
OGSA-based Grid Workload Monitoring

Rui Zhang, Steve Moyle and Steve McKeever
Oxford University Computing Laboratory

Wolfson Building, Parks Road,
Oxford OX1 3QD, England

{ ruiz,sam,swm} @comlab.ox.ac.uk

Stephen Heisig
IBM T.J. Watson Research Centre

19 Skyline Drive, Hawthorne,
N.Y. 10532, USA

heisig@us.ibm.com

Abstract

In heterogeneous and dynamic distributed systems
like the Grid, detailed monitoring of workload and its
resulting system performance (e.g. response time) is re-
quired to facilitate performance diagnosis and adaptive
performance tuning. In this paper, we present a work-
load monitoring infrastructure for this purpose. The
infrastructure classifies and monitors workload across
components in Grids based on the Open Grid Service
Architecture (OGSA) in an end-to-end manner. It pro-
vides the abilities to assess what components are in-
volved in processing a work unit, to report time elapsed
at these components, and to capture concurrency and
isolate which components are critical to overall perfor-
mance observed. These are enclosed in an automati-
cally constructed Response Time Service Petri Net (RT-
SPN) model. A tool is provided to accept queries about
work units and visualise corresponding RTSPNs. The
infrastructure is also designed and implemented so as
to be portable, scalable and lightweight.

1. Introduction

Computational Grids aim to deliver desired perfor-
mance [18], typically in relation to response time. How-
ever, Grid applications normally contain a diverse set
of work units with various importances, performance
goals and invocation parameters, and run across a num-
ber of heterogeneous Grid components [21]. Differ-
ent work units may dynamically pass through different
(groups of) components as they are processed. This
is especially true for Grids based on the Open Grid
Service Architecture (OGSA) [17], whose Web Ser-
vice features enable the implementation of higher-level
Grid services via dynamic composition of lower-level
services [17]. In order to deliver appropriate perfor-
mance to Grid applications, workload must be moni-

tored across Grid components between application end
points in an end-to-end manner [17], assessing what
components are involved in workload processing, how
much time is spent on these components, their status,
and how they contribute to overall response time. Such
knowledge offers valuable assistance to performance di-
agnosis and tuning.

Nonetheless, little effort has been made to obtain
the above information, especially the constitution of
overall response time, which requires the modelling of
concurrency in processing work units. In this paper, we
present a workload monitoring infrastructure seeking
to tackle these problems for Grids (OGSA-based Grids
in particular) using response time as one performance
metric. OGSA-based Grids are chosen mainly because
OGSA is becoming a standard architecture for Grids
and its Web Service features result in complex perfor-
mance behaviours. More specifically, the infrastructure
developed makes the following contributions:

• By classifying and tracing work units, the infras-
tructure discovers what Grid components are dy-
namically involved in the processing of different
work units and reports how much time is spent at
these components.

• A Response Time Service Petri Net (RTSPN)
model is automatically constructed for every work
unit using the collected data without knowledge
of the application. The model is used to capture
concurrency in processing the work unit and as-
sess how overall response time is constituted. A
visualisation based on the model is provided to the
user/administrator.

• The instrumentation targets common OGSA-based
Grid middleware and is readily available for vari-
ous OGSA-based Grid deployments with minimal
or no application code modification and configura-
tion.

• An open standard monitoring methodology em-
ployed by the infrastructure is sufficiently general
to be applied to other heterogeneous distributed
systems with little adjustment.

The rest of this paper is structured as follows. Next
section defines the RTSPN model. Section 3 describes
the workload monitoring infrastructure. Experiments
and results are presented in Section 4. Related works
are reviewed in Section 5. The last section concludes
and discusses future research.

2. OGSA-based Grid Performance

In this section, we decompose OGSA-based Grids
into a hierarchy of components and model the run-time
relations between them. The aim is to investigate the
concurrency in workload processing and form a basis of
the monitoring infrastructure discussed in next section.

