Simplifying Regions

Greg Morrisett

Harvard University
Collaborators: Matthew Fluet \& Amal Ahmed

The Cyclone Safe-C Project

Primary goal: type-safety

Secondary goal: retain virtues of C

- C programmers should feel comfortable.
- It should be easy to interoperate with legacy C.
- Most importantly, costs should be manifest:
- Programmers can understand the physical layout of data structures by looking at the types.
- Programmers can avoid overheads of run-time tags and checks by programming with certain idioms.
- Want this to be suitable for real-time and embedded settings where space and time may be scarce.

Some Cyclone Users

- In-kernel Network Monitoring [Penn]
- MediaNet [Maryland \& Cornell]
- Open Kernel Environment [Leiden]
- RBClick Router [Utah]
- xTCP [Utah \& Washington]
- Lego Mindstorm on BrickOS [Utah]
- Cyclone on Nintendo DS [AT\&T]
- Scheme run-time \& interpreter
- Cyclone compiler, tools, \& libraries
- Over 100 KLOC
- Plus many sample apps, benchmarks, etc.

C vs. Cyclone vs. Java

Cyclone vs. Java

Macro-benchmarks:

We have also ported a variety of security-critical applications where we see little overhead (e.g., 3% throughput for the Boa Webserver.)

C vs. Cyclone Throughput on Boa Webserver

Memory Management

A range of options:

- Heap allocation with conservative GC
- Lexical Regions
- Stack allocation
- Lexical arena allocation
- Tofte \& Talpin + region subtyping
- $1^{\text {st }}$ class Regions
- Enables "tail-calls" -- can code copying GC
- Unique pointers
- Enables reclamation of individual objects

Each has different tradeoffs.

The Flexibility Pays: MediaNET

TTCP benchmark (packet forwarding):
Cyclone v.0.1 (lexical regions \& BDW GC)

- High water mark: 840 KB
- 130 collections
- Basic throughput: $50 \mathrm{MB} / \mathrm{s}$

Cyclone v. 0.5 (unique ptrs + dynamic regions)

- High water mark: 8 KB
- 0 collections
- Basic throughput: 74MB/s

A Model?

The combination of lexical regions, unique pointers, region subtyping, etc. makes the meta-theory of Cyclone a nightmare.

- Gave up on usual syntactic proof.

At the heart of the problem:

- Certain types are "ephemeral".
- The interaction between persistent and ephemeral types is extremely subtle.
- Polymorphism really complicates things.
- Same issue arises in many other settings: TAL(T), Vault, Cqual, Haskell's runST, ...

Outline

Core Cyclone \rightarrow F+RGN [ICFP'04]

- Effects map to an indexed store monad
- Coercion-based interpretation of subtyping

F+RGN \rightarrow Linear F+Stores

- Monad abandoned in favor of linearity.
- Regions become 1st-class, unique pointers fall out as a special case.
- Developing a semantic model of the target.
- Believe it serves as foundation for Cqual, Vault, etc.

The Tofte-Talpin Region Calculus

Operationally:

- Memory is divided into regions (ρ)
- Objects are allocated in a region: $(3,2) @ \rho$
- Regions are created and destroyed with a lexically-scoped construct:

letregion ρ in e

- All objects allocated in ρ are deallocated at the end of p's scope.
- Region names can be passed into functions to support a "callee-allocates in caller's region idiom."

Runtime Organization

Regions are linked lists of pages.

Arbitrary inter-region references.

Similar to arena-style allocators.
runtime stack

Typing

- Pointer types indicate referent's region: (int,int)@ ρ
- The type system tracks the set φ of regions that are accessed when a computation is run: $\Gamma>\mathrm{e}: \mathrm{T}, \varphi$
- Function types include a latent effect:

$$
\mathrm{T}_{1} \xrightarrow{\varphi} \mathrm{~T}_{2}
$$

- The role of φ is to tell us when it's not safe to deallocate a region.

Letregion

The typing for letregion is subtle:

$$
\frac{\Gamma>\mathrm{e}: \tau, \varphi \quad \rho \notin \operatorname{FRV}(\Gamma, \tau)}{\Gamma>\text { letregion } \rho \text { in } \mathrm{e}: \tau, \varphi \backslash \rho}
$$

In particular, pointers into ρ can escape the scope of the letregion.

