term are ASTs of well-typed expressions

» 1+ 2 and 2 + 1 are equal, they both describe the number 3
{1+ 2] and {2 + 1)) are not equal, they are different ASTs
{"Q1D + 2] and (1 + (2] are equal, they describe {1 + 2|)
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- letrec
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Example

— letrec

comm {"x + “y| = {" (comm y) + °~ (comm x)|
| comm Q“f ‘xD q (comm i) S8 e omm X)D
| comm (A°p. “Db) = {(A°p (comm b))
|
|

comm X = xX;

comm: term—term
- comm {y = m*x + c|);
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comm X = xX;

comm: term—term

- comm {y = m*x + c|);

v

intgl

= Cc t m*xb: term



The Higher Order Logic of reFLECt

The HOL Logic

A — calculus
+
constants: =, true, false
+
axioms, inference rules
+
L definitions




The Higher Order Logic of reFLECt

The HOL Logic The reFI€Ct Logic
A — calculus ( reFlect
+ 4
constants: =, true, false constants: =, true, false
+ i
axioms, inference rules axioms, inference rules
+ s
L definitions definitions




The Higher Order Logic of reFLECt

The HOL Logic The reFLeCt Logic
A — calculus ( reFLect
+ 4+
constants: =, true, false constants: =, true, false
+ f
axioms, inference rules axioms, inference rules
+ -
definitions definitions

Common to Both

» Not everything that may be discussed may be executed
» let V£=f=(Ax.true)
» Reductions in the language are valid inferences in the logic

i » IfA — true,thenk A
il
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Levels and Their Relationships

» A deep embedding of LTL in HOL:
0: ML
1: HOL logic, deeply embedded in ML
2: LTL logic, deeply embedded in HOL
Use the prover (level 0 program) to reason about what HOL
functions (level 1) do to LTL expressions (level 2)
» A shallow embedding of LTL in reFl€Ct
0: reFlect

1: quoted reFI€Ct expressions
2: twice quoted reF[€Ct expressions

Use the prover (level 0 program) to reason about what
reF1€Ct functions (level 1) do to reFIECt expressions (level 2)

intgl
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Levels are Separate

We want the same relationship between level n and n + 1
reFI€Ct expressions as between ML and HOL
(or between HOL and LTL, the deeply embedded language)
» Level n expressions can manipulate level n + 1 expressions
» Level n expressions don't interpret those above level n + 1
(We don’t implement LTL reasoning directly in ML.)
» They do not, usually, become level n + 1 expressions
(ML does not become HOL)
» Level n + 1 expressions do not, usually,
become level n expressions
(HOL does not become ML)

» Variables are bound within a level, not across levels

» Want (x)) different to (1] E (X = 1) V]
» Want usual quantifier rules EVx o({x) = (1)) [VE]
intel > Do notwantthis & F=(q1h = (1))




reF1eCt Abstract Syntax

AMN = k — Constant
| v — Variable
|  AAM — Abstraction
| AA.M|N  —Alternation
|  AM — Application
| {A) — Quotation
| AT — Anti-quotation

Note:

» Arbitrary expressions may be patterns
» Lambda abstractions may have match alternatives
» Omitting whole story about type annotations checking
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reF1eCt Abstract Syntax

AMN = k — Constant
| v — Variable
|  AAM — Abstraction
| AA.M|N  —Alternation
|  AM — Application
| {A) — Quotation
| AT — Anti-quotation

On the path from the root of an AST to some subexpression:

» the level of the subexpression is the number of quotations on
the path — the number of antiquotes

» an expression is well formed if no subexpression has
negative level

intgl



We Don’t Do This

We could make values of term appear as if defined as follows:

lettype term

VAR string

CONST val

APPLY term term
ABS term term

ALT termtite nmesEeiam
QUOTE: term

ANTIQ term

A

// k

// AM

/] AAM
// AA.M|N
/7 {A)

7 A
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We Don’t Do This

We could make values of term appear as if defined as follows:

lettype term = VAR string |/
| CONST val /] k
| APPLY term term /] AM
| ABS term term /] AA.M
| ALT term term term // AA.M|N
| QUOTE term /7 (A
| ANTIQ term 7€/ i

Consider how to find the free variables in a term
» just those at level 0
» variables at higher level are somebody else’s problem

intgl



Example: What We Don’t Do

let frees trm =

letrec
£f 0 (VAR nam) = {VAR nam}
| £ (n+l) (VAR nam) = {4
| £ (CONST idn) =81/}
| £ (APP fun argqg) =

(
n
n
i ol agwkel U GE e sueg
| £ 0 (ABS pat bod) =
e (0 Joroel = & 0 et
(n+tl) (ABS pat bod) =
£ (n+l) pat UNEE(mESEeE

| £ n (QUOTE quo) = f (n+l) quo
| £ (n+l) (ANTIQ ant) = f n ant
in

intel f 0 trm;
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Why Don’t We Do It?