2.1. Decomposition

In creating OGSA, efforts were made to encap-
sulate Grid resources and functions into Grid services
– stateful Web Services with standard interfaces [17].
The implication is that an OGSA-based Grid can be de-
composed into two levels of components –Servicesand
Platforms– that process work units.

Services are higher-level components. An OGSA-
based Grid can be viewed as a set of services (in OGSA
specification, it is in actual fact service instances that
are handling the work units, for simplicity however, we
prefer the term service). A simplified eDiamond Grid
[11], for example, consists of two services – anim-
ageretrieve service and anogsadai [16] service. In
processing work units, services are invoked program-
matically due to their Web Service features, resulting in
dynamic influence on overall system performance.

Platforms are lower-level components. A service
can be viewed as a sequence of platforms. When a Grid
service is invoked, common platforms such as network
and Grid container are invoked in a typical order. This
is illustrated in Figure 3, where both theimageretrieve
service andogsadai [16] service is decomposed into
three constituent platforms.

Following the above discussion, we claim that,
in general, compared with platforms, services produce
more dynamism and have a stronger impact on overall
performance. Our discussion in the next subsection will
focus on the service level.

2.2. Response Time Service Petri Net

The overall system performance in workload pro-
cessing is determined by not only time elapsed on in-
dividual services but also how they compose overall
response time. The former can be easily measured,
whereas the later is decided by the concurrency in pro-
cessing work units. For if two (or more) services are
invoked sequentially, the overall response time will be
the sum of time spent on each service, whereas if they
are invoked in parallel (and are synchronised), it will
add up to less.Such concurrency must be accounted
for before system performance behaviour can be truly
understood.It is determined by two types of relations
between services – invocation relations and dependency
relations. We define these two relations as:

DEFINITION 1. An Invocation Relationis a math-
ematical relation7→∗= {〈a, b〉|a ∈ S∧b ∈ S ∧a 6= b},
where:

• S is the set of services.

• 〈a, b〉 represents the invocation of serviceb by ser-
vicea in processing a work unit.

• a is calledb’s Parent Serviceand b is calleda’s
Child Service.

DEFINITION 2. A Dependency Relationis a
mathematical relation⇒∗= {〈a, b〉|a ∈ S ∧ b ∈ S ∧
a 6= b}, where:

• S is the set of services.

• ∃c ∈ S : 〈c, a〉 ∈ 7→∗ ∧ 〈c, b〉 ∈ 7→∗. That is,
servicea andb are invoked by the same service.

• 〈a, b〉 means servicea is dependent on serviceb.
For example,a takesb’s output as input.

• b is termeda’s Prerequisite Serviceanda is called
b’s Dependent Service.

If a service invokes one or more child services, then
it starts before all its child services start and terminates
after all its child services terminate synchronously,
while the child services may run in parallel or sequen-
tially. If a service relies on one or more prerequisite
services, then it starts after all its prerequisite services
terminate synchronously.

Having defined the run-time relations between ser-
vices, we opt to use a Petri-net (PN) to encode these re-
lations and represent concurrency for a single work unit.
The reasons are three-fold. Firstly, PNs are capable

of modelling various aspects of concurrency including
parallelism, sequence and synchronisation [13]. Sec-
ondly, theoretical results regarding PNs are plentiful:
ranging from traditional properties such as boundedness
and liveness [13] to deriving end-to-end response time
from a generalised stochastic PN [14]. Finally, PN to-
kens map naturally to work units and thus PNs provide
lively visualisation of how work units are processed in
the Grid by firing transitions [13] (i.e. moving tokens
from place to place that represents Grid component).
We call such a PNResponse Time Service Petri Net
(RTSPN). We assume (a) every work unit requires a re-
sponse and (b) the services are invoked as soon as pos-
sible (i.e. once their prerequisite services terminate).

DEFINITION 3. A RTSPNis a GeneralisedP-
timedPetri Net firing at maximum speed [13] and spec-
ified by a 4-tuple(P, Γ, ∆, W), where:

• P is a finite set of places representing service
fronts/rears, where a service front is the part of a
service processing work unit requests and service
rear is the part producing work unit responses.

• Γ is a function from the setP to the set of positive
cardinal numbers, representing the time taken for a
token to become available at places [13] and hence
encoding the (processing) time a work unit spent
at service fronts/rears.

• ∆ is a finite set of transitions. Firing a transition,
except for the source/sink transition representing
entry/exit to the PN (the Grid), can bear one of the
following four meanings:

1. The simple returning of an invocation to a
service that does not have child services (e.g.
T1 in Figure 1).

2. The simultaneous invocation of a service’s
child services that do not have prerequisite
services (e.g.T2 in Figure 1).

3. The synchronisation of a service’s child ser-
vices that do not have dependent services
(e.g.T3 in Figure 1).

4. The synchronisation of a service’s child ser-
vices that have dependent services and in the
mean time the simultaneous invocation of
these dependent services (e.g.T4 in Figure
1).

• W ⊆ (P ×∆)∪ (∆×P) is a finite set of arcs that
connect transitions with related places.

An example is shown in Figure 1. The assump-
tions made for this particular example are, without loss

of generality: B, C and D are invoked by A with C de-
pendent on both B and D.

A A

B

D

B

D

C C

Legend:

Service rear

Service front

T1

T2 T3T4

Figure 1. Sample RTSPN

CombiningP and∆, we can transform the RTSPN
into a weighted directed graph, where theP nodes are
weighted with the corresponding value inΓ and the∆
nodes are weighted0. Thelongestweighted path in the
directed graph will then determine the overall response
time seen by the work unit. We call this path theCrit-
ical Path, and the services on this pathcritical. Minor
modification can be done to Dijkstra’s Algorithm [10]
to determine the critical pathC. The complexity of the
algorithm isO(|P

⋃
∆|2).

The overall response time is constituted by time
elapsed at individual components according to:

t =

|C|∑

i=1

ti =

|C|∑

i=1

(tFi + tRi) =

|C|∑

i=1

|Mi|∑

j=1

(tFij + tRij) (1)

whereti is the time elapsed atith service,tFi and tRi
denote the elapsed time at service front and rear of the
ith service.tFij andtRij hold similar meaning for thejth

constituent platform of servicei, Mi is set of platforms
composing servicei.

Suppose,tA = tAF + tAR = 5, tB = tBF + tBR =
10, tC = tCF + tCR = 10, tD = tDF + tDR = 5
in seconds, then the overall response time will bet =
tA + tB + tC = 25 in seconds and service A, B and C
will be the critical services.

In this section, we have presented a RTSPN model
to capture service relations (and thus concurrency in
workload processing).

3. Monitoring Infrastructure

In this section, we present the workload monitor-
ing infrastructure. First the overall architecture is in-
troduced, then three monitoring issues are discussed in
detail.

3.1. Architecture

The infrastructure features a pipeline architecture
with monitoring data flowing from bottom to top as
depicted in Figure 2. Standard OGSA-based middle-
ware, including the Globus [23] client, Tomcat [1], and

Publisher-Subscriber Framework

......

...

Agent

...

Agent

...

Agent

Subscriber

IBM
Cloudscape

Server

DB2 Client

Viz Tool

DB2 Client

Legend:

Monitoring
Points

Data Flow

Figure 2. Architecture

Globus [23] are instrumented withMonitoring Points
(MPs), who reside in platform end points (e.g. Globus
client and Tomcat are network platform end points)
so that time elapsed at the platforms can be deter-
mined. Figure 3 illustrates an example instrumen-
tation for a simplified eDiamond Grid [11] setting,
where the (front-end)imageretrieveservice delegates
Grid-database-related tasks to theogsadai [16] service.
There are one or more platforms on each machine in
the Grid and subsequently there are one or more MPs.
There is anAgenton each machine, listening to the MPs
for data, possibly batching them before publishing them
to the publisher-subscriber [20]Broker. A client sub-
scribes to the broker and asynchronously receives the
data, which are in turn forwarded via a DB2 client to
IBM Cloudscape and logged.

A unique ID is assigned to every work unit at its
entry MP. The user or administrator is able to issue a
query for the work unit’s RTSPN, the output of the in-
frastructure. The query triggers the retrieval of relevant
data via ODBC and DB2 client. A visualisation tool
then uses the retrieved data to construct and display the
corresponding RTSPN following Definition 3 in Section
2.

The hierarchical data reporting architecture we use
moves the communication with the central broker away
from the MPs and delegates it to local agents. As
a result, it reduces overhead and improves scalabil-
ity by providing the opportunity to batch up and com-
press local data before reporting them via a costly net-
work transmission. The instrumentation is contained in

common OGSA-based Grid middleware and compiles
with the Application Response Measurement (ARM)
[4] standard, enhancing portability.

Requests

Monitoring
Points

Legend:

Globus
Client

Globus

DB2 CMTomcat

img_retrieve
 Service

Back-end

Globus
Client

Globus

Tomcat

ogsa_dai
 Service

Back-end

Figure 3. Instrumentation for a simplified
eDiamond Grid setting

The MPs, whose algorithm is outlined in Table 1,
complete three crucial monitoring tasks that are further
detailed individually below.

Table 1. Monitoring point algorithm

If work unit requestThen
If first MP of work unitThen

Classifywork unit and generate acorrelator;
Else

Receivecorrelator from previous MP and update it;
Producetime stamp 1and othermeasurements;
Report measured data to agent;
Sendcorrelator to next MP;

If work unit responseThen
Producetime stamp 2and othermeasurements;
Report measured data to agent;

3.2. Classification

As they enter the instrumented Grid, work units are
classified into service classes according to a combina-
tion of their properties (e.g. ownership (user), type, in-
vocation parameters, etc.) and based on a pre-defined
policy. TheService classrepresents the business im-
portance and response time goal of a work unit [5].
The introduction of service classes in the monitoring
infrastructure enables automatic Service Level Agree-
ment (SLA) verification [21] and our future research on
differentiated services [22] enforcement.

The service class is used to form the unique ID
given to the work unit in the form of a 3-tuple<agent,
serviceclass, timestamp>.

3.3. Correlation

The work unit ID is communicated across MPs (de-
ployed at services) so as to correlate data pertaining to
the work unit after they are gathered.

Another important aspect of correlation is to de-
rive the service relations. This is done automatically
on-the-fly,without knowledge of service logic or source
codewhich is generally not available. Deriving the in-
vocation relation is straightforward – a service (like A
in Figure 4) sends its service ID to every child service
(B, C and D in Figure 4) it invokes. Deriving the depen-
dency relation is more difficult. We know by Definition
2 that if a service (say A in Figure 4) maintains a list of
latest terminated child services (say, B and D in Figure
4), these services could all be the prerequisite services
of the next child service it invokes (C in Figure 4). By
our assumption (b) for Definition 3, we are sure C is de-
pendent on the last terminated service (B in this case),
but for the rest (D in this case), the dependency is spec-
ulative. Currently, IDs of all the latest terminated child
services are sent to the next child service (as in Figure
4). We are looking to make the speculation more pre-
cise by taking into account service specifications and/or
multiple runs of the same type of work unit.

Service A Service B Service C

A

A,B,D
B

Service D

A

D

C

Figure 4. Service correlation

The above communication is actually conducted
between the MPs instrumenting the Globus middleware
of a service and the Globus client used to invoke its
child services. Often since they reside in the same
thread, this can be achieved via global variable shar-
ing. Now (on the MPs) at each service, we have aSer-
vice Pointer<parentserviceID, current serviceID>

encoding an invocation relation. Similarly, pointer
<current serviceID, prerequisiteserviceID> repre-
sents a dependency relation. These pointers will later be
used by the visualisation tool to construct the RTSPN.

The above information, in addition to a counter of
visited platforms in a service, is wrapped into aCor-
relator structure and floated along with the work unit
request to other MPs.

3.4. Measurement

Measurements are taken at the MPs when a work
unit travels by. The most important measurement pro-
duces two time stamps, one marking the moment when
the work unit request passes by the MP, the other mark-
ing the moment when the corresponding response is
produced. They are subtracted at the agent to calculate
the local response time,T , which will be reported for
calculation of time spent at services (and compositional
platforms) using Equation 2 and 3:

ti = |Ti,0 − Ti,Ni−1| (2)

tij = |Ti,j − Ti,j+1| (3)

whereti and tij were introduced in Equation 1,i =
1, . . . , N − 1, j = 1, . . . , Ni − 2, with N being the
number of services andNi the number of MPs instru-
menting servicei. The subtraction eliminates clock dif-
ference between different MPs. This is crucial as the
measurement is taken at distributed MPs whereclock
synchronisation is usually not guaranteed.

Also measured and reported to the agent is the cor-
relator, the current component’s ID, and potentially its
resource usage status.

This section has presented the general architecture
of the monitoring infrastructure, and addressed in detail
the important monitoring issues of classification, corre-
lation and measurement.

4. Experiment

In this section, we present results of applying the
monitoring infrastructure to a simulated OGSA-based
Grid setting. The hypothesis to be verified is that, for
every work unit posted to the setting, the infrastructure
is able to collect data and correctly construct a RTSPN.

4.1. Experimental Setting

We used a simulated setting that closely represents
a possible eDiamond scenario. Integration of the infras-
tructure with eDiamond is already underway, and will
be used to support our future research.

In the scenario, a radiologist tries to retrieve a list
of mammograms assigned to him for analysis. As is
illustrated in Figure 5, this involves six Grid services

Client(s)

Tomcat

Globus

img_retrieve_A
service

Monitoring
Points

Service
Invocation

Legend:

Service
Dependency

Client(s)

Tomcat

Globus

image_list
service

Client(s)

Tomcat

Globus

worklist
service

Client(s)

Tomcat

Globus

img_retrieve_B
service

Client(s)

Tomcat

Globus

ogsa_dai_A
service

Client(s)

Tomcat

Globus

ogsa_dai_B
service

Figure 5. eDiamond scenario

each sitting on top of standard OGSA-based Grid mid-
dleware instrumented with MPs. Theimagelist service
calls thework list service asking for a list of IDs of the
images assigned to the radiologist. Two image IDs are
returned. Since a quick lookup shows they are stored in
eDiamond site A and eDiamond site B respectively, the
imagelist service simultaneously issues two requests to
the imageretrieveservice on both sites. This leads to
the invocation of theogsadai service on both sites to
obtain corresponding image URL from local database.
Eventually, the URLs pointing to the two images are
returned for the radiologist to retrieve the images via
a separate channel. The above basically defines the in-
vocation and dependency relations between the services
shown in Figure 5. All the services are simulated and do
nothing but cause a certain amount of delay and invoke
other services.

4.2. Results

Table 2 shows a portion of the end-to-end monitor-
ing data collected by the MPs for a certain work unit at
a sample run of the experiment. It highlights data col-
lected from MPs instrumenting serviceimagelist and
imageretrieveB and omits the service pointers. The
table shows the work unit was properly classified and
monitoring data pertaining to it were correctly corre-
lated together in an end-to-end manner. Table 2 ac-
counts for what platforms and services were involved in
processing the work unit and the amount of time spent
on each of them. The elapsed time data are calculated
using Equation 3. As opposed to a single overall re-

Table 2. End-to-end monitoring data

Platform Hop Service Elapsed Time
(Microseconds)

......
Network 0 imglist 807814

Grid Container 1 imglist 1198916
Service Back-end 2 imglist 1051049

......
Network 0 imgret B 170362

Grid Container 1 imgret B 136051
Service Back-end 2 imgret B 2010015

......

sponse time, such a table provides details as to what
happened along the way, and can be compared with his-
torical data to detect abnormality.

In order to construct the RTSPN, The data in Ta-
ble 2 are further processed at the service level, deriv-
ing the time elapsed at each service according to Equa-
tion 2. It is presented along with the service pointers
in Table 3 which describes the corresponding RTSPN.
Upon query, a RTSPN, correctly reflecting the service
relations (thus concurrency in workload processing) in
Figure 5 is automatically constructed from Table 3 and
returned as shown in Figure 6 (whose legend is the same
as that in Figure 1). Only very basic visualisation is cur-
rently available, advanced visualisations such as high-
lighting the critical path, click-on display of properties
associated with services and replacing each place with a
clock graph representing elapsed time are being devel-
oped.

The RTSPN constructed presents a complete run-
time performance snapshot for the work unit. Such a
clear visualisation would be of great value to system ad-
ministrators or even end users, who are often lost in the
complexity the Grid exhibits. As detailed in Subsec-
tion 2.2, applying Dijkstra’s Algorithm [10] to the di-
rected graph corresponding to Figure 6 and using Equa-
tion 1, we have the overall response time is constituted
as: t = timage list + twork list + timage retrieve B +
togsa dai B = 9433830 in microseconds and service
imagelist, work list, imageretrieveB andogsadai B
are the critical services. Clearly, likely delay causes can
be quickly narrowed down to these critical services and
their compositional platforms. Furthermore, the RT-
SPN’s critical path property can potentially be exploited
to present users with crucial information only and sim-
plify workload visualisation in complicated scenarios
where each work unit touches hundreds or even thou-
sands of components. Assuming the same service class

Table 3. RTSPN data

Service Parent Prerequisite Elapsed Time
Service Service (Microseconds)

img list Null Null 3057779
img ret A img list work list 1363543
img ret B img list work list 2316428
ogsadai A img ret A Null 1441334
ogsadai B img ret B Null 2742013
work list img list Null 1317610

of work units share a RTSPN (as they have similar or
even identical properties) for a stable period, high fre-
quency, high granularity monitoring can be focused on
critical services to reduce overhead. In Figure 6, for ex-
ample, turning off half of the MPs on non-critical ser-
vicesimageretrieveA andogsadai Acan reduce mon-
itoring overhead by 17%. What is more, performance
tuning middleware on these non-critical services may
shift some resources allocated to this service class (of
work units) to other classes without affecting overall re-
sponse time of the former.

Figure 6. Automatic RTSPN visualisation

The infrastructure’s overhead is measured to be
only around 5.5 milliseconds per work unit per service
on a linux server with four Intel Xeon (2.4GHz) CPUs.
A major part of this overhead is caused by the stan-
dard Axis SOAP [17] parsing implementation in Java
when the correlator (from Tomcat) is retrieved in the
Axis context, and could be significantly reduced by re-
placing it with our own implementation that is better
tailored for our needs.

5. Related Work

There are a number of existing infrastructures dedi-
cated to Grid performance monitoring and analysis [24]
[6] [7] [8]. Most focus on monitoring architecture, for
instance, implementing the GGF Grid Monitoring Ar-
chitecture [15]. However, little has been done to cor-

relate collected data and offer end-to-end performance
monitoring of work units, which, we have achieved and
argue is fundamental in aiding performance diagnosis
and tuning. Furthermore, none of the above work tar-
gets OGSA-based Grids such as eDiamond [11], Astro
Grid [2] and service-based Data Grid [3].

