Simplifying Regions

b4

Greg Morrisett

Harvard University
Collaborators: Matthew Fluet & Amal Ahmed

The Cyclone Safe-C Project

Primary goal: type-safety

Secondary goal: retain virtues of C
e C programmers should feel comfortable.
It should be easy to interoperate with legacy C.

e Most importantly, costs should be manifest:

* Programmers can understand the physical layout of data
structures by looking at the types.

* Programmers can avoid overheads of run-time tags and
checks by programming with certain idioms.

« Want this to be suitable for real-time and embedded
settings where space and time may be scarce.

April 2005

Some Cyclone Users

* In-kernel Network Monitoring [Penn]
 MediaNet [Maryland & Cornell]
 Open Kernel Environment [Leiden]
 RBClick Router [Utah]

o XTCP [Utah & Washington]

* Lego Mindstorm on BrickOS [Utah]

e Cyclone on Nintendo DS [AT&T]
e Scheme run-time & interpreter

e Cyclone compiler, tools, & libraries
e Over 100 KLOC
* Plus many sample apps, benchmarks, etc.

April 2005

C vs. Cyclone vs. Java

Cyclone vs. Java

@ Cyclone/gcc
m Java/gcc

=
o
@
N
'
=
O
Z
&
E
|_
2
R
O

heapsort

On average:
Cyclone: 1.6x
Java : 7.5X

ackermann

Shootout Benchmark

Macro-benchmarks:

We have also ported a variety of security-critical
applications where we see little overhead
(e.qg., 3% throughput for the Boa Webserver.)

C vs. Cyclone Throughput on Boa Webserver

4600

4400
4300 —C
4200 —Cyc|0ne

4100

)

AN
a1
o
o

]
-}
o

e
(@)
>
@]
L.

e

)

(requests/sec

I
o
(@)
(@)

3900
2048

document size (bytes)

April 2005 5

Memory Management

A range of options:
 Heap allocation with conservative GC

* Lexical Regions

« Stack allocation

e Lexical arena allocation

» Tofte & Talpin + region subtyping
e 1stclass Regions

* Enables “tail-calls” -- can code copying GC
e Unique pointers

 Enables reclamation of individual objects
Each has different tradeoffs.

April 2005

The Flexibility Pays: MediaNET

TTCP benchmark (packet forwarding):

Cyclone v.0.1 (lexical regions & BDW GC)
e High water mark: 840 KB
e 130 collections
e Basic throughput: 50 MB/s

Cyclone v.0.5 (unigue ptrs + dynamic regions)
e High water mark: 8 KB
e O collections
e Basic throughput: 74MB/s

April 2005

A Model?

The combination of lexical regions, unique
pointers, region subtyping, etc. makes the
meta-theory of Cyclone a nightmare.

e Gave up on usual syntactic proof.

At the heart of the problem:
e Certain types are “ephemeral”.

e The interaction between persistent and ephemeral
types is extremely subtle.

e Polymorphism really complicates things.

e Same Issue arises in many other settings: TAL(T),
Vault, Cqual, Haskell’'s runST, ...

April 2005 8

Outline

Core Cyclone - F+RGN [ICFP’'04]

« Effects map to an indexed store monad
e Coercion-based interpretation of subtyping

F+RGN — Linear F+Stores
 Monad abandoned in favor of linearity.

 Regions become 1st-class, unigue pointers
fall out as a special case.

e Developing a semantic model of the target.

» Believe it serves as foundation for Cqual,
Vault, etc.

April 2005 9

The Tofte-Talpin Region Calculus

Operationally:

Memory is divided into regions (p)
Objects are allocated in a region: (3,2)@p

Regions are created and destroyed with a
lexically-scoped construct:

letregionpine
All objects allocated in p are deallocated at the
end of p’s scope.

Region names can be passed into functions to
support a “callee-allocates in caller’s region
idiom.”

April 2005

10

Runtime Organization

runtime stack
April 2005

Regions are linked
lists of pages.

Arbitrary inter-region
references.

Similar to arena-style
allocators.

11

Typing

e Pointer types indicate referent’s region:

(int,iInt)@p

* The type system tracks the set ¢ of
regions that are accessed when a
computationisrun: I're: T, ¢

* Function types include a latent effect:
T, 5T,

e The role of ¢ Is to tell us when it's not
safe to deallocate a region.

April 2005

12

Letregion

The typing for letregion is subtle:

['»e:t, 0 p ¢ FRV(I',1)
['» letregionp ine:, ¢\p

In particular, pointers into p can escape
the scope of the letregion.

