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Abstract. Application scheduling plays an important role in high-performance
cluster computing. Application scheduling can be classified as job scheduling and
task scheduling. This paper presents a survey on the software tools for the graph-
based scheduling on cluster systems with the focus on task scheduling. The tasks of
a parallel or distributed application can be properly scheduled onto multi-processors
in order to optimize the performance of the program (e.g., execution time or resource
utilization). In general, scheduling algorithms are designed based on the notion of
task graph that represents the relationship of parallel tasks. The scheduling algo-
rithms map the nodes of a graph to the processors in order to minimize overall
execution time. Although many scheduling algorithms have been proposed in the
literature, surprisingly not many practical tools can be found in practical use. After
discussing the fundamental scheduling techniques, we propose a framework and
taxonomy for the scheduling tools on clusters. Using this framework, the features of
existing scheduling tools are analyzed and compared. We also discuss the important
issues in improving the usability of the scheduling tools.
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1. Introduction

Many large-scale applications in science, engineering and commerce
should be executed on parallel systems to achieve high performance
computing. The rapid advances in powerful microprocessors, high-speed
networks and standard software tools are enabling the clusters of com-
puters to be a cost-effective substitute for parallel computers. Thus,
parallel computing has in large extent been migrating from expensive
high-end supercomputers to lower-cost clusters built with commodity-
off-the-shelf (COTS) computers and commonly used software [6, 10].

A cluster is composed of multiple standalone computers connected
via a network. To exploit the system capability and implement high-
performance computing on it, software supports are required to realize
the consolidated computational capability. The software supports can
be implemented at various levels such as operating systems (e.g., Solaris
MC [9], GLUnix [23], and MOSIX [40]), resource management systems
(e.g., Condor [13], LSF [39], MARS [21], and Legion [38]), and parallel
programming environments (e.g., PVM [45], MPI [41], and OpenMP
[43]). Importantly, the software support for application scheduling is
critical to realize high-performance parallel computing. The application
scheduling aims to appropriately allocate parallel programs to proces-
sors so that the resource utilization can be improved and the execution
time can be reduced. Application scheduling can be performed at job
level or task level. Job scheduling [4, 18, 34] deals with the allocation
of independent programs or tasks to processors according to the prior-
ities of the jobs and the availability of the resources. At present, job
scheduling is widely used for scheduling parallel programs on clusters.
A parallel job is submitted with the required number of processors.
Job scheduler assigns the job to a suitable queue. When the required
processors become available, the job is dispatched to run on them.
Job scheduling aims at balancing the workload among the processors
and therefore optimizing the system-wide throughput. It maps the pro-
cesses of a parallel job to the processors without the consideration of
the dependency between the tasks. A large number of commercial job
scheduling systems are available, including Condor [13], LSF [39] and
Loadleveler [30]. The surveys of job scheduling techniques can be found
in [4, 5, 18, 19, 20, 34].

Differently, task scheduling handles the allocation of dependent tasks
of a parallel program to the processors in order to minimize the overall
execution time [22, 35, 36, 47, 49, 59]. As an attempt to design a task
scheduling method for a graph-oriented programming environment on
clusters [12], we face the problem of formulating an effective scheduling
approach and implementing the support tool. This requirement moti-
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vates us to survey the literature about the scheduling tools for cluster
computing. Since task scheduling is usually based on the relationship
between the tasks, which can be modeled as a task graph, our survey
emphasizes on the graph-based task scheduling tools.

Although enormous task scheduling algorithms have been proposed
[15, 35, 36, 47], very few task scheduling tools can be found on cluster
systems. Moreover, most of the researches in this area are theoretical
work rather than practical implementation. Only a few tools are im-
plemented for practical use. In this paper, we propose a framework
and taxonomical classification of scheduling tools to assist the design
of the tools. After the discussion on the requirements and fundamental
techniques of task scheduling, the features of representative scheduling
tools are summarized and compared using the proposed taxonomy. We
also discuss the important aspects in improving the usability of the
scheduling tools. Our framework can provide a guideline for developing
scheduling tools on clusters.

The rest of the paper is organized as follows. Section 2 is an overview
of the architecture, applications and task scheduling tools of cluster
computing. Section 3 introduces the general task scheduling techniques.
Section 4 describes our framework and taxonomy of the scheduling
tools. Section 5 discusses the representative scheduling tools and com-
pares their characteristics. Section 6 concludes the paper and discusses
the future research issues.

2. Task Scheduling on Clusters

Cluster systems have been widely used to process parallel applications
in various fields such as scientific computing, image processing, artifi-
cial intelligence, physical and biological modeling, databases, and Web
servers. With the rapid development in hardware and software, a cluster
system is now capable of performing large-scale computations that were
conventionally feasible only on supercomputers. Task scheduling plays
an important role in enhancing this capability of clusters.

2.1. Architectural Features

In a cluster system, standalone computers are consolidated into a single,
unified system to perform parallel computing [10, 29, 44]. Different from
traditional parallel computers, each machine in a cluster can be inde-
pendently in operation and be separately accessed by different users and
applications. Also different from distributed systems, the machines in
a cluster are integrated into a unified single resource. A user can access
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Figure 1. Cluster architecture

the cluster through a single interface. Applications can be launched on
any machine in the cluster and dispatched to run on more processors
as in a parallel computer.

Figure 1 shows the generic architecture of a cluster system in which
the computer nodes can be PCs, workstations, SMPs (Symmetric Mul-
tiprocessors) and even supercomputers. The nodes are interconnected
via a commodity high-speed network such as Fast Ethernet or Myrinet
[42]. The operating system (OS) on each node can be multi-user, mul-
titasking, and multi-threaded systems such as Linux, Solaris, and Win-
dows NT. A cluster can be a homogeneous system in which all nodes
have similar architecture and run the same OS. A cluster can also be a
heterogeneous system where the nodes have different architecture and
run different OS. A cluster middleware layer is constructed on top of
the operating systems to create a single system image (SSI) [10] over
the cluster and to manipulate resource management and scheduling.
Programming environments, software tools, and user interfaces are set-
tled upon the middleware layer to support application development.
Communications between the nodes are implemented based on mes-
sage passing. In a cluster, the inter-process communication latency
is higher than that in a shared-memory parallel computer or in the
multiprocessors linked by proprietary interconnection network. The
high communication latency will influence the performance of cluster
computing.

Therefore, task scheduling is an important technique to exploit the
consolidated computing power, reduce the communication overhead,
and minimize the execution time. The task scheduling is based on the
computation and communication costs of the tasks, the speed and work-
load of the processors, and the bandwidth of network. The scheduling
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tools usually consist of the components existing in different layers from
user interface to cluster middleware. A scheduling tool requires a user
interface to input user program and specify the scheduling require-
ments. Program preprocessors are needed to process the program code
or the task graph to determine a scheduling scheme. The scheduling is
eventually performed by the cluster middleware. The scheduling tools
may also support the execution profiling, performance analysis and
visualization.

2.2. Application Requirements

Compute-intensive applications highly rely on the task scheduling to
realize high-performance computing on clusters. The requirements of
task scheduling can be identified in the major application fields of
cluster computing.

1. Scientific Computing
Scientific computing covers a wide range of applications, includ-

ing matrix computation, linear system solver, Fast Fourier Transform
(FFT), Partial Differential Equation (PDE) solver and other applica-
tions [11]. For example, partial differential equations can be used to
describe the behavior of a physical system such as in computational
fluid dynamics (CFD) [33]. The PDE algorithms are massively parallel
computing problems with the computational complexity at least an
order of magnitude beyond the capabilities of today’s workstations in
memory requirement and CPU time. However, a cluster of worksta-
tions can provide adequate capacity to run the PDE solvers. The task
scheduling can produce a proper mapping of the PDE algorithms to
the processors so that high performance computing can be achieved.

Scientific computing applications may also include heavy inter-processor
communication that restricts the performance of these applications.
Thus, task scheduling is required to determine the task decomposition
and mapping that can reduce the communication overhead.

2. Image Processing
Image processing is an application area with potentially high par-

allelism [3, 51]. For example, ray tracing is a graphical rendering al-
gorithm that creates an image from the description of the objects
[50]. Parallel ray tracing usually uses two methods to parallelize the
rendering operations: image parallel and object-space parallel [11]. In
the image parallel method, a certain number of rays are assigned to
each processor. Each processor possesses the description of all objects
but renders a section of the image. In the object-space parallel method,
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the description of all objects is partitioned into sub-volumes that are
distributed to the local memory of each processor. Each processor
computes all the ray tracing related to that sub-volume. Due to the im-
balanced workload in parallel rendering, dynamic scheduling is required
to balance the workload on the processors.

3. System Modeling and Simulation
System modeling and simulation studies the features and evolution

of physical, biological, electrical, mechanical and social systems. In
system modeling, dynamic scheduling is required to redistribute the
imbalanced workload caused by the system evolution. For example,
the N-body problem [53] is an application that simulates the evolution
of the physical systems in astrophysics, plasma physics, molecular dy-
namics, fluid dynamics and other areas. A physical system contains
numerous bodies that impose force influences on one another. The
aggregated force influence results in the continuous evolution of the
system. Running on a cluster, the N-body simulation incurs high com-
munication for the data exchange between the processors. In addition,
the computational workload is dynamically changing on the processors
due to the system evolution. Thus, dynamic scheduling is required to
balance the workload and reduce the communication overhead.

4. Optimization Problems
Optimization problems are a class of compute-intensive problems.

These problems are solved by searching and evaluating a set of possible
solutions to find the optimal solution that satisfies some problem-
specific criteria [24]. Genetic algorithms (GA) [11], for example, are the
optimization methods based on the evolutionary process of Darwinian
natural selection and population genetics. A solution is represented by
a set of parameters, usually a string of values called a chromosome; each
chromosome represents an individual. The search process is directed by
a fitness function that is a measure of the quality of the evolution to
find an optimal or good feasible solution. The workload of the search
operations is not predetermined. Dynamic scheduling is required to
balance the workload on parallel processors during the search.

5. Database Systems
Clusters are increasingly used to support database applications such

as data mining and pattern matching [11, 54]. For a large database, the
data can be distributed to the processing nodes and disks in a cluster.
Database applications introduce the concepts of data placement and
redistribution. Task scheduling can be used to distribute the queries
to the nodes. The task scheduling should also handle the dynamic
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reorganization of a database called data replacement, which moves
data between processing nodes to optimize the performance of query
operations.

Many other applications can also be found in cluster computing.
For example, cluster systems have been used as enterprise and Internet
servers to provide high availability, reliability and scalability in business
and e-commerce services [31, 52, 57].

2.3. Tool Support for Application Scheduling

From the perspective of architecture and applications, the scheduling
techniques on clusters should suit the features of cluster computing such
as distributed, heterogeneous resources and high communication cost.
Firstly, a cluster is a collection of computers with distributed archi-
tecture. The scheduling algorithms should adopt a distributed strategy
to improve the efficiency and reliability of the scheduling procedure.
On contrary, traditional parallel systems usually use the centralized
scheduling where a single scheduler is responsible for the scheduling of
all tasks to all processors.

Secondly, a cluster may consist of heterogeneous nodes with varied
performance. The scheduling should be adaptive to the working nodes.
A scheduling tool should operate with the support of the resource
management subsystem (RMS) that monitors the available resources,
starts the execution of applications and supports process migration
[10]. A scheduling decision depends on the information provided by the
RMS.

Furthermore, the communication over commodity networks has higher
latency than the proprietary networks in supercomputers. The schedul-
ing algorithms should also consider how to reduce the communication
overhead between the tasks.

The supporting tools can also be designed by other means. For exam-
ple, a performance analysis tool collects the execution profile to analyze
the feature of a program. The execute profile can be used to guide the
adaptive scheduling in the future execution of the same program.

3. Task Scheduling Techniques

Various task scheduling algorithms have been proposed for parallel
computing. Generally, there are two scheduling models: static schedul-
ing and dynamic scheduling [32, 36, 47]. Static scheduling is performed
at compile time provided that the characteristics of an application
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such as execution time, communication cost, data dependency, and
synchronization requirement are known in advance [36, 47]. It allocates
the tasks to individual processors before execution and the allocation
remains unchanged during the execution. Dynamic scheduling conducts
the scheduling at run time [14, 25] and the tasks can be reallocated
during the execution. Dynamic scheduling can support dynamic load
balancing and fault tolerance. It is certain that the dynamic schedul-
ing operations introduce additional overhead to the program execu-
tion. So, dynamic scheduling algorithms should endeavor to reduce this
overhead.

As a combination of static and dynamic scheduling, hybrid schedul-
ing [47] includes two scheduling phases. First, static scheduling is made
based on the estimated performance of a program. Then, dynamic
scheduling is performed at run time to adjust the static task allocation
to balance the workload on the processors.

3.1. Task Graph

Task graph is a general model that describes the structure of a program
for the purpose of scheduling. In a task graph, the nodes represent
the computational tasks and the edges represent the relations between
the tasks. A task scheduling algorithm maps the nodes to a set of
processors in a form that can minimize the entire execution time of
the program (called schedule length). As the optimal task scheduling is
an NP-complete problem, many heuristics have been proposed to make
the scheduling solvable in polynomial time complexity [15, 35, 36, 47].
These heuristics are the assumptions about the characteristics of par-
allel programs and parallel systems. Some heuristics assume that every
task has the same computation cost but some heuristics allow arbitrary
computation cost for each task. Some heuristics ignore the inter-task
communication cost and some heuristics allow arbitrary communication
cost. Some heuristics suppose an application to be run on an unlim-
ited number of processors but some are based on a limited number of
processors.

Task scheduling algorithms are mainly designed based on Directed
Acyclic Graph (DAG) [36, 47]. The DAG has deterministic structure on
which deterministic scheduling algorithms can be designed. In a DAG,
each node represents a task which in turn contains a set of operations
that will be executed sequentially. When all input data to a node have
arrived to it, the node can be triggered to execution. A node with no
parent is called entry node. A node with no child is called exit node. The
weight of a node is the computation cost of the task. The directed edges
represent the precedence of the tasks. The edges determine a partial
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Figure 2. Directed acyclic graph and scheduling of a 16-point FFT on four processors

order of the execution flow. The weight of an edge is the communication
cost between the adjoining nodes. The communication cost appears only
when two adjoining nodes are executed on different processors. Other-
wise, the communication cost will be zero if two nodes are allocated to
the same processor. Please refer to [14, 35, 36, 47] for the details about
the DAG-based scheduling algorithms.

Figure 2(a) shows a DAG of parallel Fast Fourier Transform (FFT)
with 16 points running on four processors. As discussed in [24], the
FFT performs a linear transformation that maps n sampled points,
X = 〈X[0], X[1], , X[n − 1]〉, from a cycle of a periodic signal onto an
equal number of points, Y = 〈Y [0], Y [1], , Y [n− 1]〉, that represent the
frequency spectrum of the signal, where Y [i] =

∑n−1
k=0 X[k]ωki, 0 ≤ i <

n and ω = e2π
√−1/n. The transform can be computed in log n iterations.

Each iteration performs n complex multiplications and additions.
In parallel FFT algorithms such as the binary-exchange algorithm

given in [24], the n points are evenly distributed to p processors by
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which every n/p contiguous points are assigned to one processor. In
each of the iterations, each processor computes n/p complex multipli-
cations and additions. Then, each pair of processors with binary labels
only different in the mth most significant bit exchanges n/p complex
values, where m is the iteration level from 0 to log n − 1. In Figure 2(a),
the DAG of parallel FFT shows the iterative transform where n = 16
and p = 4. The size of the task graph is related to the number of
processors p. The number of nodes at each level equals the number of
processors to run the program. Each node represents the computational
task of n/p complex multiplications and additions. The edges denote
the data exchange between the iterations. The entry node distributes
n points to p processors. The exit node collects the transform results
from all processors.

3.2. Scheduling Algorithms

The main algorithms for the DAG-based scheduling are list schedul-
ing and clustering. Other algorithms also include task duplication that
allows the processors to run duplicated instances of the tasks. These
algorithms are discussed below.

3.2.1. Heuristics
As discussed in Section 3.1, the scheduling algorithms make various
heuristics on a task graph and system architecture to simplify the al-
gorithms in order that a scheduling can be determined in a reasonable
time complexity [35, 36, 47, 55]. The heuristics can be made in the
following aspects:

• Task graph: a task graph is allowed to possess an arbitrary struc-
ture or restricted to a specific structure (e.g., a tree).

• Computation cost: the nodes in a graph can have either arbitrary
or uniform computation cost.

• Communication cost: the edges can have arbitrary, uniform, or
all-zero communication cost. All-zero cost means that the commu-
nication is negligible.

• Processors: an unlimited or limited number of processors are
usable to run a program.

• Architecture: the processors in a parallel system can be fully
connected or in a specific interconnection topology. The architecture
will influence the decision of task-to-processor mapping strategy.
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3.2.2. List Scheduling
List scheduling is a commonly used method for the DAG-based schedul-
ing [36, 47]. It assigns priority to each node of a task graph and then
allocates the nodes to the processors based on the priority. The nodes
with high priority will be scheduled first.

The priority of a node can be determined in different ways. Also,
different strategies can be used to map the nodes to the processors.
The priority of a node is usually calculated based on two attributes:
t-level (top level) and b-level (bottom level) [35, 36]. The t-level of a
node is the length of the longest path from an entry node to the node
(excluding the node itself). The length of a path is defined as the sum
of the weights of the nodes and the weights of the edges in the path.
The t-level is related to the earliest start time of a node. The b-level of
a node is the length of the longest path from the node to an exit node.
The b-level is bounded with the length of the critical path (CP), i.e.,
a path from an entry node to an exit node with the maximum length.
There are different ways to determine the b-level. Most DAG-based
scheduling algorithms examine a node for scheduling only when all the
precedent nodes of the node have been scheduled. Nevertheless, some
algorithms allow the scheduling of a child node before its parents. In
such a case, the b-level becomes a dynamic attribute.

DAG-based scheduling algorithms use t-level or b-level, even both to
decide the priority of a node. Some algorithms assign a higher prior-
ity to a node with a smaller t-level. Other algorithms assign a higher
priority to a node with a larger b-level. Also, some algorithms assign
a higher priority to a node with a larger difference between two levels,
i.e., (b-level − t-level).

By list scheduling, the FFT problem in Figure 2(a) can be scheduled
to run on four processors as shown in Figure 2(b). The nodes and edges
can be viewed with uniform computation cost and communication cost.
Thus, the nodes on the same level have the same t-level and b-level. The
entry node can run on any of the processors to start the program. It dis-
tributes the points to the four nodes on level 0. The latter are scheduled
to run on four processors. After the completion of the computational
tasks, the nodes exchange the data. Next, the nodes on level 1 are
scheduled to the processors. The nodes with the same label on all levels
will be allocated to the same processor to make use of local data left by
the precedent nodes. The procedure continues until the transform has
finished. Finally, the exit node running on one processor collects the
transform results. If the topology of four processors is a hypercube, the
nodes can be mapped to the processors as shown in Figure 2(c). The
mapping guarantees that the nodes with data exchange are allocated to
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the neighboring processors so that the runtime communication latency
can be minimized.

3.2.3. Clustering
Clustering is another approach for the DAG-based scheduling. Here, the
cluster means a group of tasks. Clustering is the process that merges the
nodes in a graph into clusters [47, 48, 59]. The tasks in the same cluster
will be allocated together to a processor. Clustering is a two-phase
scheduling procedure: merging the nodes into clusters and mapping the
clusters to processors. The mapping phase is fulfilled by a sequence of
optimization steps that include: (1) cluster remerging: if the number of
clusters is greater than the number of processors, the clusters will be
further merged; (2) task ordering: if the tasks in a cluster are related
by a precedence, the execution order of the tasks is arranged based on
the precedence.

Usually, a clustering algorithm starts from an initial clustering and
proceeds with a sequence of refinements on the clusters [47]. In the
initial clustering, each task is viewed as a separate cluster. The clusters
are refined by merging two adjacent clusters so as to remove the edge
between them to reduce the communication weight. In the refinement
phase, the clusters are merged into larger clusters to reduce the overall
execution time (i.e., schedule length).

For example, Figure 3 shows a multistage clustering algorithm pro-
posed in PYRROS [22, 59] for scheduling the Gauss-Jordan method, i.e.
an elimination method for solving linear systems Ax = b. Figure 3(a)
is the DAG of the Gauss-Jordan method. Node T j

k (where j �= k + 1)
represents a computational task with input data being columns k and j
of the coefficient matrix and the output data being the modified column
j. Node T k+1

k is a broadcast node that sends column k + 1 to all T j
k+1

nodes. To run the DAG on four processors, the nodes are merged into
four clusters enclosed in the dotted boxes as shown in Figure 3(a). Each
cluster will be mapped to one processor. The clustering algorithm will
be further discussed in Section 5.2.

3.2.4. Task Duplication
Task duplication is a special scheduling method that duplicates selected
tasks to run on more than one processor to reduce the inter-processor
communication [1, 16, 46]. The duplication of the tasks aims to utilize
the spare time slots on certain processors. The approach is conceived
based on the fact that some child nodes must wait for the output from
the parent nodes running on other processors. If the processors remain
idle at different time slots, the spare time can be used to run the
duplicated tasks of these parent nodes. Therefore, the parent and child
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nodes can be executed on the same processor and the output can be
locally fed from parent to child without inter-processor communication.
Some critical tasks can even have multiple instances running on more
processors to further reduce the communication cost.

4. A Framework and Taxonomy of Scheduling Tools

Based on the discussion about cluster systems and task scheduling, a
framework of scheduling tools can be built and a taxonomy of the tools
can be specified.

4.1. Framework

Figure 4 shows the general framework of the scheduling tools. As dis-
cussed in Section 2.3, a scheduling tool is built on the resource man-
agement subsystem (RMS) that provides the information about the
resources and their performance in a cluster. A scheduling tool is a
middleware that links the applications to a cluster system. The frame-
work consists of four layers. The components in each layer implement
the specified functionalities in the scheduling.
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Layer 1: User Interface & API
The user interface provides program editor and / or graph editor for

user to input an application in textual or graphical form. The property
specification component allows a user to describe the computation and
communication costs of the application. The user can also define own
scheduling algorithm for the application. The program visualization
component is used for displaying the scheduling-related information
such as a task graph, the architecture of a cluster, and the performance
of an application. A user program can call the API provided by the
scheduling tool to perform scheduling-related or other operations. For
example, the ATME tool discussed in Section 5.5 provides execution
profiling primitives that can be instrumented into a user program to
probe the runtime statistic data. The statistic data can be used to
determine the scheduling of the program in later execution. The VDCE
tool discussed in Section 5.1 provides task libraries that can be called in
user applications to perform different operations such as computation,
communication and control.

Layer 2: Program/Graph Preprocessor
When an application is provided in the form of text or graph, the

program/graph analyzer will analyze the structure of the program and
convert it into a task graph. The analyzer may be able to estimate
the computation and communication costs by analyzing the operations
in the program. For a textual input, the graph generation component
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creates a task graph of the program. For a graphical input, the graph
transformation converts the original graph into a task graph that is
suitable for scheduling. For example, it can expand the graph by gen-
erating more nodes that can be executed in parallel. If performance
analysis is needed, the program instrument component can insert ex-
tra operations into the application to collect the execution profile.
The execution profile can be used for performance visualization and
post-mortem analysis.

Layer 3: Scheduling Algorithms
This layer provides a library of scheduling algorithms. The schedul-

ing tool can automatically select a proper algorithm from the library
according to the features of an application which is determined by the
program analyzer at layer 2. User can also manually select a scheduling
algorithm through the user interface at layer 1.

Layer 4: Runtime Support
This layer implements the task scheduling and execution. The task

scheduler executes the selected scheduling algorithm to schedule the
tasks to execution. The execution monitor collects the runtime data for
performance analysis when required.

4.2. Taxonomy

Task scheduling tools can be categorized based on different character-
istics. We propose a taxonomy of scheduling tools as shown in Fig-
ure 5. The taxonomy classifies the tools with respect to four features
as following.

• Target system: the system for which a scheduling tool is de-
signed, including local-area system or wide-area system.

• Main functionality: the main function of a scheduling tool. Some
tools are dedicated for task scheduling. Some tools are the program-
ming tools that provide the support for task scheduling. Some are
program monitoring and performance analysis tools that evaluate
the performance of scheduling algorithms. Some tools provide a
comprehensive cluster computing environment that incorporates
the support of task scheduling.

• Control mode: the scheduling mode adopted by a scheduling
tool. Centralized mode is usually used for local-area systems where
a centralized scheduler implements all scheduling work. Distributed
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Figure 5. Taxonomy of scheduling tools

mode is usually used for wide-area systems in which the schedul-
ing is accomplished by the cooperation of distributed schedulers
running in different system domains.

• Scheduling policy: the scheduling may be implemented by a
static, dynamic, or hybrid method. As discussed in Section 3, hy-
brid method is a combination of static and dynamic scheduling.

The taxonomy is outlined in Figure 5. It lists the four features
used to classify the scheduling tools with possible options for each
feature. For example, the scheduling tools can be classified by their
main functionality. A tool can be dedicated for task scheduling. A tool
can be a programming tool to support program development or even a
cluster computing environment that supports task scheduling. A tool
may also be designed for the performance monitoring and analysis of
task scheduling algorithms and parallel programs. Section 5 will discuss
different types of task scheduling tools and compare their features using
this taxonomy.

5. Task Scheduling Tools

Various scheduling tools have been developed on parallel and distributed
systems. In this section, we discuss eight representative tools.
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5.1. VDCE

Virtual Distributed Computing Environment (VDCE) [55, 56] is a soft-
ware development environment for building and executing large-scale
applications on network of heterogeneous resources. VDCE is deployed
across geographically distributed computational sites, each of which
has one or more VDCE Servers. The servers provide an integrated
environment of software tools and middleware for developing parallel
and distributed applications meanwhile scheduling the tasks to the
best available resources and managing the QoS (Quality of Service)
requirements.

The VDCE software architecture consists of three parts: Application
editor, Application scheduler, and Runtime system. Applications are
developed based on a dataflow programming paradigm. The application
editor is a web-based graphical interface for user to develop an applica-
tion in the form of application flow graph (AFG). The editor provides
menu-driven task libraries that are grouped in terms of functionality,
e.g., matrix algebra library, C3I (command, control, and communica-
tion) library, etc. For example, the AFG of a linear equation solver can
be constructed using the LU decomposition, matrix inverse, and matrix
multiplication tasks provided by the matrix algebra library.

After an AFG is created, the user can specify the properties of each
task such as the computational mode (sequential or parallel), thread
type (none, pthread, qthread, or cthread), communication library (P4,
socket, MPI, DSM, NCS, or PVM), communication protocol (TCP/IP
or ATM), system domain, cluster, machine type, and the number of
processors. Then, the AFG is submitted for execution with the support
of the application scheduler and the runtime system.

VDCE provides a distributed scheduling method for wide-area sys-
tems. In such a system, each site consists of a local application scheduler
running on the VDCE server. The scheduling of an application is per-
formed by the cooperation of local site and a set of remote sites. The
application scheduler interprets the application flow graph and allo-
cates the currently best available resources to the tasks. The application
scheduler runs two built-in algorithms for task mapping: the site sched-
uler algorithm selects a subset of remote sites and the host selection
algorithm at a remote site determines the best available machine in the
site that can minimize the predicted execution time of each task. Then
every site sends the task-to-machine mapping (i.e., machine name with
predicted execution time) back to the local site. The local-site scheduler
algorithm finally selects the best site based on the minimal summation
of the predicted execution time and the network transfer time. The
scheduling heuristic is based on the static list scheduling using b-level
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priority. The execution time of a task on a base processor has already
been measured and stored in the task-performance database in the site
repository.

The VDCE runtime system sets up the execution environment for
a given application and manages its execution to meet the hardware
and software requirements. The runtime system periodically measures
the loads on the resources and monitors the possible failures of the
resources. It also supports low latency and high-speed communication
and synchronization services as well as I/O and application visualiza-
tion (real-time or post-mortem visualization) services.

5.2. PYRROS

PYRROS is a software system for automatic scheduling and code gen-
eration [22, 59]. It processes an input parallel program as tasks with
precedence constraints and produces code for message-passing archi-
tectures such as nCUBE-2 and INTEL-2. Macro dataflow graph (i.e.
DAG) is used to represent a parallel program. PYRROS uses clustering
algorithm to schedule a program onto parallel computers. PYRROS
provides the following components:

• Task graph language with an interface to C or FORTRAN, which
allows user to define partitioned programs and data.

• Scheduling system that performs the clustering of graph nodes,
cluster-to-processor mapping, load balancing, and communication
/ computation ordering.

• Graphic displayer that displays task graphs and scheduling results.

• Code generator that inserts synchronization primitives and per-
forms code optimization for some supercomputers.

PYRROS uses a multistage scheduling approach to schedule a DAG
onto p processors in four steps:

1. Clustering: The tasks in a graph are grouped into clusters. The
tasks in the same cluster will be assigned to one processor.
PYRROS uses the Dominant Sequence Algorithm (DSC) to
automatically determine the clustering of the nodes in a graph.
DSC performs a sequence of clustering refinement steps. In
each step, it tries to zero an edge to reduce the parallel time,
i.e., the longest path called Dominant Sequence in the graph
(schedule length).
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2. Cluster merging: If the number of clusters exceeds the num-
ber of processors p, the clusters are further merged into p
completely connected clusters.

3. Physical mapping: Maps the clusters to the physical processors.
A heuristic algorithm is used for the mapping that minimizes
the total communication time among the processors. The algo-
rithm starts from an initial assignment and performs a series
of pair wise interchanges for the mapping so as to reduce the
communication time. Yang and Gerasoulis [59] explained the
physical mapping using the example shown in Figure 3. As-
sume that the weight of each edge equals 3 time units. The
communication costs between the four clusters are shown in
Figure 3(b). If four physical processors are linked as a hyper-
cube, the clusters are optimally mapped to the processors as
shown in Figure 3(c). The clusters with the highest communi-
cation are mapped to the neighboring processors so that the
total communication time can be minimized.

4. Task ordering: Order the execution of the tasks within each
processor to minimize the total parallel time. RCP (ready
critical path) algorithm is used for the ordering. The algorithm
computes the b-level priority of each task. A task is ready if
the data sent from its predecessors have arrived to it. Each
processor maintains a ready priority list of tasks. The ready
task with the highest priority is executed as soon as the proces-
sor becomes available. With the ready list scheduling in each
processor, the total execution time can be minimized.

PYRROS was experimented on nCUBE-2 to test the performance
by scheduling the LINPACK BLAS-3 based program of linear algebraic
system [17].

5.3. Hypertool

Hypertool is a programming aid for automatic scheduling and syn-
chronization on message-passing systems [58]. Hypertool takes user
partitioned program as input, automatically allocating these partitions
to PEs and inserting proper synchronization primitives where needed.
It also produces performance estimates and quality measures for the
parallel code.

User programs are defined in a uniform structure that is a sequential
program with a set of procedures. Hypertool converts the program
into a parallel program for a message-passing target machine by means
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of parallel code synthesis and optimization. It provides the lexer and
parser to recognize the data dependencies and user defined partitions
in a program. The graph generation module produces a macro dataflow
graph for the program. The scheduling module assigns the graph nodes
to the computing tasks for minimizing the execution time of the graph.
Hypertool uses two list scheduling algorithms: (1) Modified critical-
path (MCP) algorithm is used for the graph scheduling on a given
number of PEs; (2) Mobility-directed (MD) algorithm is used for the
scheduling on an unbound number of PEs, which chooses the optimal
number of PEs that can achieve the minimal execution time. Then, the
mapping module maps each computing task to a physical PE in a given
topology that can minimize the network traffic. The mapping is realized
by a heuristic algorithm that generates an initial assignment and then
iteratively refines it to reach a better solution. After the scheduling
and mapping, the synchronization module inserts the communication
primitives (send and receive) to the nodes that are assigned to different
PEs. Finally, the code generator generates target machine code for each
PE.

Hypertool was tested on a Sun workstation to generate the schedul-
ing of sample programs for multi-processors. The sample programs
include the Gaussian elimination algorithm for solving linear systems
and the Gauss-Seidel algorithm for solving Laplace equations.

5.4. CASCH

CASCH (Computer Aided SCHeduling) is a software tool for paral-
lelizing and scheduling applications on message-passing multiproces-
sors [2, 35]. It was originally designed to evaluate various scheduling
and mapping algorithms using the task graphs that were generated
randomly, interactively, or directly from real programs.

CASCH can automatically parallelize a sequential program and add
the functions of scheduling, mapping, communication, and synchroniza-
tion to the parallelized program. User can write a sequential C program
as input through a window-based interactive GUI. The structure of a
user program is similar to an input program in Hypertool, i.e., a set
of functions called by a main program. Communications are invoked
only at the beginning and the end of a function. The lexical analyzer
and parser analyze the data dependencies and the partitions of the pro-
gram. The DAG generator generates a macro dataflow graph (i.e. DAG)
directly from the main program with regard to the data dependencies
between the functions. Each node in the graph represents a function.
The weight of a node is the execution time of the function. An edge
represents a message sent from one function to another. The weight of
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the edge is the transmission time of the message. The weights of the
nodes and edges are calculated based on a database that stores the
timing of various computation and communication operations on dif-
ferent machines. Parallel code is generated by inserting communication
primitives (send, receive, etc.) into the functions.

CASCH provides a library of static list scheduling algorithms which
contains three classes of algorithms according to the heuristics made:
UNC (unbounded number of clusters), BNP (bounded number of pro-
cessors) and APN (arbitrary processor network).

The GUI provides a graph editor to edit and display the DAGs and
the target system architecture (i.e., processors and network topology).
The scheduling trace can be displayed in a Gantt chart showing the
start and finish time of the tasks on the processors.

CASCH has been tested by running a set of benchmarking graphs
including Peer-set graphs, random graphs, and traced graphs to eval-
uate the performance of different scheduling algorithms. The FFT,
PDE solver, and N-body problem are also used to test the scheduling
algorithms on a SUN workstation connected to an Intel Paragon and
an IBM SP2.

5.5. ATME

ATME (Adaptive Task Mapping Environment) [28] is an environment
that generates an adaptive scheduling policy as the response to the
changes of the computation time of the tasks and the communication
requirement as well as the change of the execution flow. ATME moni-
tors the execution of a program and generates an adaptive scheduling
for the program based on the accurate information collected from past
execution profiles.

ATME provides a runtime library of process control and message
passing operations for parallel programming. It accepts a parallel appli-
cation in the form of DAG with the specification of the target machine
topology. Before the execution, the user tasks are preprocessed into
ATME tasks which in turn are analyzed and instrumented with the
primitives to probe and collect the execution profiles such as computa-
tion time, communication volume, and task precedence. If a program
is executed more than once, the execution profiles are aggregated and
dumped into “trace files” after each execution. The trace files are main-
tained in the program databases. The execution profiles can be used to
estimate the correspondent performance values for the next execution.

Based on a deterministic list scheduling algorithm called ERT (Ear-
liest Ready Task) [37], ATME is able to support task scheduling when
the task weights and precedence vary between executions. In the first
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few runs, the default scheduling method is used. When the accurate
execution profiles have been collected, ATME can produce an efficient
scheduling policy for later executions.

5.6. MARS

MARS (Metacomputer Adaptive Runtime System) is a framework for
minimizing the execution time of distributed applications on heteroge-
neous, WAN-connected metacomputer [21]. MARS uses accumulated
statistic data of an application’s execution to derive an improved task-
to-processor mapping. It also supports load balancing and task migra-
tion based on the dynamic information of processor load and network
performance.

MARS views a parallel application as being composed of program
phases. The MARS runtime system contains two kinds of instances: (1)
The Monitors gather the statistic data about CPU workload, processor
utilization, network performance, program phases, and communication
characteristics of the applications; (2) The Managers utilize the statistic
data to determine the task-to-processor mapping and task migration.
On each of the participating metacomputer nodes, a Network Monitor
gathers statistic data of the CPU load and network performance. The
Network Monitors periodically exchange the statistic data between the
computers. A preprocessor inserts extra statements into the application
code to notify the MARS runtime system about the beginning of a new
program phase where the Migration Manager will be invoked to decide
whether a task re-mapping can reduce the expected execution time.
The tasks with high workload will be mapped to the computer nodes
with high computing power. A set of smaller tasks can be mapped to
a single node to reduce the communication overhead.

In MARS, the execution trace of a parallel program is represented
as a directed graph called Dependency Graph which is built in each run
of the program based on the communication pattern. The dependency
graphs from successive executions are consolidated to determine the
task migration whenever a checkpoint is reached.

MARS supports C and MPI programming. This framework can
also be used in other programming environments like PVM, PAR-
MACS, and Express. The applications such as Bitonic sort and the
CG (conjugate gradient) Poisson solver for PDEs are used to test the
performance of the scheduling. Other applications including database
and optimization problems have also been tested.
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5.7. HeNCE

HeNCE (Heterogeneous Network Computing Environment) [7, 8] is
an integrated graphical environment implemented on top of PVM for
creating and running parallel programs on a network of heterogeneous
computers. HeNCE provides the programmers with a graphical in-
terface to build parallel programs as well as an environment for au-
tomating the process of designing, compiling, scheduling, executing,
debugging, and analyzing parallel computation. The programmers can
use the graph editor to build a parallel program by drawing a directed
graph. The nodes in the graph represent the computational procedures
or the control flows (e.g., conditional branches, loops, fans, and pipes).
HeNCE also provides a textual interface for user to specify a program
graph in a text form. The code of the procedures can be written in C or
FORTRAN. The environment provides the facilities to edit and compile
the procedures on various architectures of a user-defined collection of
computers called virtual machine. This capability allows user to specify
multiple implementations of the procedures for different architectures.

To define the execution cost, a programmer can specify a cost ma-
trix showing the relative costs of running the procedures on various
architectures. HeNCE will automatically schedule the procedures onto
particular machines based on the program graph and the cost matrix.
The cost matrix is also used as an indication of machine load. The
sum of all procedure costs on a machine is viewed as the machine
load. HeNCE decides the least costly placement of the nodes onto the
machines using the cost matrix.

HeNCE also provides performance visualization and analysis tools.
When a program is running, HeNCE can graphically display an ani-
mated view of the program state based on the program graph. Vari-
ous statistics are recorded during the execution. A post-mortem per-
formance analysis tool is associated with the graphical interface for
understanding the execution flow and processor utilization.

5.8. Legion

Legion is an object-based metasystem software project. It is designed
for a system composed of millions of hosts and trillions of objects
tied together with high-speed networks [26, 27, 38]. Users working
separately on own machines perceive an illusion of a single computer;
meanwhile they can access all data and physical resources across the
system. Legion builds a metacomputing system by means of transparent
scheduling, data management, fault tolerance, site autonomy, and a
wide range of security options.
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Legion is implemented in Mentat [25], an object-oriented parallel
processing system designed to simplify the programming of portable
parallel applications. Mentat has two primary components: the Men-
tat Programming Language (MPL) and the Mentat run-time system
(RTS). The MPL is an object-oriented programming language based
on C++. Mentat supports both task parallelism and data parallelism.
It operates over a wide spectrum of architectures from loosely-coupled
heterogeneous networks of workstations to tightly-coupled multicom-
puters. Mentat supports medium to coarse grained applications.

The Macro Dataflow (MDF) model is used in Mentat and imple-
mented by the run-time system. Macro dataflow is a medium-grained,
data-driven computational model. The granularity is in the range of
thousands instructions. Programs in the MDF model are represented as
directed graphs. The Mentat compiler generates the code to construct a
macro dataflow graph based on the data dependency detected at run-
time. The MPL programs are executed on a virtual macro dataflow
machine implemented by the Mentat run-time system.

The Mentat objects are scheduled to the processors with the purpose
of minimizing the total execution time of an application. Scheduling
decisions are made by a distributed algorithm which consists of two
sub-decisions: (1) the transfer policy determines whether to process a
task locally or remotely; (2) the location policy determines the computer
node to which a task should be sent. The transfer policy is a threshold
policy. Each computer node determines the scheduling based on local
state information. A task originated on a node is accepted for local
processing if the local state is below a threshold. Otherwise, the location
policy is invoked.

Legion supports the MPL and the Basic FORTRAN Support (BFS).
The BFS provides a set of Legion directives embedded in FORTRAN
code. It also provides a core PVM interface and a core MPI interface to
enable the PVM and MPI applications to use Legion features. Legion is
designed to support a wide range of massively parallel applications such
as CFD computations, climate and ocean modeling and simulation.

5.9. Comparison of the Tools

The scheduling tools discussed above can be compared using the tax-
onomy defined in Section 4.2. Table I summarizes the features of these
tools using the characteristics given in the taxonomy (i.e., target sys-
tem, main functionality, control mode, and scheduling policy) as well
as four additional features as following:

• Task graph: the form of task graph. Most of the tools use directed
acyclic graph (DAG). Some tools use a special form of DAG.
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• Scheduling algorithm: the scheduling algorithm(s) used by a
tool such as list scheduling, clustering, and adaptive scheduling
which decides a schedule based on the execution profile of an
application.

• User interface: a tool may provide some kind of user interface
such as program/graph editor, program and performance visual-
ization.

• Programming paradigm: the programming languages and li-
braries supported by the tool.

As Table I shows, these scheduling tools are developed for differ-
ent purposes. The earlier systems like PYRROS and Hypertool are
designed for the task scheduling on message-passing parallel machines.
VDCE and HeNCE are software development environments for sup-
porting parallel programming and task scheduling on heterogeneous
networks. Legion is a more powerful metasystem that provides compre-
hensive supports including resource management, data management,
program development, fault tolerance, and security for wide-area sys-
tems. MARS is a performance monitoring and task scheduling tool
for metacomputer, which collects the execution profile of a program
and performs adaptive task-to-processor mapping based on the profile.
ATME is also a tool for adaptive task mapping based on execution
profile. CASCH is a tool to evaluate the performance of list schedul-
ing algorithms, which also supports automatic parallelization of serial
programs.

From Table I, we can find that the task scheduling on local-area
systems is usually implemented in a centralized mode where a single
scheduler is running on one of the hosts such as in PYRROS, Hypertool,
CASCH, ATME, and HeNCE. Since distributed system is expanding
to wide-area environment, distributed scheduling strategy is required
to satisfy the resource heterogeneity, site autonomy and fault-tolerance
requirements. The tools for wide-area systems such as VDCE, MARS
and Legion implement task scheduling based on a distributed mode.

Most of the tools use a form of DAG to present the applications for
scheduling. The deterministic structure of the DAG facilitates the de-
sign and implementation of the scheduling algorithms. However, DAG
lacks the ability to describe complex program structures such as it-
eration and changeable communication pattern. Therefore, alternative
forms of task graph are required to enhance the capability of represent-
ing various application structures such as the directed graph in HeNCE
that includes special nodes to represent control flow.
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These tools are not originally designed for cluster computing. How-
ever, they can be applied to cluster systems. In principle, the tools de-
signed for local-area systems including PYRROS, Hypertool, CASCH,
ATM and HeNCE can be directly used on clusters. For the tools de-
veloped for wide-area systems including VDCE, MARS and Legion,
a cluster can be viewed as a special case of the system that contains
only one local site. The local-site scheduling algorithms in these tools
can be used on the cluster system. As the rapid advance of cluster
computing, however, these tools do not fully suit the architectural and
application requirements of cluster systems. New scheduling tools need
to be developed with the technological improvements as discussed in
the next section.

6. Discussion and Conclusions

This paper explores the application scheduling approaches and tools
for cluster computing. The scheduling techniques are important to
realize high-performance parallel computing. Task graph, commonly
represented as a weighted directed acyclic graph, is a general model to
represent a parallel program for task scheduling. Different scheduling
algorithms have been proposed based on various heuristics on program
features and system architecture. The task graph based scheduling has
been considered as an effective model for the scheduling algorithms in
theoretical studies. However, it has not obtained wide use in practice.
Few task scheduling tools can be found on cluster systems. So far, no
commercial tool is available.

The usability of the scheduling techniques is restricted by various
factors. One factor is the discrepancy between the simplified DAG
structure and the complex real application structures. DAG can only
describe non-iterative computations in a straightforward way. It is not a
model feasible to describe complex program structures. As applications
usually contain loops and branches, more complex graph structures
should be adopted to describe these structures. On the other hand,
complex graphs may make the task scheduling intractable in acceptable
time complexity.

Another drawback of DAG is the low scalability. The topology of a
DAG is highly related to the problem size of an application and the
number of processors in use. When the problem size or the number of
processors has changed, a new task graph should be drawn and a new
scheduling should be determined for it. In DAG, the iteration has to
be unrolled. An unrolled graph is usually oversized beyond the scope
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of graph drawing and display facility. The low scalability discourages
the real use of the DAG-based scheduling approaches.

To improve the usability of the graph based scheduling, the method
should be improved in the following aspects.

(1) Task graph model
A task graph should be highly scalable to the program structure. In

other words, a task graph ought to represent the logical structure of a
program which is independent from the problem size and the number
of processors. To support the scalability, adaptive graph transformation
is needed to adapt a graph to these parameters when task scheduling
is being conducted. The clustering approach discussed in Section 3.2.3
can be used to merge the graph nodes when the number of parallel
tasks exceeds the available processors. The task graph should also allow
graph expansion to match the increased problem size or the number
of processors by decomposing the graph nodes and reconstructing the
edges. In the framework shown in Figure 4, the graph transformation
component in layer 2 is defined for this purpose.

(2) Scheduling strategy
For a wide-area system, high autonomy, heterogeneity and scalabil-

ity are the key merits of a scheduling strategy. A distributed scheduling
strategy is suited to wide-area environment in which the scheduling of
an application is accomplished by the cooperation of the schedulers in
distributed domains. The scheduling algorithms need to consider the
network delay and the heterogeneous computing resources so as to fully
utilize the computing power and reduce the communication overhead.
In the framework shown in Figure 4, distributed scheduling algorithms
should be included in the library of scheduling algorithms in layer 3 to
satisfy the scheduling requirements in wide-area systems.

With all these efforts, the task graph based scheduling can be ex-
pected to acquire broad use in high-performance cluster computing.
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