
HOSC manuscript No.
(will be inserted by the editor)

Lifting Operators and Laws

Ralf Hinze

Received: date / Accepted: date

Abstract Mathematicians routinely lift operators to structures. For instance, almost every
textbook on calculus lifts addition pointwise to functions: (f + g)(x) = f (x)+ g(x). In this
particular example, the lifted operator inherits the properties of the base-level operator. Does
this hold in general? In order to approach this problem, one has to make the concept of lifting
precise. I argue that lifting can be defined generically using the notion of an applicative
functor or idiom. In this setting, the paper answers two questions: “Which lifted base-level
identities hold in every idiom?” and “Which idioms satisfy every lifted base-level identity?”

Keywords lifting · applicative functor · idiom · idiom homomorphism · environment
idiom · monad · combinators · environment model · generalised algebraic datatypes

CR Subject Classification D.1.1 [Programming Techniques]: Applicative (Functional)
Programming · D.2.4 [Software/Program Verification]: correctness proofs, formal methods ·
D.3.2 [Programming Languages]: Language Classifications — applicative (functional)
languages · F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs — mechanical verification

1 Introduction

Mathematicians routinely lift operators to structures so that, for example, ‘+’ not only de-
notes addition, but also addition lifted pointwise to sets, A+B = {a+b | a ∈ A, b ∈ B}, or
addition lifted pointwise to functions, (f +g)(x) = f (x)+g(x).

Haskell programmers routinely lift operators to container types so that ‘+’ not only
adds two integers or two floating point numbers, but also adds two elements of a pointed
type (Maybe τ in Haskell, τ option in Standard ML), or sequences two parsers adding their
semantic values.

I used lifting extensively in recent papers on codata (Hinze 2008, 2009a,b), where ‘+’
either zips two streams or two infinite trees adding corresponding elements. The papers are

R. Hinze
Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, England
Tel.: +44-1865-610700
Fax: +44-1865-283531
E-mail: ralf.hinze@comlab.ox.ac.uk

2 R. Hinze

mainly concerned with proofs, and I mentioned in passing that the usual arithmetic laws also
hold when lifted to streams or infinite trees. I considered this statement to be self-evident, so
I did not even bother to prove it. Lifting is, however, a more general concept and, in general,
the situation is not so clear cut. For example, while lifted associativity (x+y)+z = x+(y+z)
holds in all the example structures above, lifted commutativity x+y = y+x fails for parsers,
and the lifted version of x∗0 = 0 fails for sets, pointed types and parsers.

I have referred to lifting as a general notion, but is there actually a mathematical concept
that unites sets, functions, pointed types, parsers, streams and infinite trees? It turns out that
the concept of an applicative functor or idiom (McBride and Paterson 2008) perfectly fits the
bill. (‘Idiom’ was the name McBride originally chose, but he and Paterson now favour the
less evocative term ‘applicative functor’. I prefer the former over the latter, not least because
it lends itself nicely to adjectival uses, as in ‘idiomatic expression’. As an aside, Leroy’s
parametrised modules (1995) are a completely different kind of ‘applicative functor’.) In a
nutshell, idioms are functors with two additional operations that allow us to lift functions
such as ‘+’ to the functorial structure — but nothing more.

One can then extend the notion of lifting to applicative expressions and equations in the
obvious way: we replace functions by their lifted counterparts and let variables range over
the idiomatic structure. The examples above demonstrate that not every lifted law holds in
every idiom. Can you spot a pattern? The purpose of this paper is exactly this, to identify
patterns. In particular, it answers the following questions:

1. Which lifted base-level identities hold in every idiom?
2. Which idioms satisfy every lifted base-level identity?

In addition, the paper also explores some of the middle ground.
The rest of the paper is structured as follows. Section 2 provides a gentle introduction to

idioms. Section 3 introduces idiomatic expressions and answers the first question (Normal-
form Lemma). Sections 4, 5 and 6 answer the second question (Lifting Lemma). Section 7
explores the middle ground. Finally, Section 8 reviews related work.

The paper assumes some knowledge of the functional programming language Haskell
(Peyton Jones 2003). In particular, we shall use Haskell both for the examples and as a
meta-language for the formal development. For reference, Appendix A lists the standard
combinators used in the main text.

2 Idioms

Categorically, idioms are strong lax monoidal functors (Mac Lane 1998). Programmatically,
idioms arose as an interface for parsing combinators (Röjemo 1995). In Haskell, we can
express the interface by a type class:

infixl 6 �
class Idiom ι where

pure :: α → ι α

(�) :: ι (α → β)→ (ι α → ι β).

The constructor class abstracts over a container type; it introduces an operation for embed-
ding a value into a structure, and an application operator that takes a structure of functions
to a function that maps a structure of arguments to a structure of results. Like ordinary ap-
plication, idiomatic application associates to the left. For reasons that become clear later on,
we refer to pure a as a pure computation and to arbitrary elements of the container type as
(potentially) impure computations.

Lifting Operators and Laws 3

In the case of parsing combinators, ι τ is the type of a parser that returns a semantic value
of type τ; pure a parses the empty string (it always succeeds) and returns a as the semantic
value; the parser p � q sequences p and q and returns the semantic value of p applied to the
semantic value of q.

As a matter of fact, the first combinator-parsing libraries used a slightly different inter-
face (Hutton 1992):

infixl 6 ?
map :: (α → β)→ (ι α → ι β)
unit :: ι ()
(?) :: ι α → ι β → ι (α,β),

which happens to capture the categorical notion of a strong lax monoidal functor and which
is equivalent to the interface above (McBride and Paterson 2008). The function map defines
the morphism part of the functor ι , unit creates a structure of empty tuples, and ‘?’ turns a
pair of structures into a structure of pairs (the description doesn’t quite match the type as
Haskell’s binary operators are always curried). The two sets of operations are inter-definable,
see below, and we will freely mix them.

map f u = pure f � u
unit = pure ()
u ? v = pure (,) � u � v

pure a = map (const a) unit
u � v = map app (u ? v)

The curious ‘(,)’ is Haskell’s pairing constructor; const and app are defined in Appendix A.
We shall refer to the first interface as the asymmetric interface. In line with the language

Haskell, it favours curried functions, whereas the second interface, the symmetric interface,
is tailored towards the first-order language of category theory.

All the examples given in the introduction have the structure of an idiom. For instance,
here is the instance declaration that turns the environment functor τ → into an idiom:

instance Idiom (τ →) where
pure a = λx→ a
u � v = λx→ (u x) (v x).

Interestingly, pure is the combinator K and ‘�’ is the combinator S from combinatory logic
(Curry and Feys 1958).

The identity type constructor, Id α = α , is an idiom. Idioms are closed both under type
composition, (φ ·ψ) α = φ (ψ α), and type pairing, (φ ×ψ) α = (φ α,ψ α). Every monad
is an idiom, but not the other way round. In other words, idioms are weaker than monads and
consequently more general. In particular, Haskell’s predefined monad of IO computations is
an idiom:

instance Idiom IO where
pure a = return a
u � v = do {f ← u;x← v;return (f x)}.

So, pure is return and ‘�’ is implemented using two monadic binds. Non-commutative mon-
ads such as IO and [] (the list monad) give, in fact, rise to two idioms as the order in which u
and v are executed is significant. As as aside, the proximity to monads inspired the termi-
nology of pure and impure computations.

Every instance of Idiom must satisfy four laws:

pure id � u = u (idiom identity)

pure (·) � u � v � w = u � (v � w) (idiom composition)

pure f � pure x = pure (f x) (homomorphism)

u � pure x = pure (� x) � u. (interchange)

4 R. Hinze

The ‘�’ in pure (� x) lives in the identity idiom, that is, (� x) takes a function and applies it
to x.

The laws imply a normalform: every idiomatic expression can be rewritten into the form
pure f � u1 � · · · � un, a pure function applied to impure arguments. We shall prove this claim
in Section 3.3. Put differently, applicative functors or idioms capture the notion of lifting:
λu1 · · · un→ pure f � u1 � · · · � un is the lifted version of the nary function f (assuming that f
is curried). For instance, the environment idiom τ → captures lifting operators to function
spaces: pure (+) � f � g = S (S (K (+)) f) g = λx→ f x+g x.

Above we have used the asymmetric interface, which assumes curried functions as the
norm. For the symmetric interface, there is a corresponding set of six laws:

map id u = u (functor identity)

map (f · g) u = map f (map g u) (functor composition)

map (f × g) (u ? v) = map f u ? map g v (naturality of ?)

map snd (unit ? v) = v (left identity)

map fst (u ? unit) = u (right identity)

map assocl (u ? (v ? w)) = (u ? v) ? w, (associativity)

and a corresponding notion of normalform: every idiomatic expression can be rewritten into
the form map f (u1 ? · · · ? un), a pure function applied to a tuple of impure arguments (here
f is uncurried).

We should note that currying is valid in every idiomatic structure, pure (curry f) � u �
v = pure f � (u ? v), where curry f x y = f (x,y), as a somewhat lengthy calculation shows:

pure f � (u ? v)

= { definition of ‘?’ }
pure f � (pure (,) � u � v)

= { idiom composition }
pure (·) � pure f � (pure (,) � u) � v

= { idiom homomorphism }
pure (f ·) � (pure (,) � u) � v

= { idiom composition }
pure (·) � pure (f ·) � pure (,) � u � v

= { idiom homomorphism }
pure ((f ·) · (,)) � u � v

= { ((f ·) · (,)) x y = (f · (x,)) y = f (x,y) = f (x,y) = curry f x y }
pure (curry f) � u � v.

The proof involves a lot of plumbing, which is typical of reasoning with idioms. Clearly,
lifting the definitional equality curry f x y = f (x,y) should involve less work. (The statement
can, in fact, be generalised to pure curry � f � u � v = f � (u ? v), whose even more laborious
proof is left as an exercise to the reader.)

The interchange law allows us to swap pure and impure computations. This move possi-
bly brings together pure computations, which we can subsequently merge using the homo-
morphism law. However, we cannot interchange impure computations, for instance, the IO
computation putStr "hi" ? putStr "ho" is different from putStr "ho" ? putStr "hi". These

Lifting Operators and Laws 5

observations already hint at the answer to the first question, “Which lifted base-level identi-
ties hold in every idiom?” Let us consider an example first. The following calculation shows
that lifted associativity holds in every idiom:

pure (+) � u � (pure (+) � v � w)

= { Normalform Lemma }
pure (λx y z→ x+(y+ z)) � u � v � w

= { x+(y+ z) = (x+ y)+ z }
pure (λx y z→ (x+ y)+ z) � u � v � w

= { Normalform Lemma }
pure (+) � (pure (+) � u � v) � w.

The variables u, v and w range over the idiomatic structure, so they are potentially impure.
Since the variables appear in the same order on both sides of the equation, we can normalise
both sides and then apply the base-level identity. This approach does not work if the vari-
ables appear in a different order. We can still apply the Normalform Lemma, however, the
two sequences of impure expressions won’t match. The approach also fails if a variable ap-
pears more than once. In this case, we can’t apply the base-level identity as the following
example illustrates. Consider the made-up law x ⊕ x = x ⊗ x where ‘⊕’ and ‘⊗’ are some
invented operators. The lifted version of the law, pure (⊕) � u � u = pure (⊗) � u � u, is
already in normalform. However, the base-level identity does not imply (⊕) = (⊗), which
is equivalent to x ⊕ y = x ⊗ y. And indeed, in the IO idiom readLn ⊕ readLn is different
from readLn⊗ readLn as the two input statements possibly yield different values.

Now, to formalise the Normalform Lemma we have to make the syntax and semantics
of idiomatic expressions precise. This is what we do next. We employ Haskell also for
the formal development, making intensive use of generalised algebraic datatypes, a recent
extension to the language (Hinze 2003; Peyton Jones et al. 2006).

3 The ι-calculus

3.1 Syntax

An idiomatic expression is basically a binary leaf tree, where the inner nodes represent
applications and the outer nodes represent constants (pure computations) and variables (im-
pure computations). Since we are only interested in well-formed expressions, we represent
variables by De Bruijn indices and bake the typing rules into the datatype declaration:

data Ix ::∗→ ∗→ ∗ where
Zero :: Ix (ρ,α) α

Succ :: Ix ρ β → Ix (ρ,α) β

data Term ::∗→ ∗→ ∗ where
Con :: α → Term ρ α

Var :: Ix ρ α → Term ρ α

App :: Term ρ (α → β)→ Term ρ α → Term ρ β .

An element of type Ix ρ τ is a De Bruijn index of type τ relative to the typing context ρ . For
instance, Zero ::Ix ((ρ,τ1),τ0) τ0 and Succ Zero ::Ix ((ρ,τ1),τ0) τ1. For the purposes of this
paper, the typing context is always a left-nested product type. Likewise, an element of type

6 R. Hinze

Term ρ τ is a well-formed term of type τ relative to the typing context ρ . As an example,
the idiomatic expression pure (+) � u � v, where u and v are variables, is represented by

ex1 :: Term ((ρ, Integer), Integer) Integer
ex1 = App (App (Con (+)) (Var (Succ Zero))) (Var Zero).

We sometimes use numeric literals for De Bruijn indices and abbreviate App u v by u :� v.
With these conventions in place, ex1 can be written more succinctly as Con (+) :� 1 :� 0.

For the symmetric interface we introduce a corresponding set of constructors:

Map :: (α → β)→ (Term ρ α → Term ρ β)
Unit :: Term ρ ()
Pair :: Term ρ α → Term ρ β → Term ρ (α,β).

For conciseness of notation, we usually write Pair infix as :?.

3.2 Semantics

Turning to the semantics of idiomatic terms, we first define the notion of an environment:

data Env :: (∗→ ∗)→∗→ ∗ where
Empty :: Env ι ()
Push :: Env ι ρ → ι α → Env ι (ρ,α).

The type Env is parametrised by the idiom and the typing context. An element of type
Env ι ρ is a well-formed environment in the typing context ρ that contains ι structures.
We abbreviate Empty by 〈〉 and Push η u by 〈η ,u〉. As an example, a suitable environment
for interpreting the term ex1 is

η1 :: Env (Integer→) (((), Integer), Integer)
η1 = 〈〈〈〉,λn→ 2∗n〉,λn→ 2∗n+1〉.

Here ι is instantiated to the environment idiom Integer→ . Consequently, the entries are
functions from the integers.

Like the syntax, the semantics is split into two parts: we provide semantic equations for
De Bruijn indices and semantic equations for idiomatic terms.

acc :: Ix ρ α → Env ι ρ → ι α

acc Zero 〈η ,u〉= u
acc (Succ n) 〈η ,u〉= acc n η

I JK :: (Idiom ι)⇒ Term ρ α → Env ι ρ → ι α

I JCon uKη = pure u
I JVar nKη = acc n η

I JApp e1 e2Kη = I Je1Kη �I Je2Kη

The function acc looks an index up in the environment; I JeKη interprets the term e in the
environment η . As an example,

I Jex1Kη1 = pure (+) � (λn→ 2∗n) � (λn→ 2∗n+1) = λn→ 4∗n+1.

The idiomatic structure in which the term is interpreted is implicitly provided by the class
context. In the example above, ι is instantiated to the environment idiom Integer→ because
of η1’s type.

If e is a closed term, we abbreviate I JeK〈〉 by I JeK. Two terms e1 and e2 of type
Term ρ τ are equivalent iff I Je1Kη = I Je2Kη for all idioms ι and for all environments of
type Env ι ρ .

Lifting Operators and Laws 7

3.3 Normalisation

Lemma 1 (Normalform) Let e be an idiomatic term that contains the list of variables
Var i1, . . . , Var in. Then e is equivalent to

1. Con f :� Var i1 :� · · · :� Var in for some suitable f , and to
2. Map g :� (Var i1 :? · · · :? Var in) for some suitable g.

Proof Part 1 is the curried version of Part 2, so it suffices to prove the latter. Since we have
formalised the syntax and semantics of idiomatic expressions in Haskell, we can actually
program the normalisation. Assuming the symmetric interface, we proceed in two steps.
First, we move all occurrences of Map to the front: e is transformed into Map f u where u
is a nested pair of variables and units. Second, we turn u into a left-linear tree, that is, a
‘snoc-list’ of variables.

norm :: Term ρ α → Term ρ α

norm e = case norm1 e of Map f u→ case norm2 u of Map g v→Map (f · g) v

Both transformations return a term of the form Map f u.

norm1 :: Term ρ α → Term ρ α

norm1 (Var n) = Map id (Var n) -- functor identity
norm1 (Map f e) = -- functor composition

case norm1 e of Map g u→Map (f · g) u
norm1 Unit = Map id Unit -- functor identity
norm1 (e1 :? e2) = -- naturality of ?

case (norm1 e1,norm1 e2) of (Map f1 u1,Map f2 u2)→Map (f1 × f2) (u1 :? u2)

Each equation is based on the idiom law listed in the comment on the right.
The correctness of the second transformation relies on the monoidal laws.

norm2 :: Term ρ α → Term ρ α

norm2 (Var n) = Map id (Var n) -- functor identity
norm2 Unit = Map id Unit -- functor identity
norm2 (Unit :? e2) =

case norm2 e2 of Map f2 u2→Map (const () M f2) u2 -- left identity
norm2 (e1 :? Unit) =

case norm2 e1 of Map f1 u1→Map (f1 M const ()) u1 -- right identity
norm2 (e1 :? Var n) =

case norm2 e1 of Map f1 u1→Map (f1 × id) (u1 :? Var n)
norm2 (e1 :? (e2 :? e3)) = -- associativity

case norm2 ((e1 :? e2) :? e3) of Map f u→Map (assocr · f) u

Note that id M const () is the inverse of fst :: (α,())→ α . ut

To summarise: The interchange law allows us to swap pure and impure computations,
however, we can neither re-order, nor omit, nor duplicate arbitrary computations. Conse-
quently, only laws that contain the same list of variables on the left- and right-hand side
with no repeated variables are valid in every idiom.

8 R. Hinze

4 The λιK-calculus

Idiomatic expressions are tantalisingly close to expressions of the simply typed lambda-
calculus: we have constants, variables and application; only lambda-abstraction is missing.
It is, of course, easy to add the construct to the syntax

Abs :: Term (ρ,α) β → Term ρ (α → β),

but how can we assign a meaning to it? Borrowing from the semantics of the simply typed
lambda-calculus (Mitchell 1996) we define (in pseudo-Haskell)

I JAbs eKη = the unique f such that ∀u . f � u = I JeK〈η ,u〉.

Clearly, we have to impose further conditions on an idiom in order for this definition to make
sense: An idiom must be extensional so that the postulated ‘function’ is indeed unique and
the idiom must contain “enough elements” to guarantee its existence.

Definition 1 (Extensionality)

– An idiom ι is extensional iff for all f ,g :: ι (σ → τ),

(∀u :: ι σ . f � u = g � u) =⇒ f = g.

– An idiom ι is strongly extensional iff for all f ,g :: ι (σ → τ),

(∀a :: σ . f � pure a = g � pure a) =⇒ f = g.

Clearly, strong extensionality implies extensionality. The environment idiom, for instance,
is strongly extensional, as the following straightforward calculation shows:

∀a :: σ . f � pure a = g � pure a

⇐⇒ { definition of pure and ‘�’ }
∀a :: σ . λx→ (f x) a = λx→ (g x) a

=⇒ { equality of functions }
∀a :: σ ,x :: τ . (f x) a = (g x) a

⇐⇒ { logic }
∀x :: τ . ∀a :: σ . (f x) a = (g x) a

=⇒ { extensionality of functions, twice }
f = g.

The Maybe idiom and the list idiom are also strongly extensional. The set idiom, on the other
hand, is not extensional: f = {const False,const True} and g = {id,not} of type Set (Bool→
Bool) satisfy the antecedent (∀u :: Set Bool . f � u = g � u), but not the consequent (f 6= g).

Definition 2 (Combinatory model condition) An idiom ι has K-combinators iff there exist
elements k :: ι (α → β → α) and s :: ι ((α → β → γ)→ (α → β)→ (α → γ)) satisfying

k � u � v = u

s � u � v � w = (u � w) � (v � w),

for all u, v, w of the appropriate types.

Lifting Operators and Laws 9

In our setting, the existence of k means that we can omit ‘effects’; the existence of s implies
that we can duplicate ‘effects’. If both combinators exist, then we can also re-order ‘effects’.

It is well-known that lambda-abstraction can be simulated with the combinators k, s
and i = s � k � k:

abs :: Term (ρ,α) β → Term ρ (α → β)
abs (Con u) = K :� Con u
abs (Var Zero) = I
abs (Var (Succ n)) = K :� Var n
abs (e1 :� e2) = S :� abs e1 :� abs e2.

Here, K, S and I are the syntactic counterparts of the combinators: I JKKη = k etc.

Lemma 2 (Abstraction) Let ι be an idiom with K-combinators, and let e :: Term (ρ,σ) τ

be an idiomatic term. Then

I Jabs eKη � u = I JeK〈η ,u〉,

for all u :: ι σ and for all environments η :: Env ρ ι .

Proof Using a straightforward induction over the structure of idiomatic terms. ut

Extensionality and the Abstraction Lemma then imply that I is well-defined.
Obvious candidates for k and s are pure K and pure S — note that the combinators have

to be polymorphic. And indeed, if a strongly extensional idiom has K-combinators, then
k = pure K and s = pure S. For instance, the environment idiom has K-combinators:

pure K � u � v

= { definition of pure and ‘�’ }
λx→K (u x) (v x)

= { definition of K }
λx→ u x

= { extensionality }
u,

pure S � u � v � w

= { definition of pure and ‘�’ }
λx→ S (u x) (v x) (w x)

= { definition of S }
λx→ ((u x) (w x)) ((v x) (w x))

= { definition of ‘�’ }
(u � w) � (v � w).

The set idiom, on the other hand, has no k combinator, as u � v � /0 = /0. Likewise, parser
idioms don’t have a k combinator as u � v � fail = fail. Furthermore, a k combinator doesn’t
exist in the IO idiom because u � v � putStrLn "oops" 6= v.

For strongly extensional idioms with K-combinators, left and right identity laws can be
strengthened to

pure fst � (u ? v) = u (1)

pure snd � (u ? v) = v. (2)

The proofs are straightforward noting that curry fst = K and curry snd = K I.
The simplest idiom, the identity idiom Id, is, of course, strongly extensional and it has

K-combinators. For Id, the idiomatic semantics specialises to the standard interpretation of
the simply typed lambda-calculus:

JK :: Term ρ α → Env Id ρ → α

JCon vKη = v
JVar nKη = acc n η

JApp e1 e2Kη = (Je1Kη) (Je2Kη)
JAbs eKη = λu→ JeK〈η ,u〉.

10 R. Hinze

We can write the semantic equations more succinctly in point-free style using the environ-
ment idiom, hence its name.

acc :: Ix ρ α → Env Id ρ → α

acc Zero = snd
acc (Succ n) = acc n · fst

JK :: Term ρ α → Env Id ρ → α

JCon vK = K v
JVar nK = acc n
JApp e1 e2K = S Je1K Je2K
JAbs eK = curry JeK

The point-free definition emphasises the fact that the interpretation function is a catamor-
phism: Con is replaced by K, Var by acc, App by S, and Abs by curry. (Strictly taken, curry
should be defined as curry f x y = f 〈x,y〉; we silently ignore the difference between (,) and
〈,〉.) This definition amounts to the interpretation of the simply typed lambda-calculus in a
cartesian closed category. (Since category theory is a first-order language, S f g is addition-
ally replaced by app · (f M g).)

5 The Lifting Lemma

If an idiomatic term contains no variables, then the Normalform Lemma implies that the
term is equivalent to a pure one — the proof boils down to repeated applications of the
homomorphism law. This statement holds true if abstractions enter the scene. If e is a closed
lambda-term, then

I JeK = pure JeK. (3)

Perhaps surprisingly, this simple statement answers the second question, “Which idioms
satisfy every lifted base-level identity?” This is the case for strongly extensional idioms with
K-combinators. To illustrate, consider the following generic proof of lifted distributivity.
Recall that distributivity does not hold in every idiom, because the list of variables on the
left-hand side and on the right-hand side is different.

pure (∗) � (pure (+) � u � v) � w

= { definition of I }
I JAbs(Abs(Abs(Con(∗) :� (Con(+) :� 2 :� 1) :� 0)))K � u � v � w

= { Lifting Lemma }
pure JAbs(Abs(Abs(Con(∗) :� (Con(+) :� 2 :� 1) :� 0)))K � u � v � w

= { definition of JK }
pure (λx y z→ (x+ y)∗ z) � u � v � w

= { arithmetic }
pure (λx y z→ x∗ z+ y∗ z) � u � v � w

= { definition of JK }
pure JAbs(Abs(Abs(Con(+) :� (Con(∗) :� 2 :� 0) :� (Con(∗) :� 1 :� 0))))K � u � v � w

= { Lifting Lemma }
I JAbs(Abs(Abs(Con(+) :� (Con(∗) :� 2 :� 0) :� (Con(∗) :� 1 :� 0))))K � u � v � w

Lifting Operators and Laws 11

= { definition of I }
pure (+) � (pure (∗) � u � w) � (pure (∗) � v � w)

The structure of the proof is simple; so simple that it could be easily mechanised: we reify the
idiomatic expressions, appeal to the Lifting Lemma and then apply the base-level identity.

In order to prove the Lifting Lemma we need to generalise Equation 3 to terms with
free variables. To this end, we introduce a function, known as an applicative distributor, that
turns an environment of structures into a structure of environments (again, we identify ()
and 〈〉, (,) and 〈,〉):

dist :: (Idiom ι)⇒ Env ι ρ → ι (Env Id ρ)
dist 〈〉 = unit
dist 〈vs,v〉= dist vs ? v.

Lemma 3 (Lifting) Let ι be a strongly extensional idiom with K-combinators, and let e ::
Term ρ τ be a lambda-term. Then

I JeKη = pure JeK � dist η ,

for all environments η :: Env ι ρ .

Proof First of all, strong extensionality implies that k = pure K and s = pure S. The proof
then proceeds by induction over the structure of idiomatic terms. Case e = Con v:

pure JCon vK � dist η

= { definition of JK }
pure (K v) � dist η

= { idiom homomorphism }
pure K � pure v � dist η

= { pure K is the k combinator }
pure v

= { definition of I }
I JCon vKη .

Case e = Var n:

pure JVar nK � dist η

= { definition of JK }
pure (acc n) � dist η

= { proof obligation: pure (acc n) � dist η = acc n η }
acc n η

= { definition of I }
I JVar nKη .

The proof obligation can be discharged by a straightforward induction over the structure of
De Bruijn indices using (1) and (2). Note that the type of n ensures that η is non-empty.

12 R. Hinze

Sub-case n = Zero:

pure (acc Zero) � dist 〈η ,v〉
= { definition of acc and definition of dist }

pure snd � (dist η ? v)

= { (2) }
v

= { definition of acc }
acc Zero 〈η ,v〉.

Sub-case n = Succ m:

pure (acc (Succ m)) � dist 〈η ,v〉
= { definition of acc and definition of dist }

pure (acc m · fst) � (dist η ? v)

= { idiom composition and homomorphism }
pure (acc m) � (pure fst � (dist η ? v))

= { (1) }
pure (acc m) � dist η

= { ex hypothesi }
acc m η

= { definition of acc }
acc (Succ m) 〈η ,v〉.

Case e = App e1 e2:

pure JApp e1 e2K � dist η

= { definition of JK }
pure (S Je1K Je2K) � dist η

= { idiom homomorphism }
pure S � pure Je1K � pure Je2K � dist η

= { pure S is the s combinator }
(pure Je1K � dist η) � (pure Je2K � dist η)

= { ex hypothesi }
I Je1Kη �I Je2Kη

= { definition of I }
I JApp e1 e2Kη .

Case e = Abs e: Let f = I JAbs eKη , then

pure JAbs eK � dist η

= { definition of JK }
pure (curry JeK) � dist η

Lifting Operators and Laws 13

= { proof obligation }
f

= { definition of I }
I JAbs eKη .

The proof of the obligation relies on the assumption that the idiom is strongly extensional
and hence extensional.

pure (curry JeK) � dist η = f

⇐⇒ { extensionality }
pure (curry JeK) � dist η � v = f � v

⇐⇒ { definition of f : the unique element such that ∀u . f � u = I JeK〈η ,u〉 }
pure (curry JeK) � dist η � u = I JeK〈η ,u〉

⇐⇒ { currying, see Section 2 }
pure JeK � (dist η ? u) = I JeK〈η ,u〉

⇐⇒ { definition of dist }
pure JeK � (dist 〈η ,u〉) = I JeK〈η ,u〉

The last equation holds ex hypothesi. ut

Corollary 1 Let ι be a strongly extensional idiom with K-combinators, and let e ::Term () τ

be a closed lambda-term. Then

I JeK = pure JeK.

Proof

I JeK

= { definition of I }
I JeK〈〉

= { Lifting Lemma }
pure JeK � dist 〈〉

= { definition of dist }
pure JeK � pure 〈〉

= { homomorphism }
pure (JeK 〈〉)

= { definition of JK }
pure JeK

ut

So, the generic proof of lifted distributivity (and other base-level identities) requires the
idiom to be strongly extensional. We can fore-go this requirement if we assume instead that
k = pure K and s = pure S. We restrict ourselves to idiomatic terms (no abstraction) and

14 R. Hinze

additionally appeal to the Abstraction Lemma. Here is the first part of the proof modified
accordingly:

pure (∗) � (pure (+) � u � v) � w

= { definition of I }
I JCon(∗) :� (Con(+) :� 2 :� 1) :� 0K〈〈〈〈〉,u〉,v〉,w〉

= { Abstraction Lemma, thrice }
I Jabs(abs(abs(Con(∗) :� (Con(+) :� 2 :� 1) :� 0)))K � u � v � w

= { Lifting Lemma restricted to idiomatic terms }
pure Jabs(abs(abs(Con(∗) :� (Con(+) :� 2 :� 1) :� 0)))K � u � v � w

= { property of JK }
pure (λx y z→ (x+ y)∗ z) � u � v � w.

Since the base-level identity is a first-order equation, the proof nicely goes through.

6 Idiom homomorphisms

In the previous section we have seen that strongly extensional idioms with K-combinators
satisfy every lifted base-level identity. But which idioms actually fall into this category? On
the negative side, the set idiom, pointed types and parser idioms have no k combinator so
the Lifting Lemma is not applicable — we explore a possible remedy in the next section. On
the positive side, the environment idiom has all the required bits and pieces. But what about
streams and infinite trees? It turns out that these structures also satisfy the requirements. In
the rest of this section we explain how to prove this fact.

To start with, here is the definition of streams and the instance declaration that turns the
datatype Stream into an idiom:

data Stream α = Cons {head :: α, tail :: Stream α }
instance Idiom Stream where

pure a = s where s = Cons a s
u � v = Cons ((head u) (head v)) ((tail u) � (tail v)).

Streams are infinite sequences of elements. The type Stream α is like Haskell’s list datatype
[α], except that there is no base constructor so we cannot construct a finite stream.

The crucial insight is that streams are in a one-to-one correspondence to functions from
the natural numbers: Stream α ∼= Nat→ α (Hinze 2000; Altenkirch 2001). A stream can be
seen as the tabulation of a function from the natural numbers:

tabulate :: (Nat→ α)→ Stream α

tabulate f = Cons (f 0) (tabulate (f · (+1))).

Conversely, a function of type Nat→ α can be implemented by looking up a memo-table:

lookup :: Stream α → (Nat→ α)
lookup s 0 = head s
lookup s (n+1) = lookup (tail s) n.

The natural transformations tabulate and lookup are not only mutually inverse, they also
preserve the idiomatic structure.

Lifting Operators and Laws 15

Definition 3 Let ι and κ be idioms. A natural transformation h :: ι α → κ α is an idiom
homomorphism iff h preserves pure computations and idiomatic application, that is,

h (pure a) = pure a (4)

h (u � v) = h u � h v, (5)

for all a, u, v of the appropriate types.

The function pure :: α → ι α itself is a homomorphism from the identity idiom Id to the
idiom ι . Condition 5 for pure is equivalent to the homomorphism law (hence its name).
Tabulation is an idiom isomorphism from Nat→ to Stream, with look-up as its inverse.

Lemma 4 Let ι and κ be idioms, and let h :: ι α → κ α be an idiom isomorphism.

1. If ι is (strongly) extensional, then κ is (strongly) extensional.
2. If ι has K-combinators, then κ has K-combinators.

Proof Straightforward. ut

Since the Stream idiom inherits the properties from the environment idiom, it is strongly
extensional and it has K-combinators. An analogous argument applies to the type of infinite
binary trees

data Tree α = Node {root :: α, left :: Tree α,right :: Tree α },

which is isomorphic to the environment idiom [Bit]→ , where Bit is a two-element type.

7 The λιI-calculus

Several idioms have zero elements, zero � v = zero = u � zero, which precludes the existence
of the combinator k. In the Maybe idiom (τ option in Standard ML), for instance,

data Maybe α = Nothing | Just α

instance Idiom Maybe where
pure a = Just a
Nothing � v = Nothing
Just f � Nothing = Nothing
Just f � Just a = Just (f a),

the ‘added point’ Nothing is the zero element. The existence of k is vital to prove, for in-
stance, the lifted version of x∗0 = 0. However, for many other identities we can do without.
As an example, consider the proof of lifted distributivity in Section 5. The crucial step in the
calculation is the application of

λx y z→ (x+ y)∗ z = λx y z→ x∗ z+ y∗ z.

Note that the bound variables x, y and z appear in both bodies; the two abstractions are so-
called λ I-terms (Church 1941). The λ I-calculus, Church’s original version of the lambda-
calculus, rules out abstractions where the bound variable does not appear in the body. Con-
sequently, K = λx y→ x is not a legal λ I-term. In fact, the essential difference between
λK-terms and λ I-terms is the combinator K: all λK-terms are definable from K and λ I-
terms (Barendregt 1984).

We have seen that abstraction in the λιK-calculus can be simulated with the combina-
tors k and s. For λ I-abstraction a ‘less demanding’ set of combinators is required.

16 R. Hinze

Definition 4 (Weak combinatory model condition) An idiom ι has I-combinators iff there
exist elements i :: ι (α→ α), b :: ι ((β → γ)→ (α→ β)→ (α→ γ)), c :: ι ((α→ β → γ)→
β → (α → γ) and s :: ι ((α → β → γ)→ (α → β)→ (α → γ)) satisfying

i � u = u (6)

b � u � v � w = u � (v � w) (7)

c � u � v � w = (u � w) � v (8)

s � u � v � w = (u � w) � (v � w), (9)

for all u, v, w of the appropriate types.

In the Id idiom, i is the identity id, b is composition ‘·’ and c is Haskell’s flip operator.
We can now replay the development of Sections 4 and 5 for the λιI-calculus. We confine

ourselves to adapting the abstraction operator:

abs′ :: Term (ρ,α) β → Term ρ (α → β)
abs′ (Var Zero) = I
abs′ (e1 :� e2)
| ¬free e1 ∧ free e2 = B :� dec e1 :� abs′ e2
| free e1 ∧ ¬free e2 = C :� abs′ e1 :� dec e2
| free e1 ∧ free e2 = S :� abs′ e1 :� abs′ e2.

The function abs′ requires and maintains the invariant that the variable Zero occurs free in
its argument. The Boolean function free e implements the check Zero ∈ FV(e),

free :: Term ρ α → Bool
free (Con u) = False
free (Var Zero) = True
free (Var (Succ n)) = False
free (e1 :� e2) = free e1 ∨ free e2,

and the function dec adjusts an idiomatic term that does not contain Zero:

dec :: Term (ρ,α) β → Term ρ β

dec (Con u) = Con u
dec (Var (Succ n)) = Var n
dec (e1 :� e2) = dec e1 :� dec e2.

Every idiom possesses two of the four combinators: i = pure I = pure id and b =
pure B = pure (·). Condition (6) and (7) are idiom identity and idiom composition in dis-
guise. Consequently, to establish the weak combinatory model condition it suffices to show
the existence of c and s. Furthermore, if a strongly extensional idiom has I-combinators,
then c = pure C and s = pure S. For instance, the Maybe idiom has I-combinators. On the
other hand, stateful idioms such as IO and parser idioms don’t possess I-combinators as we
can’t re-order or duplicate stateful computations.

The set and the list idiom have no s combinator as a simple cardinality argument shows:
for lists |u � v| = |u| ∗ |v|, but there is no s such that |s| ∗ |u| ∗ |v| ∗ |w| = |u| ∗ |v| ∗ |w|2.
However, the set idiom possesses a c combinator. In other words, there is also a need for a
linear version of the Lifting Lemma. We leave the details to the reader.

Table 1 summarises our findings. The environment idiom and consequently Stream and
Tree satisfy every lifted base-level identity. For the Maybe idiom we have to make sure
that every variable appears on both sides of the equation, and for the set idiom we have to
additionally ensure that there are no repeated variables. For the remaining idioms only the
Lifting Lemma is applicable.

Lifting Operators and Laws 17

ext. str. ext. k s c
τ →

√ √ √ √ √

Stream
√ √ √ √ √

Tree
√ √ √ √ √

Maybe
√ √

no
√ √

Set no no no no
√

[]
√ √

no no no
State

√ √
no no no

Parser
√ √

no no no
IO ? ? no no no

Table 1 Properties of various idioms.

8 Related and future work

Almost every textbook on infinite calculus introduces lifted sums and products,

(f +g)(x) = f (x)+g(x)

(f ·g)(x) = f (x) ·g(x),

so that the differentiation rules can be written down succinctly and attractively:

(f +g)′ = f ′+g′

(f ·g)′ = f ′ ·g+ f ·g′.

(The textbook I resorted to during my studies (Dörfler and Peschek 1988) didn’t quite trust
its own conventions and defined somewhat half-heartedly (f +g)′(x0) = f ′(x0)+g′(x0).) A
formal treatment of lifting is almost always missing. In particular, it goes unnoticed that the
lifted operators inherit the properties of the base-level operators. To the best of the author’s
knowledge this was first enunciated by Backhouse (1989). He writes

“A large number of examples — I have yet to see any proof — suggest that 〈. . .〉,
given any valid judgement 〈. . .〉, any lifted form of the judgement 〈. . .〉 is also valid”.

The Lifting Lemma and its variants generalise and close this case.
The fact that every idiomatic expression can be rewritten into the form pure f � u1 � · · · �

un, a pure function applied to impure arguments, has already been noted by McBride and
Paterson (2008) in their seminal paper on applicative functors.

Applicative functors are closely related to typed applicative structures (Mitchell 1996),
which are used to give a semantics to the simply typed lambda-calculus. Very briefly, an
applicative structure consists of a family of carrier sets Aσ , a type-indexed family of map-
pings Constσ from term constants of type σ to elements of Aσ , and a type-indexed family
of mappings Appσ ,τ :Aσ→τ → (Aσ → Aτ). An extensional structure that has “enough ele-
ments” is then a model, a so-called environment model or Henkin model. In a sense, idioms
are a syntax-free variant of typed applicative structures, replacing the type-indexed set by
a functor and the type-indexed mappings by natural transformations. Because of the close
correspondence, it was straightforward to adapt the notion of an environment model to our
setting.

A couple of problems are left for future work. In particular,

– Is every extensional idiom also strongly extensional?
– If this is not the case, are the combinators always pure embeddings (k = pure K)?

18 R. Hinze

Acknowledgements A big thank you to Daniel James for improving my English and for his heroic effort to
formalise the Lifting Lemma in Coq.

A Standard combinators

id x = x
(f · g) x = f (g x)
const x y = x
flip f x y = f y x
fst (x,y) = x
snd (x,y) = y
(f M g) x = (f x,g x)
(f × g) (x,y) = (f x,g y)
assocl (x,(y,z)) = ((x,y),z)
assocr ((x,y),z) = (x,(y,z))
app (f ,x) = f x
curry f x y = f (x,y)
I x = x
K x y = x
S x y z = (x z) (y z)
B x y z = x (y z)
C x y z = (x z) y

References

Thorsten Altenkirch. Representations of first order function types as terminal coalgebras. In Typed Lambda
Calculi and Applications, TLCA 2001, volume 2044 of Lecture Notes in Computer Science, pages 62–78.
Springer-Verlag, 2001.

Roland Backhouse. Making formality work for us. EATCS Bulletin, 38:219–249, June 1989.
H. P. Barendregt. The Lambda Calculus — Its Syntax and Semantics. North-Holland, Amsterdam New York

Oxford, revised edition, 1984.
Alonzo Church. The calculi of lambda-conversion. Annals of Mathematics Studies No. 6, Princeton Univer-

sity Press, 1941.
H.B. Curry and R. Feys. Combinatory Logic, Volume 1. North-Holland, Amsterdam New York Oxford, 1958.
Willibald Dörfler and Werner Peschek. Einführung in die Mathematik für Informatiker. Hanser Verlag, 1988.
Ralf Hinze. Memo functions, polytypically! In Johan Jeuring, editor, Proceedings of the 2nd Workshop on

Generic Programming, Ponte de Lima, Portugal, pages 17–32, July 2000. The proceedings appeared as
a technical report of Universiteit Utrecht, UU-CS-2000-19.

Ralf Hinze. Fun with phantom types. In Jeremy Gibbons and Oege de Moor, editors, The Fun of Program-
ming, pages 245–262. Palgrave Macmillan, 2003. ISBN 1-4039-0772-2 hardback, ISBN 0-333-99285-7
paperback.

Ralf Hinze. Functional Pearl: Streams and unique fixed points. In Peter Thiemann, editor, Proceedings of the
13th ACM SIGPLAN International Conference on Functional Programming (ICFP ’08), pages 189–200.
ACM Press, September 2008.

Ralf Hinze. Functional Pearl: The Bird tree. J. Functional Programming, 19(5):491–508, September 2009a.
Ralf Hinze. Scans and convolutions—a calculational proof of Moessner’s theorem. In Sven-Bodo Scholz,

editor, Post-proceedings of the 20th International Symposium on the Implementation and Application
of Functional Languages (IFL 2008), University of Hertfordshire, UK, September 10–12, 2008, volume
5836 of Lecture Notes in Computer Science. Springer-Verlag, 2009b.

Graham Hutton. Higher-order functions for parsing. Journal of Functional Programming, 2(3):323–343,
July 1992.

Xavier Leroy. Applicative functors and fully transparent higher-order modules. In Ron K. Cytron and Pe-
ter Lee, editors, Proceedings of the22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), San Francisco, California, January 23–25, pages 142–153. ACM
New York, NY, USA, January 1995.

Saunders Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics. Springer-
Verlag, Berlin, 2nd edition, 1998.

Lifting Operators and Laws 19

Conor McBride and Ross Paterson. Functional Pearl: Applicative programming with effects. Journal of
Functional Programming, 18(1):1–13, 2008.

John C. Mitchell. Foundations for Programming Languages. The MIT Press, Cambridge, MA, 1996.
Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge University Press, 2003.
Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Washburn. Simple unification-

based type inference for GADTs. In Julia Lawall, editor, Proceedings of the eleventh ACM SIGPLAN
international conference on Functional programming, Portland, Oregon, USA, September 18-20, 2006,
pages 50–61. ACM Press, September 2006.

Niklas Röjemo. Garbage collection, and memory efficiency, in lazy functional languages. PhD thesis,
Chalmers University of Technology, 1995.