The definition of frees was overly complex

» |t had to be careful to remember what to look at and what not to
» It traversed regions it didn’t need to look at

QUOTE and ANTIQ move expressions up and down levels
without restriction

Programs can, and must, inspect arbitrarily higher levels
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What We Do Instead: Contexts

AM,N ::= ... — as in terms
| o — hole

A context is well formed only if:
» all holes are at level 0
» no portion of the context has negative level

v (. +1) v (.+.) X o+ 1) X (x+.)
We assume the usual hole filling operation on contexts

(- +)[2.1] is 241
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The Context Property

All well-formed expressions of the form (A
have a unique factorization into:

» a well-formed context C
» a list of well-formed expressions M, ... M,
such that (C['M,,..."M,]) is (A)

Example
Expression Factors
("x + "y (v +2) [x. y]
{x -+ ) (x+) I
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A Context Centric Term View

lettype term

= VAR string | CONST val // v | k

| APPLY term term // AM

| ABS term term /] AA. M
| ALT term term term /] AA. M
|

QUOTE context (term list) // {C[*A1,... " Al])

» No term ever changes level with these constructions
» From level n | can construct any level n + 1 expression | want

» All | can do with expressions above n + 1 is access the n + 1
subexpressions

intgl



Free Variables Revisited

letrec
frees (VAR nam) = {VAR nam}
| frees (CONST idn) =

frees (APP fun arqg)
frees fun U frees arg
frees (ABS pat bod)
frees bod - frees pat
frees (ALT pat bod alt) =
(frees bod = freestpathlU@ETFRcc/SIEaSNES)
frees (QUOTE ctx tms) =
fold (U) {} (map ‘Freesmems)y;



Free Variables Revisited

letrec
frees (VAR nam) = {VAR nam}
| frees (CONST idn) =

| frees (APP fun arg)
frees fun U frees arg
| frees (ABS pat bod)
frees bod - frees pat
| frees (ALT pat bod alt) =
(frees bod - freesfpath@UEEFEcclSIaNIEY)
| frees (QUOTE ctx tms) =
fold (U) {} (map ‘Freesmems)y;

Contexts hide what you don’t to see behind an SEP field.
» no need to for the . ..to fit it now
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Free Variables Revisited

letrec
frees (VAR nam) = {VAR nam}
| frees (CONST idn) =

| frees ("fun “arg) =
frees fun U frees arg
| frees {A~abs. “bod)
frees bod - frees pat
| frees {A"pat. “bod | “alt) =
(frees bod = freestpathlU@ETRccSIEaSNES)
| frees (QUOTE ctx tms) =
fold (U) {} (map fFreesmenms)y;

Contexts hide what you don’t to see behind an SEP field.
» no need to for the . ..to fit it now
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Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done

- eval ((Alx,y]l. x + y) [1,21);
(3): term

» How do we do anti-quote based term construction?

- eval ({"(fst (1D, q42D)) + “{3DD);

(1 + 3DP): term
» How do we do anti-quote based term destruction?
- eval ((A{"x + “yD. x) {1 + 2));
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Implementing reFI€Ct

Consider how to write an evaluator for terms in reFLECL.
eval: term — term

» Regular language features ‘easy’, let’'s assume done

- eval ((Alx,y]l. x + y) [1,21);
(3): term

» How do we do anti-quote based term construction?

- eval ({"(fst (1D, q42D)) + “{3DD);

(1 + 3DP): term
» How do we do anti-quote based term destruction?
- eval ((A{"x + “yD. x) {1 + 2));

(Q1D): term
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We require the following primitive function, to implement eval:

fill: context — term list — term
This is a version of the primitive context hole filling operation
~

(. + o) : context

- £i11 c [QqQ1bD, q42DhD1;
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We require the following primitive function, to implement eval:

fill: context — term list — term

This is a version of the primitive context hole filling operation

- c;
(. + o) : context

- £i11 c [QqQ1bD, q42DhD1;

(41 + 2p): term

fill is similar to QUOTE:
but removes quotes, doesn’t add anti-quote to balance levels

- QuotE c [{q1ph, (42DD1;
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Filling Context Holes

We require the following primitive function, to implement eval:

fill: context — term list — term
This is a version of the primitive context hole filling operation
~

(. + o) : context

- £i11 c [QqQ1bD, q42DhD1;

(41 + 2p): term

fill is similar to QUOTE:
but removes quotes, doesn’t add anti-quote to balance levels

- QUOTE c [{{1Dp), (42DD1;
47410 + ~2DD):term
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Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =
fill ¢ (map eval tms)

.« o7

eval (" (fst (1), 420)) + “{3DD)

(g1 + 3bD
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Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =
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fill ¢ (map eval tms)

.« o7
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Implementing Anti-quote Based Term Construction

letrec eval (QUOTE ctx tms) =

fill ¢ (map eval tms)
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Pattern Matching Contexts

We require the following primitive function, to implement eval:

match: context — term — term list
For any context ¢, match cinverts fill c
- c;

(. + =) : context
- match ¢ {1 + 2D);
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Auxiliary Function for Term Destruction

We need an auxiliary function to transform a list of quotes
to a quoted list

- pull [q1), {2D,qQ3D1;
(11,2,31): term
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Ideas About The Future

» More advanced types to eliminate run-time type checking
.1 > Restrictions on reflection to ensure soundness
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