Example:

letregion ρ in
let $\mathrm{x}=(1,2) @ \rho$ in
let $z=(3,4) @ \rho^{\prime}$ in
let $w=(x, z) @ \rho^{\prime}$ in
$\lambda y . \# 1(\# 2 w)+y \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$

Example:

letregion ρ in
let $x=(1,2) @ \rho$ in

let $\mathrm{z}=(3,4) @ p^{\prime}$ in
let w=(x,z)@ p' in
$\lambda y . \# 1(\# 2 \mathrm{w})+\mathrm{y} \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$

Example:

letregion ρ in
let $x=(1,2) @ \rho$ in

let $z=(3,4) @ \rho^{\prime}$ in

let w=(x,z)@ p' in
$\lambda y . \# 1(\# 2 w)+y \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$

Example:

letregion ρ in
let $\mathrm{x}=(1,2) @ \rho$ in

let $z=(3,4) @ \rho^{\prime}$ in

$$
\rho=(1,2)
$$

let $w=(x, z) @ \rho^{\prime}$ in
$\lambda y . \# 1(\# 2 w)+y \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$

Example:

letregion ρ in
let $x=(1,2) @ \rho$ in
(3,4)
let $z=(3,4) @ \rho^{\prime}$ in

let $w=(x, z) @ p^{\prime}$ in
$\lambda y . \# 1(\# 2 w)+y \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$

Example:

letregion ρ in
let $\mathrm{x}=(1,2) @ \rho$ in
let $z=(3,4) @ \rho^{\prime}$ in
let $w=(x, z) @ \rho^{\prime}$ in
$\lambda y . \# 1(\# 2 w)+y \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$

Example:

letregion ρ in
let $\mathrm{x}=(1,2) @ \rho$ in
let $z=(3,4) @ \rho^{\prime}$ in
let w=(x,z)@ p' in
$\lambda y . \# 1(\# 2 w)+y \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$
 closure

Example:

letregion ρ in
let $\mathrm{x}=(1,2) @ \rho$ in
let $\mathrm{z}=(3,4) @ \rho^{\prime}$ in
let $w=(x, z) @ \rho^{\prime}$ in
$\lambda y . \# 1(\# 2 w)+y \quad: \quad$ int $\xrightarrow{\left\{\rho^{\prime}\right\}}$ int, $\left\{\rho^{\prime}\right\}$

closure
Pointers are persistent, regions aren't...

Subtyping

Tofte \& Talpin's effect weakening:

$$
\frac{\Gamma \triangleright \mathrm{e}: \tau, \varphi \quad \varphi \subseteq \varphi^{\prime}}{\Gamma \triangleright \mathrm{e}: \tau, \varphi^{\prime}}
$$

Cyclone's region "outlives":

$$
\frac{\Gamma \triangleright \rho \leq \rho^{\prime}}{\Gamma \triangleright \tau @ \rho \leq \tau @ \rho^{\prime}}
$$

$$
\frac{\Gamma, F R V(\Gamma) \leq \rho>\mathrm{e}: \tau, \varphi \quad \rho \notin \mathrm{FRV}(\Gamma, \tau)}{\Gamma>\text { letregion } \rho \text { in } \mathrm{e}: \tau, \varphi \backslash \rho}
$$

Core Cyclone to F+RGN

The source language is complicated by:

- Effects: sets of regions
- Subtyping, letregion, polymorphism.

Choose as intermediate language:

- CBV System-F plus...
- An indexed monad family: RGN $\sigma \tau$
- Inspired by Haskell's ST monad.
- Key: run can be provided in the language.
- Eliminate subtyping via coercions

Type Constructors

RGN $\sigma \tau$
computation running in store σ producing a τ. ptr $\rho \tau$
pointer into region ρ holding a τ value.
$\rho \in \sigma$
a proof that σ includes the region ρ
$\sigma_{1} \leq \sigma_{2} \quad\left[=8 \rho .\left(\rho \in \sigma_{1}\right)!\left(\rho \in \sigma_{2}\right)\right]$
a proof of store inclusion

Translation Essence:

$8 \sigma .\left(\rho_{1} \in \sigma\right)!\left(\rho_{2} \in \sigma\right)!\left(\rho_{3} \in \sigma\right)!$ (ptr ρ_{1} int) ! RGN σ (ptr ρ_{3} int)

Monadic Operations

return : 8 $\alpha, \sigma . \alpha!$ RGN $\sigma \alpha$
then : $8 \alpha, \beta, \sigma$. RGN $\sigma \alpha$!
$(\alpha!R G N \sigma \beta)!$ RGN $\sigma \beta$

- Can only sequence in same store.
- Need some way to lift computations in substores
run : 8 α. (8б. RGN $\sigma \alpha$)! α
- Note that α cannot mention σ !
- Quite similar to letregion.

Primitives:

new:

$$
8 \alpha, \sigma, \rho \cdot \alpha!(\rho \in \sigma)!\text { RGN } \sigma(\operatorname{ptr} \rho \alpha)
$$

read:

$$
8 \alpha, \sigma, \rho \cdot \operatorname{ptr} \rho \alpha!(\rho \in \sigma)!\text { RGN } \sigma \alpha
$$

letRGN:

$$
\begin{gathered}
8 \alpha, \sigma_{1} \cdot\left(8 \sigma_{2} \cdot\left(\sigma_{1} \leq \sigma_{2}\right)!\left(\rho \in \sigma_{2}\right)!\text { RGN } \sigma_{2} \alpha\right) \\
!R G N \sigma_{1} \alpha
\end{gathered}
$$

subRGN :

$$
8 \alpha, \sigma_{1}, \sigma_{2} \cdot\left(\sigma_{1} \leq \sigma_{2}\right)!\text { RGN } \sigma_{1} \alpha!\text { RGN } \sigma_{2} \alpha
$$

Notes:

We constructed an operational model and proved a soundness result at this level, as well as the correctness of the translation.

In practice, you need to phase-split the evidence (e.g., $\rho \in \sigma$) and coercions.

F+RGN is somewhat simpler than T.T. and sheds light on regions and Haskell's ST, but not $1^{\text {st }}$ class regions or unique pointers.

New Target: Linear F + regions

- We'll use a linear version of F similar to Walker \& Watkins.
- We'll eliminate the RGN monad in favor of explicit store-passing but use linearity to ensure store remains singlethreaded.
- Unique pointers \& $1^{\text {st }}$ class regions pop out for free...

Types:

T ::= α | int
$\begin{array}{ll}\mid \operatorname{ptr} \rho \mathrm{T} & \text { (pointer into region } \rho \text {) } \\ \mid \operatorname{cap} \rho & \text { (capability for region } \rho \text {) }\end{array}$
| 1 | $\mathrm{T}_{1} \otimes \mathrm{~T}_{2}$
$\mid T_{1}$ —o T_{2}
!T
| 8α.T | 8p.T
| ヨa.T | ヨ. .T

Primitives:

newrgn : 1 —. ヨp.cap ρ
freergn : 8p.cap $\rho \longrightarrow 1$
new : $8 \alpha, \rho .!\alpha-$ cap $\rho —$ cap $\rho \otimes!p t r ~ \rho!\alpha$ read : $8 \alpha, \rho . p$ tr $\rho!\alpha-$ cap $\rho —$ cap $\rho \otimes!\alpha$

Dynamics

Mostly just CBV lambda calculus.
Semantic values:

- $\operatorname{ptr} \rho \tau \approx$ Loc $_{\rho}$
- cap $\rho \approx \operatorname{Loc}_{\rho} \rightarrow$ Val
- NB: !(cap $\rho) \approx \varnothing$

We actually use a step-indexed model a la Appel \& McAllester to avoid problems with recursive types.

Encoding F+RGN Types

«int $=$!«intᄀ
«ptr $\sigma \tau \neg=$!ptr σ « τ
$\ll \tau_{1}!\tau_{2} \neg=!\left(<\tau_{1} \neg — \lll \tau_{2} \neg\right)$
$« R G N \sigma \tau \neg=\sigma — \sigma \otimes \ll \tau \neg$
$« \rho \in \sigma \neg=!\exists \sigma^{\prime} \cdot\left(\sigma — \circ \sigma^{\prime} \otimes \operatorname{cap} \rho\right) \otimes$
$\left(\sigma^{\prime} \otimes \operatorname{cap} \rho-\circ \sigma\right)$
$\sigma_{1} \leq \sigma_{2} \neg=!\exists \sigma^{\prime} \cdot\left(\sigma_{2} \longrightarrow \sigma_{1} \otimes \sigma^{\prime}\right) \otimes$

$$
\left(\sigma_{1} \otimes \sigma^{\prime}-\sigma_{2}\right)
$$

April 2005

Encoding Monadic Primitives:

Just store-passing:
«returnᄀ = $\Lambda \alpha, \sigma \cdot \lambda x:!\alpha \cdot \lambda s: \sigma \cdot(s, x)$
«thenᄀ $=\Lambda \alpha, \beta, \sigma$.
$\lambda f: « R G N \sigma \alpha \neg$. $\lambda g:!(!\alpha-\ll R G N \sigma \beta \neg)$. $\lambda s: \sigma$. let $\left(s^{\prime}, y\right)=f$ s ing y s'

Encoding Let-region

«letRGNᄀ =
$\Lambda \alpha, \sigma_{1} \cdot \lambda f: « 8 \sigma_{2} . \sigma_{1} \leq \sigma_{2}!\rho \in \sigma_{2}!$ RGN $\sigma_{2} \alpha \neg$.
$\lambda s: \sigma_{1}$.
unpack [ρ, c] = newrgn () in
let $w_{2}=\operatorname{pack}\left[\sigma_{1},(i d, i d)\right]: \mu \rho \in\left(\sigma_{1} \otimes \operatorname{cap} \rho\right) \neg$ in
let $w_{1}=\operatorname{pack}[c a p \rho,(i d, i d)]:<\sigma_{1} \leq\left(\sigma_{1} \otimes \operatorname{cap} \rho\right) \neg$ in let $((\mathrm{s}, \mathrm{c}), \mathrm{x})=\mathrm{f}\left[\sigma_{1} \otimes \operatorname{cap} \rho\right] \mathrm{w}_{1} \mathrm{w}_{2}(\mathrm{~s}, \mathrm{c})$ in freergn c;
(s, x)
Key: new store is $\sigma_{1} \otimes \operatorname{cap} \rho$

Encoding New and Read:

Use witnesses to get capability from store: «newᄀ = $\Lambda \alpha, \sigma, \rho . \lambda x:!\alpha . \lambda w:<\rho \in \sigma \neg . \lambda s: \sigma$.
unpack $\left[\sigma^{\prime},(\mathrm{f}, \mathrm{g})\right]=\mathrm{w}$ in
let ($\mathrm{s}^{\prime}, \mathrm{c}$) = f s in
let (c, r) = new x c in
let $s=g\left(s^{\prime}, c\right)$ in (s, r)
«readᄀ $=\Lambda \alpha, \sigma, \rho . \lambda x: p t r \rho!\alpha . \lambda w:<\rho \in \sigma \neg . \lambda s: \sigma$.
unpack $\left[\sigma^{\prime},(\mathrm{f}, \mathrm{g})\right]=$ w in
let ($\mathrm{s}^{\prime}, \mathrm{c}$) = f s in
let (c, x) = read r c in
let $\mathrm{s}=\mathrm{g}\left(\mathrm{s}^{\prime}, \mathrm{c}\right)$ in ($\left.\mathrm{s}, \mathrm{r}\right)$
April 2005

Subrgn

Use witness to get sub-store: «subRGNᄀ =

$$
\Lambda \alpha, \sigma_{1}, \sigma_{2} . \lambda w:<\sigma_{1} \leq \sigma_{2} \neg . \lambda k:<R G N \sigma_{1} \alpha \neg .
$$

$$
\lambda \mathrm{S}_{2}: \sigma_{2}
$$

unpack $\left[\sigma^{\prime},(\mathrm{f}, \mathrm{g})\right]=$ w in
let $\left(S_{1}, S^{\prime}\right)=f S_{2}$ in
let $\left(S_{1}, x\right)=\mathrm{K}_{1}$ in
let $S_{2}=g\left(S_{1}, S^{\prime}\right)$ in $\left(S_{2}, x\right)$

$1^{\text {st }}$ Class Regions

At the target level, regions are $1^{\text {st }}$ class!

- Can export newrgn \& freergn to the source.
- No LIFO constraints needed!
- Source-level $1^{\text {st }}$ class region: $\exists \rho$.(cap $\left.\rho \otimes!T[\rho]\right)$

We can open such a region to regain the convenience of the monadic threading:
$8 p . c a p \rho-\circ$

$$
\left.\left.8 \alpha, \sigma_{1} \cdot\left(8 \sigma_{2} \cdot \mu \sigma_{1} \leq \sigma_{2}\right\urcorner — \propto \rho \in \sigma_{2}\right\urcorner — \ll R G N \sigma_{2} \alpha \neg\right)
$$

$-\mathrm{RGN} \sigma_{1}(\operatorname{cap} \rho \otimes \alpha)$

- So the monad is purely a convenience.

Unique Pointers

These are just a degenerate case of $1^{\text {st }}$ class regions: $\exists \rho$.(cap $\rho \otimes$!ptr $\rho \tau)$

We can deallocate these at will!

- In practice, we split cap ρ into two capabilities.
- One (access ρ) lets us access ρ.
- The other (alloc ρ) lets us allocate in ρ.
- Only the alloc capability is needed at run-time.
- So a unique pointer is: $\exists \rho$.(access $\rho \otimes$!ptr $\rho \tau)$
- Can "open" a unique pointer to again regain convenience of monadic abstraction.

Recap:

- At source-level, we seem to have a variety of memory mgmt. facilities:
- Stack allocation, lexical regions, $1^{\text {st }}$ class regions, unique pointers, ...
- They're all useful in practice.
- The target exposes the commonalities:
- Linear capabilities for access control ensure state is single-threaded and eventually reclaimed.
- Monadic encapsulation is purely a convenience (implicit threading of capabilities).
- That convenience has a price: LIFO.
- Fortunately, we don't have to encapsulate.

Future Work:

- Need to fill in all of the details.
- Need to phase-split capabilities.
- In practice, need affine, linear, and unrestricted types to model Cyclone.
- Modeling other languages:
- Alias types, Cqual: require only a slight refinement where we have two kinds of pointers (ephemeral vs. persistent).
- Vault: still need to account for adoption and suspect that relevant types play role.

