
Simplifying Regions

Greg Morrisett
Harvard University

Collaborators: Matthew Fluet & Amal Ahmed

April 2005 2

The Cyclone Safe-C Project
Primary goal: type-safety

Secondary goal: retain virtues of C
• C programmers should feel comfortable.
• It should be easy to interoperate with legacy C.
• Most importantly, costs should be manifest:

• Programmers can understand the physical layout of data
structures by looking at the types.

• Programmers can avoid overheads of run-time tags and
checks by programming with certain idioms.

• Want this to be suitable for real-time and embedded
settings where space and time may be scarce.

April 2005 3

Some Cyclone Users
• In-kernel Network Monitoring [Penn]
• MediaNet [Maryland & Cornell]
• Open Kernel Environment [Leiden]
• RBClick Router [Utah]
• xTCP [Utah & Washington]
• Lego Mindstorm on BrickOS [Utah]
• Cyclone on Nintendo DS [AT&T]

• Scheme run-time & interpreter
• Cyclone compiler, tools, & libraries

• Over 100 KLOC
• Plus many sample apps, benchmarks, etc.

April 2005 4

C vs. Cyclone vs. Java
Cyclone vs. Java

0
5

10
15
20
25
30
35
40

ac
ke

rm
an

n

ex
ce

pt

ha
sh

he
ap

so
rt

m
at

rix

ra
nd

om

si
ev

e

st
rc

at

w
c

Shootout Benchmark

C
P

U
 T

im
e

N
or

m
al

iz
ed

 to

G
C

C Cyclone/gcc
Java/gcc

On average:
Cyclone: 1.6x
Java : 7.5x

April 2005 5

Macro-benchmarks:
We have also ported a variety of security-critical
applications where we see little overhead
(e.g., 3% throughput for the Boa Webserver.)

C vs. Cyclone Throughput on Boa Webserver

3900
4000
4100
4200
4300
4400
4500
4600

1024 2048 4096

document size (bytes)

th
ro

ug
hp

ut

(r
eq

ue
st

s/
se

c)

C

Cyclone

April 2005 6

Memory Management
A range of options:
• Heap allocation with conservative GC
• Lexical Regions

• Stack allocation
• Lexical arena allocation
• Tofte & Talpin + region subtyping

• 1st class Regions
• Enables “tail-calls” -- can code copying GC

• Unique pointers
• Enables reclamation of individual objects

Each has different tradeoffs.

April 2005 7

The Flexibility Pays: MediaNET
TTCP benchmark (packet forwarding):
Cyclone v.0.1 (lexical regions & BDW GC)

• High water mark: 840 KB
• 130 collections
• Basic throughput: 50 MB/s

Cyclone v.0.5 (unique ptrs + dynamic regions)
• High water mark: 8 KB
• 0 collections
• Basic throughput: 74MB/s

April 2005 8

A Model?
The combination of lexical regions, unique

pointers, region subtyping, etc. makes the
meta-theory of Cyclone a nightmare.
• Gave up on usual syntactic proof.

At the heart of the problem:
• Certain types are “ephemeral”.
• The interaction between persistent and ephemeral

types is extremely subtle.
• Polymorphism really complicates things.
• Same issue arises in many other settings: TAL(T),

Vault, Cqual, Haskell’s runST, …

April 2005 9

Outline
Core Cyclone → F+RGN [ICFP’04]

• Effects map to an indexed store monad
• Coercion-based interpretation of subtyping

F+RGN → Linear F+Stores
• Monad abandoned in favor of linearity.
• Regions become 1st-class, unique pointers

fall out as a special case.
• Developing a semantic model of the target.
• Believe it serves as foundation for Cqual,

Vault, etc.

April 2005 10

The Tofte-Talpin Region Calculus
Operationally:

• Memory is divided into regions (ρ)
• Objects are allocated in a region: (3,2)@ρ
• Regions are created and destroyed with a

lexically-scoped construct:
letregion ρ in e

• All objects allocated in ρ are deallocated at the
end of ρ’s scope.

• Region names can be passed into functions to
support a “callee-allocates in caller’s region
idiom.”

April 2005 11

Runtime Organization

Regions are linked
lists of pages.

Arbitrary inter-region
references.

Similar to arena-style
allocators.

runtime stack

April 2005 12

Typing
• Pointer types indicate referent’s region:

(int,int)@ρ
• The type system tracks the set ϕ of

regions that are accessed when a
computation is run: Γ e : T, ϕ

• Function types include a latent effect:
T1 → T2

• The role of ϕ is to tell us when it’s not
safe to deallocate a region.

ϕ

April 2005 13

Letregion
The typing for letregion is subtle:

Γ e : τ, ϕ ρ ∉FRV(Γ,τ)
Γ letregion ρ in e : τ, ϕ\ρ

In particular, pointers into ρ can escape
the scope of the letregion.

April 2005 14

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

{ρ’}

April 2005 15

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

{ρ’}

ρ’

April 2005 16

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

{ρ’}

ρ’

ρ

April 2005 17

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

{ρ’}

ρ’

ρ (1,2)

April 2005 18

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

{ρ’}

ρ’

ρ (1,2)

(3,4)

April 2005 19

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

{ρ’}

ρ’

ρ (1,2)

(3,4)
(,)

April 2005 20

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

{ρ’}

ρ’

ρ (1,2)

(3,4)
(,)

closure

April 2005 21

Example:
letregion ρ in
let x = (1,2)@ ρ in
let z = (3,4)@ ρ’ in
let w = (x,z)@ ρ’ in
λy.#1(#2 w) + y : int → int, {ρ’}

Pointers are persistent, regions aren’t…

{ρ’}

ρ’
(3,4)

(,)

closure

April 2005 22

Subtyping
Tofte & Talpin’s effect weakening:

Γ e : τ, ϕ ϕ ⊆ ϕ’
Γ e : τ, ϕ’

Cyclone’s region “outlives”:
Γ ρ ≤ ρ’

Γ τ@ρ ≤ τ@ρ’

Γ, FRV(Γ) ≤ ρ e : τ, ϕ ρ ∉FRV(Γ,τ)
Γ letregion ρ in e : τ, ϕ\ρ

April 2005 23

Core Cyclone to F+RGN
The source language is complicated by:

• Effects: sets of regions
• Subtyping, letregion, polymorphism.

Choose as intermediate language:
• CBV System-F plus…
• An indexed monad family: RGN σ τ

• Inspired by Haskell’s ST monad.
• Key: run can be provided in the language.

• Eliminate subtyping via coercions

April 2005 24

Type Constructors
RGN σ τ

computation running in store σ producing a τ.
ptr ρ τ

pointer into region ρ holding a τ value.

ρ ∈ σ
a proof that σ includes the region ρ

σ1 ≤ σ2 [= 8ρ.(ρ ∈ σ1) ! (ρ ∈ σ2)]
a proof of store inclusion

April 2005 25

Translation Essence:

«int@ρ1 ! int@ρ3¬ ¼

8 σ. (ρ1 ∈ σ) ! (ρ2 ∈ σ) ! (ρ3 ∈ σ) !
(ptr ρ1 int) ! RGN σ (ptr ρ3 int)

{ρ1,ρ2,ρ3}

April 2005 26

Monadic Operations
return : 8α,σ. α ! RGN σ α
then : 8α,β,σ. RGN σ α !

(α ! RGN σ β) ! RGN σ β
• Can only sequence in same store.
• Need some way to lift computations in sub-

stores

run : 8α. (8σ. RGN σ α) ! α
• Note that α cannot mention σ!
• Quite similar to letregion.

April 2005 27

Primitives:
new:

8α,σ,ρ. α ! (ρ ∈ σ) ! RGN σ (ptr ρ α)
read:

8α,σ,ρ. ptr ρ α ! (ρ ∈ σ) ! RGN σ α
letRGN :

8α,σ1. (8σ2. (σ1 ≤ σ2) ! (ρ ∈ σ2) ! RGN σ2 α)
! RGN σ1 α

subRGN :
8α,σ1,σ2. (σ1 ≤ σ2) ! RGN σ1 α ! RGN σ2 α

April 2005 28

Notes:
We constructed an operational model and

proved a soundness result at this level, as
well as the correctness of the translation.

In practice, you need to phase-split the
evidence (e.g., ρ ∈ σ) and coercions.

F+RGN is somewhat simpler than T.T. and
sheds light on regions and Haskell’s ST, but
not 1st class regions or unique pointers.

April 2005 29

New Target: Linear F + regions
• We’ll use a linear version of F similar to

Walker & Watkins.
• We’ll eliminate the RGN monad in favor

of explicit store-passing but use linearity
to ensure store remains single-
threaded.

• Unique pointers & 1st class regions pop
out for free…

April 2005 30

Types:
T ::= α | int

| ptr ρ T (pointer into region ρ)
| cap ρ (capability for region ρ)
| 1 | T1 ⊗ T2

| T1 —° T2

| !T
| 8α.T | 8ρ.T
| ∃α.T | ∃ρ.T

April 2005 31

Primitives:
newrgn : 1 —° ∃ρ.cap ρ
freergn : 8ρ.cap ρ —° 1
new : 8α,ρ.!α —° cap ρ —° cap ρ ⊗ !ptr ρ !α
read : 8α,ρ.ptr ρ !α —° cap ρ —° cap ρ ⊗ !α

April 2005 32

Dynamics
Mostly just CBV lambda calculus.
Semantic values:
• ptr ρ τ ≈ Locρ

• cap ρ ≈ Locρ → Val
• NB: !(cap ρ) ≈ ∅
We actually use a step-indexed model

a la Appel & McAllester to avoid
problems with recursive types.

April 2005 33

Encoding F+RGN Types
«int¬ = !«int¬
«ptr σ τ¬ = !ptr σ «τ¬
«τ1 ! τ2¬ = !(«τ1¬ —° «τ2¬)
«RGN σ τ¬ = σ —° σ ⊗ «τ¬
«ρ ∈ σ¬ = ! ∃σ’. (σ —° σ’ ⊗ cap ρ) ⊗

(σ’ ⊗ cap ρ —° σ)
«σ1 ≤ σ2 ¬ = ! ∃σ’. (σ2 —° σ1 ⊗ σ’) ⊗

(σ1 ⊗ σ’ —° σ2)

April 2005 34

Encoding Monadic Primitives:
Just store-passing:

«return¬ = Λα,σ. λx:!α. λs:σ. (s,x)

«then¬ = Λα,β,σ.
λf:«RGN σ α¬.
λg:!(!α —° «RGN σ β¬).
λs:σ. let (s’,y) = f s in g y s’

April 2005 35

Encoding Let-region
«letRGN¬ =
Λα,σ1.λf: «8σ2. σ1 ≤ σ2 ! ρ ∈ σ2 ! RGN σ2 α ¬.

λs:σ1.
unpack [ρ,c] = newrgn () in
let w2 = pack[σ1,(id,id)]:«ρ ∈ (σ1 ⊗ cap ρ)¬ in

let w1 = pack[cap ρ,(id,id)]:«σ1 ≤ (σ1 ⊗ cap ρ)¬
in let ((s,c),x) = f [σ1 ⊗ cap ρ] w1 w2 (s,c) in
freergn c;
(s,x) Key: new store is σ1 ⊗ cap ρ

April 2005 36

Encoding New and Read:
Use witnesses to get capability from store:
«new¬ = Λα,σ,ρ. λx:!α. λw:«ρ ∈ σ¬.λs:σ.

unpack [σ’,(f,g)] = w in
let (s’,c) = f s in
let (c,r) = new x c in
let s = g (s’,c) in (s,r)

«read¬ = Λα,σ,ρ.λx:ptr ρ !α. λw:«ρ ∈ σ¬.λs:σ.
unpack [σ’,(f,g)] = w in
let (s’,c) = f s in
let (c,x) = read r c in
let s = g (s’,c) in (s,r)

April 2005 37

Subrgn
Use witness to get sub-store:
«subRGN¬ =

Λα,σ1,σ2. λw:«σ1 ≤ σ2¬. λk:«RGN σ1 α¬.
λs2:σ2.
unpack [σ’,(f,g)] = w in
let (s1,s’) = f s2 in

let (s1,x) = k s1 in

let s2 = g (s1,s’) in (s2,x)

April 2005 38

1st Class Regions
At the target level, regions are 1st class!

• Can export newrgn & freergn to the source.
• No LIFO constraints needed!
• Source-level 1st class region: ∃ρ.(cap ρ ⊗ !T[ρ])

We can open such a region to regain the
convenience of the monadic threading:
8ρ.cap ρ —°

8α,σ1. (8σ2.«σ1 ≤ σ2¬ —° «ρ ∈ σ2¬ —° «RGN σ2 α¬)
—° RGN σ1 (cap ρ ⊗ α)

• So the monad is purely a convenience.

April 2005 39

Unique Pointers
These are just a degenerate case of 1st class

regions: ∃ρ.(cap ρ ⊗ !ptr ρ τ)

We can deallocate these at will!
• In practice, we split cap ρ into two capabilities.
• One (access ρ) lets us access ρ.
• The other (alloc ρ) lets us allocate in ρ.
• Only the alloc capability is needed at run-time.
• So a unique pointer is: ∃ρ.(access ρ ⊗ !ptr ρ τ)
• Can “open” a unique pointer to again regain

convenience of monadic abstraction.

April 2005 40

Recap:
• At source-level, we seem to have a variety of

memory mgmt. facilities:
• Stack allocation, lexical regions, 1st class regions,

unique pointers, …
• They’re all useful in practice.

• The target exposes the commonalities:
• Linear capabilities for access control ensure state

is single-threaded and eventually reclaimed.
• Monadic encapsulation is purely a convenience

(implicit threading of capabilities).
• That convenience has a price: LIFO.
• Fortunately, we don’t have to encapsulate.

April 2005 41

Future Work:
• Need to fill in all of the details.
• Need to phase-split capabilities.
• In practice, need affine, linear, and

unrestricted types to model Cyclone.
• Modeling other languages:

• Alias types, Cqual: require only a slight
refinement where we have two kinds of
pointers (ephemeral vs. persistent).

• Vault: still need to account for adoption
and suspect that relevant types play role.

	Simplifying Regions
	The Cyclone Safe-C Project
	Some Cyclone Users
	C vs. Cyclone vs. Java
	Memory Management
	The Flexibility Pays: MediaNET
	A Model?
	Outline
	The Tofte-Talpin Region Calculus
	Runtime Organization
	Typing
	Letregion
	Example:
	Example:
	Example:
	Example:
	Example:
	Example:
	Example:
	Example:
	Subtyping
	Core Cyclone to F+RGN
	Type Constructors
	Translation Essence:
	Monadic Operations
	Primitives:
	Notes:
	New Target: Linear F + regions
	Types:
	Primitives:
	Dynamics
	Encoding F+RGN Types
	Encoding Monadic Primitives:
	Encoding Let-region
	Encoding New and Read:
	Subrgn
	1st Class Regions
	Unique Pointers
	Recap:
	Future Work:

