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Abstract

We describe a process-algebraic approach to verifying
process interactions for business collaboration described in
Business Process Modelling Notation. We first overview our
process semantics for BPMN in the language of Communi-
cating Sequential Processes; we then use a simple example
of business collaboration to demonstrate how our semantic
model may be used to verify compatibility between business
participants in a collaboration.

1. Introduction

This paper describes a process-algebraic approach
to verifying process interactions for business collabora-
tion described in Business Process Modelling Notation
(BPMN) [2]. BPMN is a graphical modelling notation
adopted by the Object Management Group (OMG) [7].

In our previous work [10] we have given a process se-
mantics to a subset of BPMN in the language of CSP [9], of
which a prototype has subsequently been implemented in
the functional programming language Haskell, and can be
found in our web site 1. In this paper we show how this se-
mantics allows formal reasoning about business-to-business
collaboration where there are multiple business processes
under consideration. Consider, for instance, the simple ex-
ample of an airline ticket reservation shown in Figure 1.

The figure depicts the message flows between two par-
ticipants, the traveller and the travel agent, which are inde-
pendent business processes and may be assumed to have
been constructed separately during the development pro-
cess. Clearly a necessary behavioural property for a suc-
cessful collaboration is compatibility between the partic-
ipants: the mutual consistency of the assumptions each
makes about their interaction. For example, from the trav-
eller participant’s perspective, the behaviour of interest is
the ability to cancel an itinerary by sending a message to the
travel agent participant prior making her ticket reservation,

1http://www.comlab.ox.ac.uk/peter.wong/observation/

while from the travel agent participant’s perspective such a
sequence of tasks might not be allowed. By applying our
semantic model, this property can be verified or disproved
automatically with a model-checker.

The rest of this paper is structured as follows. Sec-
tion 2 gives an introduction to BPMN. Section 3 gives an
overview of our syntactic description of BPMN and its be-
havioural semantics. Our semantic construction starts from
syntax expressed in Z [11], following Bolton and Davies’
work on UML activity graphs [1]. We assume readers have
basic knowledge of the mathematical notations Z [11] and
CSP [9]. The details of our semantic model may be found
in our earlier work [10]; considerations of space preclude
anything more than a brief summary here. We revisit the
example in Sections 4 and 5 and show how our semantics
may be used to verify compatibility between collaboration
participants and how such a property can also be specified in
BPMN. We conclude with a summary and comparing with
related work.

2. BPMN

States in our subset of BPMN [2] can either be pools,
tasks, subprocesses, multiple instances or control gateways;
they are linked by sequence, exception or message flows;
sequence flows can be either incoming to or outgoing from
a state and have associated guards; an exception flow from
a state represents an occurrence of error within the state.
Message flows represent directional communication be-
tween states. A sequence of sequence flow represents a spe-
cific control flow instance of the business process.

A table showing each type of state is presented in Fig-
ure 2. In the figure, a start state models the start of the
business process in the current scope by initiating its outgo-
ing transition. It has no incoming transition and only one
outgoing transition. There are two types of end states, end
and abort. An end state models the successful termination
of an instance of the business process in the current scope
by initialisation of its incoming transition. It has only one
incoming transition with no outgoing transition. The abort
state is a variant end state modelling an unsuccessful termi-



Figure 1. A business collaboration of an airline ticket reservation.

Figure 2. States of BPMN diagram

nation, usually an error of an instance of the business pro-
cess in the current scope.

Also in the figure, each of the xgate, agate and ogate
state types has one or more incoming sequence flows and
one or more outgoing sequence flows. An xgate state is
an exclusive gateway, accepting one of its incoming flows
and taking one of its outgoing flows; the semantics of this
gateway type can be described as an exclusive choice and a
simple merge. An agate state is a parallel gateway, which
waits for all of its incoming flows before initialising all of
its outgoing flows. An ogate state is an inclusive gateway,
accepting one or more incoming sequence flows depending
on their associated guards and initialising one or more of its
outgoing flows also depending on their associated guards.

A task state describes an atomic activity with exactly
one incoming and one outgoing transitions A bpmn state

describes a subprocess state; it is a business process by it-
self and so it models a flow of BPMN states. The bpmn
state shown in Figure 2 is collapsed subprocess state where
all internal details are hidden. This state has exactly one in-
coming and one outgoing transition. Also in Figure 2 there
are graphical notations labelled task* and bpmn*, which de-
pict a task state and a subprocess state with an exception
flow. Each task and subprocess can also be defined as mul-
tiple instances. There are two types of multiple instance in
BPMN: The miseq state type represents sequential multiple
instance, where the specified task is repeated sequentially;
in the mipar state type the specified task is repeated in paral-
lel. The types miseqs and mipars are their subprocess coun-
terparts.

The graphical notation pool in Figure 2 depicts a par-
ticipant within a business collaboration involving multiple
business processes. Each pool forms a container for some
business processes; only one process instance is allowed at
any one time. While sequence flows are restricted to an in-
dividual pool, message flows represent communications be-
tween pools.

3. Syntax and Semantics of BPMN

In this section we summarise our previous syntactic de-
scription and semantic model of BPMN [10]. For reasons
of space, when referring to a function defined in this pre-
vious work, we provide only a type declaration and a brief
description. Given the basic types CName, PName, Task,
Line, Channel, Guard and Message:

[CName,PName,Task,Line,Channel,Guard,Message]



where the following defines subtypes BName and PLName
for subprocess names and BPMN diagram names, and mes-
sage types InMsg, OutMsg, EndMsg and LastMsg axiomat-
ically,

InMsg,OutMsg,EndMsg,LastMsg : P Message
BName,PLName : P PName

for each type of state shown in Figure 2 we provide the cor-
responding syntax in Z [11], here we show only some of
that definition

Type ::= start | end〈〈N〉〉 | abort〈〈N〉〉 | task〈〈Task〉〉 |
bpmn〈〈BName〉〉 | miseq〈〈Task × N〉〉 | agate

The argument of the constructor functions end and abort
represents a unique identifier for each state of type end or
abort; the second argument of the constructor functions
mipar, mipars, miseq and miseqs represent the maximum
number of instances of a task or a subprocess the multiple
instance states can trigger.

We define the type of a sequence flow or an exception
flow by the schema Tns and the type of a message flow by
the schema Msgflow:

Tns =̂ [guard : Guard; line : Line]
Msgflow =̂ [message : Message; channel : Channel]

Each state in a BPMN process has a set of incoming tran-
sitions; depending on the state’s type, one or more of them
might be needed to trigger the state’s execution. Each state
also has a set of outgoing transitions; depending on the
state’s type, one or more of them might be triggered after
the state’s execution. For example, an agate state waits for
all of its incoming transitions before initialising all of its
outgoing transitions. Each task and subprocess state might
also have a set of message flows for receiving messages and
a set for sending messages across participant pools within a
BPMN process. We define states by the schema State.

State =̂ [type : Type; in, out, error : P Tns; loop : N;
send, receive, reply, accept, break : P Msgflow;
exit : P(N × Tns); ]

Each State records the type of its content, the sets of incom-
ing, outgoing and error transitions of schema type Tns, and,
in the case of a subprocess state, a set of number-transition
pairs to align the outgoing transitions of the subprocess with
the exit states in the subprocess. There are also the five sets
of message flows.

We define WCF : P(P State) to be the set of well-
configured sets of well-formed states. The type State allows
all possible states, including those which are not permissi-
ble within a BPMN diagram (for example, a start state with
a non-empty set of incoming transitions, or a task state with

message flows that allows it to send and receive messages
to and from another state within the same participant pool);
the full definition can be found in our earlier paper [10].
Each BPMN diagram encapsulated by a pool represents an
individual business participant in a collaboration, built up
from a well-configured finite set of well-formed states. We
do not allow local states to have type pool, since this rep-
resents the boundary of a business domain. The function
Local represents the environment of the local specification,
and maps each BPMN diagram name of type PLName, a
subtype of PName, to its associated diagram. A business
collaboration is built up from a finite set of names, each as-
sociated with its BPMN diagram; the function Global rep-
resents the environment of a global specification and maps
each collaboration name of type CNAME to its associated
diagram.

BPD ::= states〈〈WCF〉〉
Local == PName 7→ BPD

We define the semantic function csem which takes a syn-
tactic description of a BPMN collaboration diagram and re-
turns the CSP process of type Process that models the be-
haviour of that diagram. That is, the function takes one or
more pool states, each encapsulating a separate BPMN di-
agram representing an individual participant within a busi-
ness collaboration identified by its collaboration name of
type CName, and returns a parallel composition of pro-
cesses, each corresponding to an individual participant.

csem : CName 7→ Global 7→ Local 7→ Process

∀ l : Local; c : CName; g : Global •
csem c g l =

( ‖ ps : { b : bpmns∼(g c) } •
αprocess ps l ◦ bsem ps l) \ chide c g l

∧ chide c g l =⋃
{ ps : bpmns∼(g c); s : states∼(l ps) •
αmsg(s.send ∪ s.receive ∪ s.reply

∪ s.accept ∪ s.break) }

The function αmsg maps each set of message flows to the
set of associated events. The function αprocess maps each
BPMN diagram representing a local business process to its
alphabet of type P Event, where Event is the basic type for
CSP events.

αprocess : PName 7→ Local 7→ P Event

∀ p : PName; local : Local •
αprocess =

⋃
{ s : states∼(local p) • αstate s local }

The alphabet of a local business process is the union of the
alphabets of each of its states, while the function αstate maps
each state to its alphabet. The alphabet of each state is the



set of events associated with a state with which it must syn-
chronise, hence a state’s alphabet is the union of the events
mapped from all incoming, outgoing and error transitions,
type and message flows.

αstate : State 7→ Local 7→ P Event

The function bsem takes a syntactic description of a BPMN
diagram encapsulated by a state of type pool or a BPMN
subprocess, identified by the diagram’s name of type
PName, and returns a parallel composition of processes,
each corresponding to one of the diagram’s or process’s
states.

bsm : PName 7→ Local 7→ Process
bsem : PName 7→ Local 7→ Process
hide : PName 7→ Local 7→ P Event

∀ p : PName; lo : Local •
bsem p lo =
let AE = αprocess p lo ∪

{a : εabort p lo; e : εend p lo • fin.e, abt.a }
M = 2 i : αprocess p lo •

(i→ M
2 (2 e : εabort p lo • abt.e→ Stop)
2 (2 e : εend p lo • fin.e→ Skip))

within (bsm p lo |[ AE ]|M) \ hide p lo
∧ hide p lo =⋃

{ s : states∼(lo p) •
αtrans(s.in ∪ s.out ∪ s.error) }

The parallel composition of processes, defined by the func-
tion bsm, is conjoined via partial interleaving with process
M defined above to ensure that the business process either
terminates successfully or deadlocks because of an excep-
tion flow. We define compound events fin.i and abt.i (where
i ranges over N) to denote the successful completion and the
abortion of a business process, respectively. The functions
εend and εabort return the set of numbers defined by each of
the end states and the abort states within the diagram’s syn-
tax respectively, while the function αtrans maps each set of
transitions to the set of associated events. The semantics of
a BPMN state is the composition of the processes, each cor-
responding to the state’s incoming and outgoing transitions,
type, exception and message flows. Note we allow explicit
ordering of message flows, for example, in Figure 1, the or-
der of message flow is either left to right or up to down.
Also we allow external choices over the semantics of exclu-
sive gateways, this makes the modelling of process interac-
tion possible. Readers may refer to our earlier paper [10]
for the complete semantic definition and its more detailed
explanation.

4. Revisiting the Example

In this section we revisit the example shown in Figure 1.
Given the business process name traveller, Given we
have the syntactic definition of the business collaboration,
as described in the previous section, we may apply our
semantic function to it and mechanically obtain a parallel
composition of processes, each corresponding to a business
participant. We denote the processes corresponding to the
traveller and the travel agent participants by the names Tr
and Ag respectively. We define set I to index the processes
corresponding to the states of the traveller participant.

I = { start, order, change, xs, cancel, reserve, end, abort }

We use channels init.a to denote transitions to states of
participant a and starts.a to denote initiation of its tasks or
subprocesses. We write msg.t.x to denote communication
of message x during task or subprocess t. The process Tr
mechanically obtained by the translation we have described
above is as follows:

Tr = let X = 2 i : (αY \ {fin.1, abt.1 }) •
(i→ X 2 fin.1→ Skip 2 abt.1→ Stop)

Y = ( ‖ i : I • αP(i) ◦ P(i))
within (Y |[αY ]| X) \ {|init.tr|}

where for each i in I, the process P(i) is as defined below.
We write αQ to denote the set of possible events performed
by process Q. Here we omit the semantic definition of task
change for reasons of space.

P(start) = init.tr.order → Skip o
9 fin.1→ Skip

P(xs) = (init.tr.xs→ Skip o
9 (init.tr.cancel→ Skip

2 init.tr.reserve→ Skip) o
9 P(xs.3))

2 fin.1→ Skip

P(abort) = (init.tr.abort→ Skip o
9 abt.tr.1→ Stop)

2 fin.1→ Skip

P(reserve) = (init.tr.reserve→ Skip o
9

starts.tr.reserve→ Skip o
9

msg.reserve!x : { in, last } → Skip o
9

msg.reserve.out→ Skip o
9

init.tr.end → Skip o
9 P(reserve))

2 fin.1→ Skip

P(end) = init.tr.end → Skip o
9 fin.1→ Skip

The process Ag can similarly be obtained mechanically us-
ing the semantic function. Their collaboration hence is the
parallel composition of processes Tr and Ag.

Collab = (Tr |[αTr || αAg ]| Ag) \ {|msg|}



5. Verifying Compatibility

The admission of refinement means that a CSP process
can be a specification as well as a model of an implemen-
tation; hence it is possible to design and compare specifica-
tions using BPMN. To check whether both the traveller and
the travel agent participants are compatible, we first con-
struct CSP process Spec, corresponding to the traveller par-
ticipant without message flows, which can also be derived
mechanically:

I′ = { st, or, ch, x1, ca, re, en, ab }

Spec = let X = 2 i : (αY \ {fin.1, abt.1 }) •
(i→ X 2 fin.1→ Skip 2 abt.1→ Stop)

Y = ( ‖ i : I′ • αP(i) ◦ P(i))
within (Y |[αY ]| X) \ {|init.tr|}

Here for reasons of space, we show below a subset of pro-
cesses P(i) where i ranges over I′.

P(st) = init.tr.order → Skip o
9 fin.1→ Skip

P(or) = (init.tr.order → Skip o
9 starts.tr.order → Skip o

9

init.tr.mchange→ Skip o
9 P(order))

2 fin.1→ Skip

P(x1) = (init.tr.xs→ Skip o
9 (init.tr.cancel→ Skip

2 init.tr.reserve→ Skip) o
9

P(xs.3)) 2 fin.1→ Skip

P(ab) = (init.tr.abort→ Skip o
9 abt.tr.1→ Stop)

2 fin.1→ Skip

P(en) = init.tr.end → Skip o
9 fin.1→ Skip

We use CSP’s stable failures refinement [9] to compare the
process Spec with the process Collab.

Spec vF (Collab \ (αCollab \ αSpec))

This expression asserts that the collaboration behaves as
specified by the traveller participant; in order for this to
happen, both participants must be compatible with respect
to their collaboration. We have specifically defined our se-
mantics to allow refinement assertions such as this one to be
automatically checked by a model checker such as FDR [5];
we have carried out such experiments. In this particular ex-
ample, we find that the refinement assertion above does not
hold; this means that the participants in the collaboration
described in Figure 1 are incompatible. When we ran FDR
on the assertion above; the following counterexample in the
form of a failure was given, where Σ denotes the set of all
event names.

(〈starts.tr.order, starts.tr.cancel〉,Σ)

This counterexample tells us that a deadlock has occurred
while the traveller is cancelling her itinerary: after the order
and cancel events, the collaboration may refuse to engage in
any further activity. A more detailed analysis of the coun-
terexample may be carried out by looking at the failures of
processes Tr and Ag separately:

(〈starts.tr.order,msg.order.in,msg.order.out,

msg.change.end, starts.tr.cancel〉, ref 1)
(〈msg.order.in, starts.ag.order,msg.order.out,

msg.change.end〉, ref 2)

where msg.cancel.in /∈ ref 1 and msg.cancel.in ∈ ref 2. The
failures inform us that while the process Traveller is ready
to perform the event msg.cancel.in, the process Agent is not,
and this leads to a deadlock. This means that while the trav-
eller may cancel her itinerary before deciding to reserve her
ticket, and hence send a message to the travel agent about
the cancellation, the travel agent may only carry out her
cancellation after entering the reservation phase, and hence
may not send a reply message back to the traveller. This
discrepancy might have been deliberate due to the internal
policies of different business domain, or it might just be a
human error. There are two ways to correct this collabora-
tion, either by changing the traveller’s or the travel agent’s
internal process description. We have chosen the latter; Fig-
ure 3 shows a compatible travel agent participant for the col-
laboration of an airline ticket reservation. Note the change
in the travel agent participant, allowing the task state Cancel
Itinerary to be triggered before the subprocess state Receive
Reservation.

By applying our semantic function to the syntax of this
diagram we obtain the following parallel composition of
processes, each corresponding to a participant.

Collab2 = (Tr |[αTr || αAg2 ]| Ag2) \ {|msg|}

To check for compatibility, we ask FDR to verify the fol-
lowing refinement assertion. This time, the verification is
successful.

Spec vF (Collab2 \ (αCollab2 \ αSpec))

Informally, participants are incompatible with respect to a
collaboration if the collaboration deadlocks while individ-
ually its participants are deadlock free. Specifically we re-
quire each participants’ behaviour to represent a responsive
plug-in [8] to all other participants. Informally process Q
is a responsive plug-in to P, denoted as Q RespondsTo P,
if Q is prepared to cooperate with the pattern set out by P
for their shared interface. We now generalise compatibility
using CSP’s responsiveness.

Definition 1 Compatibility. Given some collaboration de-
scribed by the CSP process, C = ( ‖ i : { 1 . . n } •



Figure 3. A BPMN diagram describing a compatible travel agent for the collaboration of an airline
ticket reservation.

αPi ◦ Pi) \ M where n ranges over N and M is the set of
events corresponding to the message flows between its par-
ticipants, whose behaviour are modelled by the processes
Pi, participant Pi is compatible with respect to the collabo-
ration C iff ∀ j : { 1 . . n } \ { i } • Pi RespondsTo Pj

6. Related Work and Conclusion

In this paper we described briefly our earlier process
semantics for BPMN in the language of CSP to model
message flow and reason about business collaborations
described in BPMN. We have illustrated by an example
how this semantic model may be used to verify compati-
bility between participants within a business collaboration.
We have subsequently implemented a prototype of the
semantic function in Haskell. While our earlier work [10]
described a process semantics and its application via pro-
cess refinement in verifying consistency between BPMN
diagrams each with a different level of abstraction, our
modelling approach in compatibility verification described
in this paper utilises this semantics to verify collaboration
compatibility between BPMN diagrams at the same level
of abstraction participating in a business collaboration.

To the best of our knowledge, the only previous attempt
at implementing a formal semantics for a subset of BPMN
and using it for the compatibility verification of business
collaborations [4] did so using Petri nets. However, that se-
mantics does not properly model multiple instances, excep-
tion handling and message flows. Some other approaches in
the areas of business process management and services ori-
ented computing have focused on the compatibility problem
of web services choreographies described in XML-based
languages such as WSCI [3] and WS-CDL [6]. While some
have applied existing process calculi to model choreogra-
phies, which are equipped with model checking facilities,
their models do not induce a refinement ordering between
choreographies and hence specifications are often given in
separate languages such as the Hennessy-Milner logic or

Message Sequence Charts. Moreover their compatibility
verifications focus on the implementation level and require
non-standard diagram notation to construct choreographies;
we, on the other hand, have moved it forward to the design
level, and provide verification upon an agreed standard dia-
gram notation. This allows collaboration to be verified and
agreed upon before implementation.

This work is supported by a grant from Microsoft Re-
search. The authors would like to thank referees for useful
suggestions and comments.
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