April 2005 13

Example:

letregionp in
letx=(1,2)@ p 1IN
letz=(3,4)@ p’ 1IN
letw=(X,2@ p’ IN
AYH#L(H#2 wW) +y

April 2005

int 25 int, {p}

14

Example:

letregionp in
letx=(1,2)@ p 1IN
letz=(34)@ p’ 1IN
letw=(X,2)@ p’ IN
AYHLH2 W) +y

April 2005

int 25 int, {p}

15

Example:

letregionp In
letx=(1,2)@ p 1IN
letz=(3,4)@ p’ 1IN
letw=(X,2)@ p’ IN
AYHL(H2 W) +y

April 2005

p

int 2 int, {p’}

16

Example:

letregionp in
let x=(1,2)@ p 1IN
letz=(34)@ p’ 1IN
letw=(X,2)@ p’ IN
AYHLH2 W) +y

April 2005

p

int 25 int, {p}

17

Example:

letregionp in
letx=(1,2)@ p 1IN
letz=(34)@ p’ 1IN
letw=(X,2)@ p’ IN
AYHLH2 W) +y

April 2005

p

int 2y int, {p’}

18

Example:

letregionp in

letx=(1,2)@ p 1IN
letz=(34)@ p’ 1IN
letw=(X,2@ p’ 1IN

Ay HL(#H2 W) + Y

April 2005

p

int 25 int, {p’}

19

Example:

letregionp in

let x=(1,2)@ p in P
letz=(3,4)@ p’ in
letw=(X,2)@ p’ in | P
wHIE Wty intSSint, {p)

closure

April 2005 20

Example:

letregionp in
letx=(1,2)@ p 1IN P
letz=(3,4)@ p’ 1IN
letw=(X,2)@ p’ IN |
WHLEZ W) +y 1 int Sy int, {p} *

closure

Pointers are persistent, regions aren't...

April 2005 21

Subtyping

Tofte & Talpin’s effect weakening:
I'r»re:t,o ¢ Q@
I'r»e:t, ¢
Cyclone’s region “outlives™
I'» p<p
['» t@p < t@p’

I FRV(I) <pre:1, ¢ p ¢FRV(I,1)

['» letregionp ine: T, ¢\p

April 2005

22

Core Cyclone to F+RGN

The source language is complicated by:
» Effects: sets of regions
e Subtyping, letregion, polymorphism.
Choose as intermediate language:
« CBV System-F plus...

* An indexed monad family: RGN ¢ 7
 Inspired by Haskell's ST monad.
e Key: run can be provided in the language.

e Eliminate subtyping via coercions

April 2005 23

Type Constructors

RGN o ¢
computation running in store ¢ producing a .

ptrp 7
pointer into region p holding a 7 value.

PEGC
a proof that ¢ includes the region p

<0, [=8p.(peac)! (peoq]
a proof of store inclusion

April 2005 24

Translation Essence:

<Nt@ p; —221 int@p 4 Va

80.(preo)!(p,e0)! (pze0)!
(ptr p, Int) ! RGN o (ptr p; int)

April 2005

25

Monadic Operations

return: 8o,0.a ! RGN c o
then : 8a,3,0. RGN ¢ o |
(a0 ! RGN o B)! RGN o

e Can only sequence in same store.

 Need some way to lift computations in sub-
stores

run: 8a. (8. RGN oc o) ! a

 Note that o0 cannot mention !
e Quite similar to letregion.

April 2005

26

Primitives:

new:
8a,0,p. a! (p € o) RGN & (ptr p a)
read:
8a,o,p.ptrpa! (p € o) RGN 6 «
1etRGN :
8a,0,. (80,. (0, <0,)!(p € 0,) ' RGN 0, a)
RGN 0, «
SUbRGN :

8a,0,,0,. (0, <0, ! RGN o, a! RGN 0, a

April 2005 27

Notes:.

We constructed an operational model and
proved a soundness result at this level, as
well as the correctness of the translation.

In practice, you need to phase-split the
evidence (e.g., p € ¢) and coercions.

F+RGN Is somewhat simpler than T.T. and
sheds light on regions and Haskell's ST, but
not 15t class regions or unique pointers.

April 2005 28

New Target: Linear F + regions

e We'll use a linear version of F similar to
WE G AVEUAIE

o We'll eliminate the RGN monad in favor
of explicit store-passing but use linearity
to ensure store remains single-
threaded.

* Unigque pointers & 15 class regions pop
out for free...

April 2005 29

Types:

T:=a | Int

ptrp T (pointer Into region p)
cap p (capabillity for region p)
1| T,®T,

T,—1T,

IT

8a..T | 8p.T

do. T | dp. T

April 2005

Primitives:

newrgn: 1 —dp.cap p
freergn : 8p.capp —1
new : 8a,p.lao —ocap p—ecap p ® Iptr p o
read : 8a,p.ptrp!laa—ecap p—ccap p ® la

April 2005 31

Dynamics

Mostly just CBV lambda calculus.
Semantic values:

* ptrpt = LoC,

* cap p ~ Loc, — Val

e NB: !(cap p)~ I

We actually use a step-indexed model

a la Appel & McAllester to avoid
problems with recursive types.

April 2005

82

Encoding F+RGN Types

«Int- = lint-

«ptr o T = Iptr o «1-

«Ty ! 150 = N(«tyn —o «1,7)
«RGN G 17 =0—0 Q& «1-

«pec=!3c. (c—c' ®capp)®
(6’ ® cap p — O)

«6,<0,n=130". (0, —0,® 0) ®
(0,80 — 05,)

April 2005

33

Encoding Monadic Primitives:

Just store-passing:
«return- = Aa,c. AX:la.. AS:o. (S,X)

«then- = Aa,[3,0.
M. «RGN o a-.
Ag:!(lo. —o «RGN & B-).
AS.c. let(S\y)=fsiIngys

April 2005 34

Encoding Let-region

«letRGN- =
Ao,c,.M: «806,.0,<0, | pe 5, RGN G, a .

AS.O;.

unpack [p,c] = newrgn () In

let w, = pack[c,,(id,id)]:«p € (c,®cap p)- In
let w, = packicap p,(id,id)]:«c, < (o, ® cap p)-
In let((s,c),x) =f[oc,®cap p] w; w,(S,c) In
freergn c;
(S:X) Key: new store is 6, ® cap p

April 2005 35

Encoding New and Read.:

Use withesses to get capability from store:
«new- = Aa,o,p. AX:la. AW:«p € 6-1.AS.G.
unpack [¢’,(f,g)] =w In
let(s',c)=fs In
let (c,r) =newxc iIn
lets=g(s,c) In (s,

«read- = Aa,o,p. AX:ptr p la. AW:«p € 61.AS:G.
unpack [o’,(f,g)] = w In
let(s',c)=fs 1In
let(c,x)=readrc in

lets=g(s,c) In (s,
April 2005

Subrgn

Use withess to get sub-store:
«SUbRGN- =
Aa,G6,,0,. \W:«G,; < 6,7. AKi«<RGN G, a-.
AS,.0,.

unpack [¢',(f,g)] =w In
let(s;,s’)=fs, In
let (s;,X) =ks,; In
lets, =g (s,,S) In (S,,X)

April 2005 37

1st Class Regions

At the target level, regions are 1stclass!
e Can export newrgn & freergn to the source.
 No LIFO constraints needed!
e Source-level 15t class region: dp.(cap p ® IT[p])

We can open such a region to regain the
convenience of the monadic threading:

8p.cap p —o
8a,0,. (80,.«0, < 0,7 —o «p € 0,71 —° «RGN 0, a~)
—o RGN o, (Cap p ® o)

* So the monad is purely a convenience.

April 2005 38

Unigque Pointers

These are just a degenerate case of 15t class
regions: dp.(cap p ® !ptr p 1)

We can deallocate these at will!
 In practice, we split cap p into two capabilities.
* One (access p) lets us access p.
* The other (alloc p) lets us allocate in p.
e Only the alloc capability is needed at run-time.
e S0 a unigque pointer is: dp.(access p &® !ptr p 1)

e Can “open” a unique pointer to again regain
convenience of monadic abstraction.

April 2005 39

Recap:

e At source-level, we seem to have a variety of
memory mgmt. facilities:

o Stack allocation, lexical regions, 15t class regions,
unique pointers, ...

 They'’re all useful in practice.

* The target exposes the commonalities:

e Linear capabilities for access control ensure state
IS single-threaded and eventually reclaimed.

 Monadic encapsulation is purely a convenience
(implicit threading of capabillities).

* That convenience has a price: LIFO.

* Fortunately, we don’t have to encapsulate.

April 2005 40

Future Work:

* Need to fill in all of the detalls.

* Need to phase-split capabillities.

 In practice, need affine, linear, and
unrestricted types to model Cyclone.

 Modeling other languages:

o Alias types, Cqual: require only a slight
refinement where we have two kinds of
pointers (ephemeral vs. persistent).

e Vault: still need to account for adoption

and suspect that relevant types play role.

April 2005

41

	Simplifying Regions
	The Cyclone Safe-C Project
	Some Cyclone Users
	C vs. Cyclone vs. Java
	Memory Management
	The Flexibility Pays: MediaNET
	A Model?
	Outline
	The Tofte-Talpin Region Calculus
	Runtime Organization
	Typing
	Letregion
	Example:
	Example:
	Example:
	Example:
	Example:
	Example:
	Example:
	Example:
	Subtyping
	Core Cyclone to F+RGN
	Type Constructors
	Translation Essence:
	Monadic Operations
	Primitives:
	Notes:
	New Target: Linear F + regions
	Types:
	Primitives:
	Dynamics
	Encoding F+RGN Types
	Encoding Monadic Primitives:
	Encoding Let-region
	Encoding New and Read:
	Subrgn
	1st Class Regions
	Unique Pointers
	Recap:
	Future Work:

