
An Interpolating Sequent Calculus
for Quantifier-Free Presburger Arithmetic?

Angelo Brillout1, Daniel Kroening2, Philipp Rümmer2, and Thomas Wahl2

1 ETH Zurich, Switzerland
2 Oxford University Computing Laboratory, United Kingdom

Abstract. Craig interpolation has become a versatile tool in formal
verification, for instance to generate intermediate assertions for safety
analysis of programs. Interpolants are typically determined by annotat-
ing the steps of an unsatisfiability proof with partial interpolants. In this
paper, we consider Craig interpolation for full quantifier-free Presburger
arithmetic (QFPA), for which currently no efficient interpolation proce-
dures are known. Closing this gap, we introduce an interpolating sequent
calculus for QFPA and prove it to be sound and complete. We have
extended the Princess theorem prover to generate interpolating proofs,
and applied it to a large number of publicly available linear integer arith-
metic benchmarks. The results indicate the robustness and efficiency of
our proof-based interpolation procedure.

1 Introduction

Craig interpolation [3], a principle known to logicians since the 1950s, has re-
cently emerged in formal verification as a practical approximation method. Its
applications range from efficient image computations in SAT-based model check-
ing to accelerating convergence of fixpoint calculations for infinite-state systems.
Given two formulae A and C such that A implies C, written A ⇒ C, an inter-
polant is a formula I such that A ⇒ I, I ⇒ C, and I contains only non-logical
symbols occurring in both A and C. Interpolants exist for any two first-order
formulae A and C such that A⇒ C. As is common in formal verification, we also
consider interpolation for unsatisfiable conjunctions A ∧B, which corresponds
to C = ¬B in the above formulation.

In software verification, interpolation is applied to formulae encoding the
transition relation of a model underlying a program. In order to support ex-
pressive programming languages, much effort has been invested in the design
of algorithms that compute interpolants for formulae of various theories. As a
result, efficient interpolation methods are known for propositional logic, linear
arithmetic over the reals with uninterpreted functions [10, 1, 16], datastructures
like arrays and sets [7], and other theories. As for integer arithmetic, a theory

? Supported by the Engineering and Physical Sciences Research Council (EPSRC)
under grant no. EP/G026254/1, by the EU FP7 STREP MOGENTES, and by the
EU ARTEMIS CESAR project.

particularly relevant for software, interpolating solvers have so far been reported
only for restricted fragments such as difference-bound logic, and logics with linear
equalities and constant-divisibility predicates. For these theories, an interpolant
can be derived in time polynomial in the size of the input formulae.

In this paper, we push the boundaries of interpolation-based software model
checking by presenting an interpolation method for full quantifier-free Presburger
arithmetic (QFPA), i.e., linear arithmetic over the integers. This theory has been
used, besides others, to model the behavior of infinite-state programs and of
hardware designs. Presburger arithmetic was shown to be decidable by quanti-
fier elimination [12]. A brute-force interpolation method is to quantify out the
variables not common to the input formulae, and then to eliminate those quan-
tifiers. This approach suffers, however, from the triply-exponential complexity
of the elimination procedure and tends to be ineffective in many practical cases.

A more promising approach (that has also been used, e.g., in [10, 1, 8, 5])
is to extract interpolants directly from an unsatisfiability proof for A ∧ B. To
this end, we first present a sound and complete proof system for QFPA based
on a sequent calculus. We then augment the proof rules with labeled formulae
and partial interpolants — proof annotations that, at the root of a closed proof,
reduce to interpolants. In practice, the resulting interpolating proof system can
be used to extend an existing unsatisfiability proof to one that interpolates. It
can also serve as a replacement of the non-interpolating proof system, allowing
the calculation of an interpolant on the fly. We prove our interpolating calculus
to be sound and complete for QFPA. Our completeness result states that, for
any valid implication, there exists a proof of its validity in our calculus, and the
proof can be annotated with partial interpolants satisfying the proof rules.

In the case of QFPA, the primary difficulty when extracting interpolants
from a proof is the treatment of mixed cuts: applications of a cut-rule (such as
Gomory cuts [17] or the Omega rule [13]) to inequalities that have been derived as
linear combinations of inequalities from both A and B. Our work extends earlier
interpolation procedures for linear arithmetic, in particular [8, 10], by defining an
interpolating cut-rule called strengthen that can handle even mixed cuts. The
rule subsumes a variety of cut-rules for integer linear programming, including
Gomory cuts and the Omega rule, so that interpolants can be extracted from
proofs using either of those rules by reduction to strengthen.

To implement our interpolation method, we have extended the Princess
theorem prover [15] to generate proofs, using the proof rules presented in this
paper. We have applied the interpolating prover to a large number of publicly
available linear integer arithmetic benchmarks, such as from the QF-LIA cate-
gory of the SMT library. We compare the efficiency of the prover to the only
currently known interpolation method for Presburger arithmetic, which is based
on local-variable quantification and subsequent brute-force quantifier elimina-
tion (QE). Our experiments not only demonstrate the weaknesses of interpola-
tion using QE, but also indicate the robustness and efficiency of our proof-based
interpolation procedure, in terms of both time and interpolant size.

2 Preliminaries

Presburger arithmetic. We assume familiarity with classical first-order logic
(e.g., [4]). Let x range over an infinite set X of variables, c over an infinite
set C of constant symbols, and α over the integers Z. The syntax of Presburger
arithmetic is defined by the following grammar:

φ ::= t
.= 0 || t ≤ 0 || α | t || φ ∧ φ || φ ∨ φ || ¬φ || ∀x.φ || ∃x.φ

t ::= α || c || x || αt+ · · ·+ αt

The symbol t denotes terms of linear arithmetic. For simplicity, we only allow 0
as the right-hand side of equalities and inequalities. The explicit divisibility oper-
ator α | t, which is short for ∃s. αs− t .= 0, is included to permit quantifier-free
interpolants for formulae such as y − 2x .= 0 ∧ y − 2z − 1 .= 0, with inter-
polant 2 | y. We use the abbreviations true and false for the equalities 0 .= 0
and 1 .= 0, and φ→ ψ as abbreviation for ¬φ ∨ ψ. Simultaneous substitution of
terms t1, . . . , tn for variables x1, . . . , xn in φ is denoted by [x1/t1, . . . , xn/tn]φ;
we assume that variable capture is avoided by renaming bound variables as nec-
essary. As short-hand notation, we sometimes also quantify over constants (as in
∀c.φ) and assume that the constants are implicitly replaced by fresh variables.
For reasons of presentation, we further assume that terms t are implicitly sim-
plified to 0 or to the form α1t1 + · · ·+ αntn, in which 0 6∈ {α1, . . . , αn}, and
t1, . . . , tn are pairwise distinct variables, constants, or 1.

The semantics of Presburger arithmetic is defined over the universe Z of
integers in the standard way [4]. Furthermore, we only allow quantifiers that
can be handled by Skolemization (only universal/existential quantifiers under
an even/odd number of negations).

Gentzen-style sequent calculi. If Γ , ∆ are finite sets of formulae and C is a
formula, all without free variables, then Γ ` ∆ is a sequent. The sequent is
valid if the formula

∧
Γ →

∨
∆ is valid. A calculus rule is a binary relation

between a finite set of sequents called the premises, and a sequent called the
conclusion. A sequent calculus rule is sound if, for all instances

Γ1 ` ∆1 · · · Γn ` ∆n

Γ ` ∆

whose premises Γ1 ` ∆1, . . . , Γn ` ∆n are valid, the conclusion Γ ` ∆ is
valid, too. Proof trees are defined to grow upwards. Each node is labeled with
a sequent, and each non-leaf node is related to the node(s) directly above it
through an instance of a calculus rule. A proof is closed if it is finite and all
leaves are justified by an instance of a rule without premises.

The interpolating sequent calculus for QFPA presented in this paper extends
the ground fragment of the sequent calculus in [15].

∗
. . . , false ` close-left′

. . . , 1 ≤ 0 ` simp′

. . . ,−x ≤ 0, x+ 1 ≤ 0 ` fm-elim′

. . . ,−x ≤ 0,−b+ x ≤ 0, 3b− 2x+ 1 ≤ 0 ` fm-elim′

. . . ,−2x ≤ 0,−2b+ 2x− 1 ≤ 0, 3b− 2x+ 1 ≤ 0 ` simp′+

. . . ,−2x ≤ 0,−2b+ 2x− 1 ≤ 0, c− 3b− 1
.
= 0, c− 2x ≤ 0 `

red′

a− 2x
.
= 0,−a ≤ 0, 2b− a ≤ 0,−2b+ a− 1 ≤ 0, c− 3b− 1

.
= 0, c− a ≤ 0 `

red′+

a− 2x
.
= 0 ∧ −a ≤ 0 ∧ 2b− a ≤ 0 ∧ −2b+ a− 1 ≤ 0 ∧ c− 3b− 1

.
= 0 ∧ c− a ≤ 0 `

and-left′+

Fig. 1. Unsatisfiability proof for the examples of Sect. 3

3 A Motivating Example

Consider the following program with variables ranging over unbounded integers:

if (a == 2*x && a >= 0) {
b = a / 2; c = 3*b + 1; assert (c > a); }

We would like to verify the assertion in the program. To this end, the program
is translated into the QFPA formula below. Note that b = a / 2 is converted
into a conjunction of two inequalities, and that the assertion is negated:

a−2x .= 0∧−a ≤ 0∧2b−a ≤ 0∧−2b+a−1 ≤ 0∧c−3b−1 .= 0∧c−a ≤ 0 (1)

The unsatisfiability of (1) implies that no run of the program violates the as-
sertion. Fig. 1 shows a refutation of (1) in the Gentzen-style sequent calculus
used in this paper (the right-hand side ∆ happens to be empty in all sequents,
which is not true in general). We add the prime symbol ′ to the rule names
to distinguish them from the interpolating rules introduced later. The proof
starts with the conjunction (1) in the bottom sequent of the tree. Repeatedly
applying the rule and-left′ (denoted and-left′+) splits the conjunction into a
list of arithmetic literals. The equality a− 2x .= 0 is used to reduce the inequali-
ties−a ≤ 0,−2b+ a− 1 ≤ 0, and c− a ≤ 0 by means of substitution (rule red′).
Similarly, c− 3b− 1 .= 0 is used to reduce c− 2x ≤ 0. The inequalities −2x ≤ 0
and −2b+ 2x− 1 ≤ 0 are simplified (rule simp′) by eliminating the coefficient 2;
in the latter inequality, this requires rounding. Unsatisfiability of the remaining
inequalities follows from two applications of the Fourier-Motzkin rule fm-elim′,
and the proof can be closed.

Interpolants for unsatisfiable formulae like (1) can reveal additional informa-
tion about the program being investigated, for instance intermediate assertions.
Suppose we want to compute an invariant for the program point immediately
after b = a / 2. Let A denote the part of equation (1) encoding the program
up to this point. Currently, the only known interpolation method for QFPA is
to quantify out the local variables, i.e., variable x from A:

∃x. (a− 2x .= 0 ∧ −a ≤ 0 ∧ 2b− a ≤ 0 ∧ −2b+ a− 1 ≤ 0) ,

which simplifies via quantifier elimination (QE) to −a ≤ 0∧2b−a .= 0. Existen-
tially quantifying out the local variables from A (or, universally, the local vari-
ables from the remaining part of (1)) always returns the strongest (respectively,
weakest) interpolant for an unsatisfiable formula. These “extremal” interpolants
may be very large, however. Suppose we modify the conditional in the program
by adding further conjuncts that are unnecessary for the safety of the program:

if (a == 2*x && a >= 0 && a >= n*y - n
2 && a <= n*y) { (2)

where n ∈ 2Z is a parameter. The strongest (quantifier-free) interpolant, denoted
Ins , grows linearly in n and thus exponentially in the size of the program:

Ins ≡ − a ≤ 0 ∧ 2b− a .= 0 ∧ (n | a ∨ n | (a+ 1) ∨ · · · ∨ n | (a+ n
2)) .

A weaker but much more succinct interpolant is the inequality −3b+ a ≤ 0.
We demonstrate in this paper that proof-based interpolation provides a way of
obtaining such succinct interpolants. Proofs can compactly encode the unsat-
isfiability of a formula and abstract away from irrelevant facts, enabling the
extraction of succinct interpolants; this is of particular importance for program
verification, where interpolants carrying unnecessary details can delay or pre-
vent the discovery of inductive invariants (e.g., [11]). We therefore propose to
lift proofs of unsatisfiability to interpolating proofs. This way, we avoid many
disadvantages of QE-based interpolation, namely (i) its high complexity, (ii) its
inflexibility in always returning a strongest or weakest interpolant, and (iii) the
need to restart from scratch in order to consider a new partitioning of the un-
satisfiable formula into A and B (in contrast, a proof-based method can extract
many interpolants from a single proof).

4 An Interpolating Sequent Calculus for QFPA

In order to extract interpolants from proofs of unsatisfiable conjunctions A∧B,
we introduce interpolating sequents as an extension of the Gentzen-style sequents
defined in Sect. 2. Formulae in interpolating sequents are labeled either with
the letter L to indicate that they are derived purely from A, the letter R for
formulae derived purely from B, or with partial interpolants (PIs) that record
the A-contribution to a formula obtained jointly from A and B. Similarly as in
[4], the labels L/R will be used to handle analytic rules that operate only on
subformulae of the input formulae, while rewriting rules for arithmetic may mix
parts of A and B and therefore require partial interpolants (as in [10]).

More formally, if φ is a formula and t, tA are terms, all without free variables,
then bφcL and bφcR are L/R-labeled formulae and t .= 0 [tA .= 0], t .= 0 [tA 6 .= 0],
and t ≤ 0 [tA ≤ 0] are formulae labeled with the partial interpolants tA

.= 0,
tA 6 .= 0, and tA ≤ 0, respectively. Furthermore, if Γ , ∆ are sets of labeled for-
mulae and I is an unlabeled formula such that (i) none of the formulae con-
tains free variables, (ii) Γ only contains formulae bφcL, bφcR, t .= 0 [tA .= 0], or
t ≤ 0 [tA ≤ 0], and (iii) ∆ only contains formulae bφcL, bφcR, t .= 0 [tA .= 0], or
t
.= 0 [tA 6 .= 0], then Γ ` ∆ I I is an interpolating sequent.

A B

∗
. . . , 2 ≤ 0 [−6b+ 2a ≤ 0] ` I I1

close-ineq

. . . ,−2x ≤ 0 [−2x ≤ 0], 2x+ 2 ≤ 0 [−6b+ 2a+ 2x ≤ 0] ` I I1
fm-elim

. . . ,−2b+ 2x ≤ 0 [−2b+ 2x− 1 ≤ 0], 3b− 2x+ 1 ≤ 0 [a− 2x ≤ 0] ` I I1
fm-elim

. . . ,−2b+ 2x− 1 ≤ 0 [−2b+ 2x− 1 ≤ 0], 3b− 2x+ 1 ≤ 0 [a− 2x ≤ 0] ` I I2
strengthen

. . . ,−2x ≤ 0 [−2x ≤ 0],−2b+ 2x− 1 ≤ 0 [−2b+ 2x− 1 ≤ 0],
c− 3b− 1

.
= 0 [0

.
= 0], c− 2x ≤ 0 [a− 2x ≤ 0]

` I I2

red-left

. . . , a− 2x
.
= 0 [a− 2x

.
= 0],−2b+ a− 1 ≤ 0 [−2b+ a− 1 ≤ 0],

−a ≤ 0 [−a ≤ 0], c− 3b− 1
.
= 0 [0

.
= 0], c− a ≤ 0 [0 ≤ 0]

` I I2

red-left+

ba− 2x
.
= 0cL , b−a ≤ 0cL , . . . , b−2b+ a− 1 ≤ 0cL ,
bc− 3b− 1

.
= 0cR , bc− a ≤ 0cR

` I I2

ipi+

ba− 2x
.
= 0 ∧ −a ≤ 0 ∧ 2b− a ≤ 0 ∧ −2b+ a− 1 ≤ 0cL ,

bc− 3b− 1
.
= 0 ∧ c− a ≤ 0cR

` I I2

and-left+

Fig. 2. The interpolating version of Fig. 1. The initial interpolant generated by close-
ineq is I1 = (−6b + 2a ≤ 0) ≡ (−3b + a ≤ 0), which is by strengthen combined
with the interpolants false and φ from the subproofs A and B to form the final inter-
polant I2 = (I1 ∨ (false ∧ φ)) ≡ I1.

The semantics of interpolating sequents is defined with the help of projections
ΓL =def {φ | bφcL ∈ Γ} and ΓR =def {φ | bφcR ∈ Γ} that extract the L/R-parts
of a set Γ of labeled formulae. A sequent Γ ` ∆ I I is valid if (i) the (Gentzen-
style) sequent ΓL ` I,∆L is valid, (ii) the sequent ΓR, I ` ∆R is valid, and
(iii) the constants in I occur in both ΓL ∪∆L and ΓR ∪∆R. Note that formulae
annotated with PIs are irrelevant for deciding whether an interpolating sequent
is valid; this only depends on L/R-formulae. The semantics of PIs is made precise
in Sect. 4.3; intuitively, a labeled formula φ [φA] in an interpolation problem A∧B
expresses the implications A⇒ φA and B ∧ φA ⇒ φ.

As special cases, bAcL ` bCcR I I reduces to I being an interpolant of the
implication A ⇒ C, while bAcL, bBcR ` I I captures the concept of inter-
polants I for conjunctions A ∧B common in formal verification.

Example. We illustrate the concept of interpolating sequents with the proof in
Fig. 2, which is the interpolating version of the proof in Fig. 1 and will serve as
a running example in the whole section. For sake of brevity, we omit the sub-
proofsA and B. Due to the soundness of the applied calculus (stated in Sect. 4.3),
the root sequent of the proof is valid, which implies that I2 ≡ (−3b+ a ≤ 0) is
an interpolant for the unsatisfiable conjunction (1). Note that I2 is the inequality
discussed in Sect. 3 as a succinct interpolant and intermediate program assertion.

In the remainder of Sect. 4, we explain the rules of our interpolating calculus
given in Fig. 3, 4. As usual in sequent calculi, the rules are applied in the upward
direction, starting from a sequent Γ ` ∆ I ? with unknown interpolant that
is to be proven (the proof root), and applying rules to successively decompose
and simplify the sequent until a closure rule becomes applicable. The unknown
interpolants of sequents have to be left open while building a proof and can only
be filled in once all proof branches are closed.

Γ, t ◦ 0 [t ◦ 0], bt ◦ 0cL ` ∆ I I

Γ, bt ◦ 0cL ` ∆ I I
ipi-
left

Γ ` t
.
= 0 [t

.
= 0], bt .= 0cL,∆ I I

Γ ` bt .= 0cL,∆ I I
ipi-
right

Γ, t ◦ 0 [0 ◦ 0], bt ◦ 0cR ` ∆ I I

Γ, bt ◦ 0cR ` ∆ I I
ipi-
left

Γ ` t
.
= 0 [0 6 .= 0], bt .= 0cR,∆ I I

Γ ` bt .= 0cR,∆ I I
ipi-
right

∗
Γ, t

.
= 0 [tA

.
= 0] ` ∆ I ∃LA tA

.
= 0

close-eq-left
(t
.
= 0 is unsatisfiable)

∗
Γ, α ≤ 0 [tA ≤ 0] ` ∆ I ∃LA tA ≤ 0

close-ineq
(α > 0)

∗
Γ ` 0

.
= 0 [tA

.
= 0],∆ I ∃LA tA 6 .= 0

close-eq-right

∗
Γ ` 0

.
= 0 [tA 6 .= 0],∆ I ∃LA tA

.
= 0

close-neq-right

Fig. 3. Initialization and closure rules. In the rules ipi-left-l/r, ◦ ∈ { .=,≤} de-
notes a relation symbol. In the rules close-*, ∃LA denotes existential quantifica-
tion ∃c1, . . . , cn., where c1, . . . , cn are the constants that occur in ΓL,∆L but not
in ΓR,∆R. An equality tA

.
= 0 is unsatisfiable if and only if it is of the form

α1d1 + · · ·+ αndn + α0
.
= 0 and gcd(α1, . . . , αn) - α0 (with the convention gcd() = 0).

4.1 Propositional, Initialization, and Closure Rules

To construct a proof for an interpolation problem A ∧B, we start with a se-
quent bAcL, bBcR ` I ? that only contains L/R-labeled formulae and apply
propositional and Skolemization rules to decompose A and B (the applications
of rule and-left in Fig. 2). Because our propositional rules closely follow stan-
dard interpolating calculi (see [9, 4]), we only show two of these rules, namely
the top-most two in Fig. 4. When splitting over L-disjunctions in the antecedent
(or-left-l), it is necessary to form the disjunction of the interpolants derived
in the subproofs. Analogously, R-disjunctions yield conjunctive interpolants. All
propositional rules propagate the L/R-label of formulae to their subformulae,
unchanged. For brevity, we have omitted rules to move inequalities from the
succedent to the antecedent.

Once the decomposition of formulae results in arithmetic literals, the ini-
tialization rules in the upper part of Fig. 3 are used to turn L/R-formulae into
formulae with PIs, to prepare them for later rewriting (the applications ipi in
Fig. 2). Generally, PIs for L-literals are chosen to be the literals themselves, while
empty PIs are introduced for R-literals: the intuition is that L-formulae are fully
contributed by A, while R-formulae do not contain any A-contribution at all.

We observe that the ipi rules do not remove the L/R-formula to which they
are applied (the formula occurs both in the conclusion and in the premise). The
reason is that L/R-formulae in sequents, besides their logical meaning, track the
vocabulary of symbols occurring in the input formulae A,B; the vocabulary is

Γ, bφcL ` ∆ I I
Γ, bψcL ` ∆ I J

Γ, bφ ∨ ψcL ` ∆ I I ∨ J
or-left-l

Γ, bφcD, bψcD ` ∆ I I

Γ, bφ ∧ ψcD ` ∆ I I
and-left

Γ, t
.
= 0 [tA

.
= 0], s+ α · t ◦ 0 [sA + α · tA ◦ 0] ` ∆ I I

Γ, t
.
= 0 [tA

.
= 0], s ◦ 0 [sA ◦ 0] ` ∆ I I

red-left

Γ, t
.
= 0 [tA

.
= 0] ` s+ α · t .= 0 [sA + α · tA ◦ 0],∆ I I

Γ, t
.
= 0 [tA

.
= 0] ` s

.
= 0 [sA ◦ 0],∆ I I

red-right

Γ, bu− c .= 0cL ` ∆ I I

Γ ` ∆ I I
col-red-l

Γ, α · t ◦ 0 [α · tA ◦ 0] ` ∆ I I

Γ, t ◦ 0 [tA ◦ 0] ` ∆ I I
mul-left

Γ, bu− c .= 0cR ` ∆ I I

Γ ` ∆ I I
col-red-r

Γ ` α · t .= 0 [α · tA ◦ 0],∆ I I

Γ ` t
.
= 0 [tA ◦ 0],∆ I I

mul-right

Γ, b∃x. αx+ t
.
= 0cD ` ∆ I I

Γ, bα | tcD ` ∆ I I
div-left

Γ, b(α | t+ 1) ∨ · · · ∨ (α | t+ α− 1)cD ` ∆ I I

Γ ` bα | tcD,∆ I I
div-right

Γ, s ≤ 0 [sA ≤ 0], t ≤ 0 [tA ≤ 0], αs+ βt ≤ 0 [αsA + βtA ≤ 0] ` ∆ I I

Γ, s ≤ 0 [sA ≤ 0], t ≤ 0 [tA ≤ 0] ` ∆ I I
fm-elim

Γ, t
.
= 0 [tA

.
= 0] ` ∆ I E

Γ, t+ 1 ≤ 0 [tA ≤ 0] ` ∆ I I0

Γ, t+ 1 ≤ 0 [tA + 1 ≤ 0] ` ∆ I I1

Γ, t ≤ 0 [tA ≤ 0] ` ∆ I I1 ∨ (E ∧ I0)
strengthen

Γ, t+ 1 ≤ 0 [tA + 1 ≤ 0] ` ∆ I I
Γ,−t+ 1 ≤ 0 [−tA + 1 ≤ 0] ` ∆ I J

Γ ` t
.
= 0 [tA

.
= 0],∆ I I ∨ J

split-eq

Γ, t+ 1 ≤ 0 [tA ≤ 0] ` ∆ I I
Γ,−t+ 1 ≤ 0 [−tA ≤ 0] ` ∆ I J

Γ ` t
.
= 0 [tA 6 .= 0],∆ I I ∧ J

split-neq

Fig. 4. Rules for propositional connectives, equalities, divisibility, and inequalities.
In and-left, we assume D ∈ {L,R}. In red-left and mul-left, ◦ ∈ { .=,≤}, while
◦ ∈ { .=, 6 .=} in red-right and mul-right. In col-red-l and col-red-r, c is a constant
that does not occur in the conclusion or in u. The term u in col-red-l must only
contain constants from ΓL ∪ ∆L, while u in col-red-r must only contain constants
from ΓR ∪ ∆R. In mul-left and mul-right, α > 0 is a positive literal. In div-left
and div-right, D ∈ {L,R}, x is an arbitrary variable, and α > 0. In fm-elim, α > 0
and β > 0 are positive integers.

used in condition (iii) of the definition of valid interpolating sequents, but also
in the closure rules discussed next. For completeness, it is never necessary to
apply ipi rules twice on a proof branch to the same L/R-formula.

Finally, once rewriting (discussed in Sect. 4.2) has produced an unsatisfiable
literal in an antecedent (or a valid literal in a succedent), a closure rule can be
used to close the proof branch and to derive an interpolant from the PI of the
unsatisfiable literal (the application close-ineq in Fig. 2). Closure rules are
given in the lower part of Fig. 3. Because PIs can still contain local symbols
that occur only in ΓL ∪ ∆L (and are not allowed in interpolants), it may be
necessary to introduce existential quantifiers at this point. We note, however,
that quantifiers in quantified literals can be eliminated in polynomial time; e.g.,
∃c1, . . . , cn. α1c1 + · · ·+ αncn + t

.= 0 is equivalent to the divisibility judgement
gcd(α1, . . . , αn) | t.

4.2 Rewriting Rules for Equality, Inequality and Divisibility

The arithmetic rewriting rules form a calculus to solve systems of equalities by
means of Gaussian elimination and Euclid’s algorithm (the middle part of Fig. 4),
as well as a calculus for systems of inequalities based on Fourier-Motzkin elim-
ination and cutting planes (the lower part of Fig. 4). Decision procedures for
QFPA in terms of the corresponding non-interpolating rules have been intro-
duced in [14, 15] and directly carry over to the interpolating case. We therefore
focus on the differences between the normal and the interpolating rules.

The rules red-left/right rewrite (in)equalities with equalities in the an-
tecedent; in both cases, PIs are simply propagated along with the literals (red-
left is applied repeatedly in Fig. 2). The red rules alone do not form a complete
calculus for integer equalities and have to be complemented with col-red-l/r
to introduce fresh constants defined in terms of existing constants (the rules
resemble column reductions when encoding systems of equalities as matrices).
In combination, red and col-red are able to simulate the equality elimination
procedure in [13], as well as standard procedures to transform sets of equalities
(or matrices) to Hermite and Smith normalform [6, 5]. Because col-red-l/r
only introduce local L/R-constants, it is guaranteed that the new constants do
not occur in interpolants.

In contrast to [14, 15], we do not introduce a simplification rule simp′ for
literals, as full simplification is not always possible in the presence of PIs. For in-
stance, the equality 2x .= 0 [a .= 0] cannot be simplified to the form x

.= 0 [tA .= 0]
(as it would happen in [14, 15]) because the factor 2 does not occur in the PI.
This raises a potential problem, as terms αx cannot be rewritten to 0 with the
help of 2x .= 0 if α is odd. As a solution, we introduce the rules mul-left/right
to multiply terms with positive integers prior to rewriting.

Similar to rewriting with equalities, inequalities can be added to each other
with the help of the rule fm-elim realizing Fourier-Motzkin variable elimina-
tion. The strengthen rule is introduced to achieve completeness over the in-
tegers (Fig. 2 shows applications of fm-elim and strengthen). Compared to
the calculi in [14, 15], the use of strengthen in our interpolating calculus is

Partial interpolant annotation Sequent (i) Sequent (ii)

Γ, t
.
= 0[tA

.
= 0] ` ∆ ΓL ` tA

.
= 0,∆L ΓR ` t− tA .

= 0,∆R

Γ, t ≤ 0[tA ≤ 0] ` ∆ ΓL ` tA ≤ 0,∆L ΓR ` t− tA ≤ 0,∆R

Γ ` t .= 0[tA
.
= 0],∆ ΓL, t

A .
= 0 ` ∆L ΓR ` t− tA .

= 0,∆R

Γ ` t .= 0[tA 6 .= 0],∆ ΓL ` tA
.
= 0,∆L ΓR, t− tA

.
= 0 ` ∆R

Table 1. Sequents with partial interpolants and correctness conditions (i) and (ii)

threefold: (i) strengthen can simulate the omega-elim rule in [15], (ii) as
shown in Fig. 2, repeated application of strengthen can be used to round in-
equalities αt+ β ≤ 0 to αt+ αdβαe ≤ 0 (which is done by simp′ in [14, 15]), and
(iii) strengthen can simulate the law of anti-symmetry that is implemented
by the rule anti-symm′ in [14, 15]. As strengthen is the most central rule in
our calculus, we provide a detailed discussion in Sect. 5.

4.3 Properties of the Calculus

Soundness. Our interpolating calculus generates correct interpolants: whenever
a sequent bAcL ` bCcR I I is derived, the implications A⇒ I ⇒ C are valid,
and all constants in I occur in both A and C. More generally:

Lemma 1 (Soundness). If an interpolating sequent Γ ` ∆ I I without any
PIs is provable in the calculus, then it is valid. This implies, in particular, that
the sequent ΓL, ΓR ` ∆L, ∆R is valid.

To prove this lemma, we first need to define the semantics of PIs (although the
sequent Γ ` ∆ I I in the lemma does not contain any PIs, they are likely to be
introduced in the course of a proof). We say that a PI is correct if the sequents
(i) and (ii) given in Table 1 are valid, tA only contains constants that occur in
ΓL∪∆L, and t− tA only contains constants that occur in ΓR∪∆R. Soundness is
then proven in two steps: (i) We show that all PIs in a closed proof are correct
by induction on the distance of a sequent from the root of the proof: assuming
that all PIs in the conclusion of a rule application are correct, we prove that the
PIs in the rule premises are correct. (ii) We show the validity of all sequents in
a closed proof by induction on the size of sub-proofs: assuming that all premises
of a rule are valid, we prove that the conclusion is valid, too.

As a technical difficulty, we need to annotate some rules by introducing fur-
ther auxiliary formulae in the premises to ensure (i) holds. These annotations
are only required for the soundness proof; soundness of the rules with auxiliary
formulae directly implies soundness of the original rules.

Completeness. Vice versa, whenever an implication A⇒ C holds, our calculus is
able to derive an interpolant. We have to ban quantifiers that cannot be handled
by Skolemization.

Lemma 2 (Completeness). Suppose Γ,∆ are sets of labeled formulae bφcL
and bφcR such that all occurrences of existential quantifiers in Γ/∆ are under
an even/odd number of negations, and all occurrences of universal quantifiers in
Γ/∆ are under an odd/even number of negations. If ΓL, ΓR ` ∆L, ∆R is valid,
then there is a formula I such that Γ ` ∆ I I is provable.

The lemma follows from the completeness of the calculi in [14, 15] by means
of proof lifting: given that ΓL, ΓR ` ∆L, ∆R is valid, there is a proof of this fact
in the non-interpolating calculus. This proof can be lifted by replacing each rule
application with an application of the corresponding interpolating rule.

5 Strengthening and Mixed Cuts

Reasoning in linear integer arithmetic generally requires some kind of cut-rule to
deal with the phenomenon of formulae that are satisfiable over the rationals, but
unsatisfiable over integers. The non-interpolating calculus in [14] provides two
rules for this: the simp′ rule to round inequalities αt+ β ≤ 0 to αt+ αdβαe ≤ 0
(which resembles Gomory cuts [17]), and the general strengthen′ rule:

Γ, t
.= 0 ` ∆ Γ, t+ 1 ≤ 0 ` ∆

Γ, t ≤ 0 ` ∆
strengthen′

Because strengthen′ subsumes rounding via the rule simp′, we can ignore the
latter rule for the time being and concentrate on strengthen′.

In order to lift strengthen′ to the interpolating calculus, we can first ob-
serve that two special cases are easy to handle:

Γ, t
.= 0 [t .= 0] ` ∆ I I Γ, t+ 1 ≤ 0 [t+ 1 ≤ 0] ` ∆ I J

Γ, t ≤ 0 [t ≤ 0] ` ∆ I I ∨ J
strengthen-l

Γ, t
.= 0 [0 .= 0] ` ∆ I I Γ, t+ 1 ≤ 0 [0 ≤ 0] ` ∆ I J

Γ, t ≤ 0 [0 ≤ 0] ` ∆ I I ∧ J
strengthen-r

These cases are called pure cuts in [8], because the PIs tell that the inequal-
ity t ≤ 0 has been derived only from L- or only from R-formulae, respectively.
Strengthening inequalities of this kind corresponds to splitting a disjunction
labeled with L or R.

The general case is known as mixed cut [8] and encompasses an application of
strengthen to a formula t ≤ 0 [tA ≤ 0] with tA 6∈ {0, t}; the rule for this gen-
eral case is given in Fig. 4 and features three premises, one more than the non-
interpolating rule strengthen′. To understand the shape of strengthen, note
that we can represent t ≤ 0 as the sum of the inequalities tA ≤ 0 and t− tA ≤ 0,
the first of which is derived from L-formulae, and the second from R-formulae.
The effect of strengthen can then be simulated by applying strengthen-l
to tA ≤ 0 [tA ≤ 0], and afterward strengthen-r to t− tA ≤ 0 [0 ≤ 0]; the com-
bined application of the two rules explains the interpolant I1 ∨ (E ∧ I0) resulting
from strengthen.

Complexity. Non-interpolating refutations of unsatisfiable conjunctions of lit-
erals have exponential size in the worst case [17]. Similarly, it can be shown
that any valid sequent (without quantifiers or propositional connectives) has in-
terpolants of worst-case exponential size that can be derived using a proof of
worst-case exponential size (using the rules strengthen-l/r from above).

In general, however, lifting a non-interpolating to an interpolating proof can
increase the size of the proof exponentially, due to two reasons: (i) the fact
that strengthen in Fig. 4 has three premises, while the non-interpolating
rule strengthen′ has only two, which can make it necessary to repeatedly
duplicate subproofs during lifting (this is partly addressed in Sect. 5.1), and
(ii) because the rule simp′ (which has to be simulated by strengthen in the
interpolating calculus) often allows very succinct proofs. As a result, there are
unsatisfiable conjunctions A ∧B with non-interpolating proofs of linear size, al-
though all interpolants have exponential size.

5.1 Successive Strengthening

It is quite common that strengthen is applied repeatedly to a sequence t ≤ 0,
t+ 1 ≤ 0, t+ 2 ≤ 0, . . . of inequalities, for instance to simulate rounding of an
inequality or the Omega rule [13]. Because each application of strengthen
generates two new inequalities, 2k − 1 applications are necessary in order to
strengthen an inequality t ≤ 0 to t+ k ≤ 0, and the resulting interpolant will
be of exponential size as well. To tackle this growth, we present an optimized
rule that captures k-fold strengthening and requires only a quadratic number of
premises. The optimized rule k-strengthen exploits the fact that many of the
goals created by repeated application of strengthen are redundant:{

Γ, t+ i
.= 0 [tA + j

.= 0] ` ∆ I Eji
}

0≤j≤i<k{
Γ, t+ k ≤ 0 [tA + j ≤ 0] ` ∆ I Ij

}
0≤j≤k

Γ, t ≤ 0 [tA ≤ 0] ` ∆ I K
k-strengthen

where the resulting interpolant K is defined by:

K =
∨

0≤j≤k

(
Ij ∧

∧
j≤i<k

Eji

)
(3)

The size of K grows quadratically, rather than exponentially, in k. Thus, when-
ever the strengthen rule is to be applied k times in succession, it is possible
and more efficient to use the k-strengthen rule instead.

The number of premises of k-strengthen (but not the size of the result-
ing interpolant) can be reduced further to a linear number: any two premises
generating Eji and Eli differ only in the partial interpolant of t+ i ≤ 0, not in
any other formula. We can exploit this by treating the family (Eji)0≤j≤i as a
single premise that is parameterized in the free variable j. This way, a single
subproof can generate a parameterized interpolant Ei(j). The parameter j can
be instantiated to the values 0 ≤ j ≤ i when constructing K. Parametrized
interpolants I(j) can be derived similarly.

Interpolation of rounding operations. An additional optimization is possible
when the rule k-strengthen is used to round an inequality αt+ β ≤ 0 to
αt+ αdβαe ≤ 0. Rounding corresponds to k-strengthen with k = αdβαe − β:{

Γ, αt+ β + i
.= 0 [tA + j

.= 0] ` ∆ I Eji
}

0≤j≤i<k{
Γ, αt+ αdβαe ≤ 0 [tA + j ≤ 0] ` ∆ I Ij

}
0≤j≤k

Γ, αt+ β ≤ 0 [tA ≤ 0] ` ∆ I K
k-strengthen

We can observe that αt+ β + i
.= 0 is unsatisfiable for 0 ≤ i < αdβαe − β, so

that the equality-premises can be closed immediately via close-eq-left. Con-
sequently, the interpolants Eji = Ej = (∃LA tA + j

.= 0) do not depend on i, and
the overall interpolant can be simplified to K = Ik ∨

∨
0≤j<k(Ij ∧ Ej).

Example. We use k-strengthen to compute an interpolant for the conjunc-
tion A ∧ B with A = −y + 5x− 1 ≤ 0 ∧ y − 5x ≤ 0 and B = 5z − y + 1 ≤ 0 ∧
−5z + y − 2 ≤ 0. Note that A ∧B is satisfiable over rationals, but unsatisfiable
over the integers. An interpolating proof of unsatisfiability is as follows:

∗.
.
.
.

{· · · I Ej
i }

∗
. . . , 1 ≤ 0 [j − 1 ≤ 0] ` I j − 1 ≤ 0

close-ineq

. . . ,−5z + 5x ≤ 0 [−y + 5x− 1 + j ≤ 0],
5z − 5x+ 1 ≤ 0 [y − 5x ≤ 0]

` I j − 1 ≤ 0

fm-elim

. . . ,−5z + 5x− 3 ≤ 0 [−y + 5x− 1 ≤ 0], 5z − 5x+ 1 ≤ 0 [y − 5x ≤ 0] ` I K
3-strengthen

. . . , y − 5x ≤ 0 [y − 5x ≤ 0], 5z − y + 1 ≤ 0 [0 ≤ 0],
−5z + 5x− 3 ≤ 0 [−y + 5x− 1 ≤ 0]

` I K

fm-elim

−y + 5x− 1 ≤ 0 [−y + 5x− 1 ≤ 0], y − 5x ≤ 0 [y − 5x ≤ 0],
5z − y + 1 ≤ 0 [0 ≤ 0],−5z + y − 2 ≤ 0 [0 ≤ 0]

` I K

fm-elim

b−y + 5x− 1 ≤ 0cL , by − 5x ≤ 0cL , b5z − y + 1 ≤ 0cR , b−5z + y − 2 ≤ 0cR ` I K
ipi+

b−y + 5x− 1 ≤ 0 ∧ y − 5x ≤ 0cL , b5z − y + 1 ≤ 0 ∧ −5z + y − 2 ≤ 0cR ` I K
and-left+

Most importantly, the rule 3-strengthen is used to round −5z + 5x− 3 ≤ 0
to −5z + 5x ≤ 0, from which a contradiction can be derived via fm-elim. In the
premises of 3-strengthen, the inequality interpolants Ij = (j − 1 ≤ 0) and the
equality interpolants Ej = (∃x. − y + 5x− 1 + j

.= 0) ≡ (5 | (y + 1− j)) are de-
rived as discussed above. The overall interpolant is:

K = 3− 1 ≤ 0︸ ︷︷ ︸
Ik

∨
∨

0≤j<3

(j − 1 ≤ 0︸ ︷︷ ︸
Ij

∧ 5 | (y + 1− j)︸ ︷︷ ︸
Ej

) ≡ 5 | (y + 1) ∨ 5 | y

6 Experimental Evaluation

We implemented3 the proposed interpolating calculus on top of the Princess
theorem prover [15], including all optimizations described in Sect. 5. To this end,
we extended Princess to generate proofs. The interpolation procedure then pro-
cesses the proof and generates an interpolant using the rules presented in this
3 Implementation and benchmarks: www.philipp.ruemmer.org/iprincess.shtml

10
-2

10
-1

1

10

10
2

10
-2

10
-1 1 10 10

2

P
ro

o
f-

B
as

ed
 I

n
te

rp
o

la
ti

o
n

 (
ru

n
ti

m
e

in
 s

ec
o
n

d
s)

Quantifier Elimination (runtime in seconds)

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

P
ro

o
f-

B
as

ed
 I

n
te

rp
o

la
ti

o
n

 (
in

te
rp

o
la

n
t

si
ze

)

Quantifier Elimination (interpolant size)

0

5

10

>15

N
u
m

b
er

 o
f

lo
ca

l
sy

m
b
o

ls
 i

n
 A

10
-2

10
-1

1

10

10
2

 10 20 30 40 50 60 70P
ro

o
f-

B
as

ed
 I

n
te

rp
o

la
ti

o
n

 (
ru

n
ti

m
e

in
 s

ec
o
n

d
s)

Number of local symbols in A

10
-2

10
-1

1

10

10
2

 10 20 30 40 50 60 70

Q
u
an

ti
fi

er
 E

li
m

in
at

io
n
 (

ru
n

ti
m

e
in

 s
ec

o
n
d

s)

Number of local symbols in A

Fig. 5. Benchmarks comparing interpolant extraction with quantifier elimination

paper. The benchmarks for our experiments are derived from the SMT-LIB cat-
egory QF-LIA. We evaluate them on an Intel Pentium Xeon with 3 GHz and
4 MB cache, running Linux. Because SMT-LIB benchmarks are usually conjunc-
tions at the outermost level, we partitioned them into A ∧ B by choosing the
first k

10 · n of the benchmark conjuncts as A, the rest as B (where n is the total
number of conjuncts, and k ∈ {1, . . . , 9}). Partitionings where A did not contain
any local symbols (constants or propositional variables) were ignored.

Since (to the best of our knowledge) no other interpolation procedure for
QFPA was available, we compared the performance of the Princess interpola-
tion procedure with interpolation by quantifier elimination (QE), eliminating all
local symbols in A. For the latter, we use the implementation of the Omega [13]
test available in Princess. The results are shown in Fig. 5.

The upper left diagram compares runtimes of proof-based interpolation (PBI)
with QE, with a timeout of 120s. We do not include the time to generate proofs,
because in typical applications (like software model checking) many interpolants
will be generated from each proof, and because QE does not decide the input
formula. Considering only the cases without timeout, proving took on average
about 4 times as long as the extraction of all interpolants from one proof. The
diagram shows that PBI outperforms QE in 147 out of 205 cases, while QE is
faster in 58 cases. QE times out for 103 of the benchmarks, PBI for 29. When

analyzing the cases where QE is faster than PBI, we observed that QE typically
performs well when A only contains few local symbols, i.e., when few quantifiers
need to be eliminated. We highlight cases where the number of local symbols is
less than 15 by gray points in the diagrams; with an increasing number of local
symbols, the performance of QE quickly degrades. To quantify this phenomenon,
we measured interpolation runtimes classified by the number of local symbols in
A: the two lower diagrams in Fig. 5 show that PBI is a lot less dependent on
the number of such symbols than QE.

The upper right diagram compares the sizes of the interpolants (the number
of operators) generated by the two techniques. In 149 cases, the interpolants
obtained using PBI are smaller than those derived by QE, in 122 cases they are
at least one order of magnitude smaller.

7 Related Work and Conclusions

Related work. Interpolation for propositional logic, linear rational arithmetic,
and uninterpreted functions is a well-explored field. In particular, McMillan
presents an interpolating theorem prover for rational arithmetic and uninter-
preted functions [10]; an interpolating SMT solver for the same logic has been
developed by Beyer et al. [1]. Rybalchenko et al. [16] introduce an interpolation
procedure for this logic that works without constructing proofs.

Interpolation has also been investigated in several fragments of integer arith-
metic. McMillan considers the logic of difference-bound constraints [11], which is
decidable by reduction to rational arithmetic. As an extension, Cimatti et al. [2]
present an interpolation procedure for the UT VPI fragment of linear integer
arithmetic. Both fragments allow efficient reasoning and interpolation, but are
not sufficient to express many typical program constructs, such as integer di-
vision. In [5], separate interpolation procedures for two theories are presented,
namely (i) QFPA restricted to conjunctions of integer linear (dis)equalities and
(ii) QFPA restricted to conjunctions of stride constraints. The combination of
both fragments with integer linear inequalities is not supported, however.

Kapur et al. [7] prove that full QFPA is closed under interpolation (as an
instance of a more general result about recursively enumerable theories), but
their proof does not directly give rise to an efficient interpolation procedure.
Lynch et al. [8] define an interpolation procedure for linear rational arithmetic,
and extend it to integer arithmetic by means of Gomory cuts. No interpolating
rule is provided for mixed cuts, however, which means that sometimes formulae
are generated that are not true interpolants because they violate the vocabulary
condition (i.e., contain symbols that are not common to A and B).

Conclusions. We have presented the first interpolating sequent calculus for
quantifier-free Presburger arithmetic, permitting arbitrary combinations of lin-
ear integer equalities, inequalities, and stride predicates. Our calculus is intended
to be used with a reasoning engine for sequent calculi, resulting in an interpo-
lating decision procedure for Presburger arithmetic. We have implemented our

calculus rules in Princess and demonstrated experimentally that our method
is able to generate much more succinct interpolants than quantifier elimination,
which is the only other method for Presburger interpolation we are aware of.

Currently, we are working on the integration of our interpolation procedure
into a software model checker based on lazy abstraction [11]. The model checker
uses interpolation to refine the abstraction and avoids the expensive image com-
putation required by predicate abstraction. When using our QFPA interpolation
procedure, we expect to be able to verify software with more complex numerical
features than other model checkers.

Acknowledgments. We want to thank Jerome Leroux, Vijay D’Silva, Georg
Weissenbacher, and the anonymous referees for discussions and/or comments.

References

1. Beyer, D., Zufferey, D., Majumdar, R.: CSIsat: Interpolation for LA+EUF. In:
Gupta, A., Malik, S. (eds.) CAV. LNCS, vol. 5123, pp. 304–308. Springer (2008)

2. Cimatti, A., Griggio, A., Sebastiani, R.: Interpolant generation for UTVPI. In:
Schmidt, R.A. (ed.) CADE, LNCS, vol. 5663, pp. 167–182. Springer (2009)

3. Craig, W.: Linear reasoning. a new form of the Herbrand-Gentzen theorem. The
Journal of Symbolic Logic 22(3), 250–268 (September 1957)

4. Fitting, M.C.: First-Order Logic and Automated Theorem Proving. Springer, 2nd
edn. (1996)

5. Jain, H., Clarke, E., Grumberg, O.: Efficient interpolation for linear diophantine
(dis)equations and linear modular equations. In: Gupta, A., Malik, S. (eds.) CAV.
LNCS, vol. 5123, pp. 254–267. Springer (2008)

6. Kannan, R., Bachem, A.: Polynomial algorithms for computing the Smith and
Hermite normal forms of an integer matrix. SIAM J. Comput. 8(4), 499–507 (1979)

7. Kapur, D., Majumdar, R., Zarba, C.G.: Interpolation for data structures. In: SIG-
SOFT ’06/FSE-14. pp. 105–116. ACM, New York, NY, USA (2006)

8. Lynch, C., Tang, Y.: Interpolants for linear arithmetic in SMT. In: ATVA. LNCS,
vol. 5311, pp. 156–170. Springer (2008)

9. Maehara, S.: On the interpolation theorem of Craig. Sugaku 12, 235–237 (1960)
10. McMillan, K.L.: An interpolating theorem prover. Theor. Comput. Sci. 345(1)

(2005)
11. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)

CAV. LNCS, vol. 4144, pp. 123–136. Springer (2006)
12. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In:
Comptes Rendus du Ier congrès de Mathématiciens des Pays Slaves (1929)

13. Pugh, W.: The Omega test: a fast and practical integer programming algorithm
for dependence analysis. Communications of the ACM 8, 102–114 (1992)

14. Rümmer, P.: A sequent calculus for integer arithmetic with counterexample gen-
eration. In: VERIFY. CEUR (http://ceur-ws.org/), vol. 259 (2007)

15. Rümmer, P.: A constraint sequent calculus for first-order logic with linear integer
arithmetic. In: LPAR. LNCS, vol. 5330, pp. 274–289. Springer (2008)

16. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation.
In: VMCAI (2007)

17. Schrijver, A.: Theory of Linear and Integer Programming. Wiley (1986)