There are other more general distributed system
monitoring approaches such as Pinpoint [12], Magpie
[9] and Netlogger [19] which do provide end-to-end
tracing of work units. However, they have drawbacks
if applied in the Grid paradigm. Magpie [9] does not
explicitly float a correlator along with the work unit but
relies on more heavyweight methods to correlate data
pertaining to a work unit. This requires prior knowl-
edge about the application and is at risk of being over-
whelmed by data in a large distributed environment like
the Grid. Mapgie’s monitoring mechanism relies heav-
ily on on Windows event tracing functions and under-
mines its portability. Pinpoint [12] only addresses iso-
lation of root causes of failure and has yet to consid-
ered performance. Netlogger [19] assumes synchro-
nised clocks which is itself an outstanding nontrivial
challenge to the Grid world. Moreover, the tricky task
of instrumentation and data correlation is left to the
users. Our approach aims to address these gaps.

Additionally, research discussed above has not fea-
tured any model accounting for the concurrency in
workload processing. As a consequence, critical in-
sights like how the overall response time observed by a
work unit is constituted remain unclear. Our approach,
on the other hand, has made such an attempt in RTSPN.

6. Conclusion and Future Work

In this paper, we have presented a workload mon-
itoring infrastructure for OGSA-based Grids. In our
approach, work units are classified and traced end-to-
end as they travel through the Grid, with time elapsed
at sojourned components and their status reported. At
the heart of the infrastructure is a RTSPN model that
captures concurrency in processing a work unit and iso-
lates components critical to overall response time. The
model is constructed automatically from data collected
for a work unit and presented using a visualisation tool
to give Grid users and administrators useful insights
into system performance behaviour.

To aid portability and minimise application code
changes, instrumentation in the infrastructure prototype
targets common OGSA-based Grid middleware and fol-
lows the ARM standard. A distributed hierarchical ar-
chitecture and data batching mechanisms are in place to
ensure scalability and reduce network flows.

The presence of the monitoring infrastructure has

enabled future research on some promising topics in re-
lation to Grid performance:

• End-to-end response time tuning:The aim is to
provide differentiated services and optimise sys-
tem goals by proposing adaptive closed-loop tun-
ing mechanisms based on the monitoring infras-
tructure.

• RTSPN mining:Data mining and machine learning
techniques can be applied to individual RTSPNs
to detect patterns (paths, component and requests
properties) causing delays. RTSPNs can also po-
tentially be merged into a single stochastic net.

• Adaptive monitoring:Critical services revealed in
RTSPNs and delay cause analysis can be used to
dynamically adjust monitoring granularity and fre-
quency to reduce overhead.

• Inter-domain correlation:Since work units may
transcend Grid domains with distinct policies, a
common correlation context needs to be archi-
tected to perform classification mapping at domain
borders so that work units can be traced across
these domains.

7. Acknowledgement

Rui Zhang and Steve Moyle are supported by the
UK Department of Trade and Industry project (Grant
THBB/C/008/00025): Heterogeneous Workload Man-
agement and Grid Integration. We are also grateful to
the eDiamond project for their advice on OGSA-based
Grid issues.

References

[1] Apache jakarta tomcat project.
http://jakarta.apache.org/tomcat/.

[2] The astro grid project. http://www.astrogrid.org/.
[3] Multi-user multi-job resource utilisation.

http://www.lesc.ic.ac.uk/projects/optimise.html.
[4] Application response measurement (arm) – issue 4.0

java binding. Technical report, The Open Group, 2003.
[5] J. Aman, C. K. Eilert, D. Emmes, P. Yocom, and D. Dil-

lenberger. Adaptive algorithms for managing a dis-
tributed data processing workload.IBM Systems Jour-
nal, 36(2), 1997.

[6] M. Baker and G. Smith. Gridrm: A resource monitoring
architecture for the grid.Lecture Notes in Computer
Science, pages 2536–2680, 2002.

[7] Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda.
From cluster monitoring to grid monitoring based on
grm.Proceedings of 7th EuroPar2001 Parallel Process-
ings, Manchester, UK, pages 874–881, 2001.

[8] B. Balis, M. Bubak, W. Funika, T. Szepieniec, and
R. Wismuller. An infrastructure for grid application
monitoring.Lecture Notes in Computer Science, 2002.

[9] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier. Us-
ing magpie for request extraction and workload mod-
elling. In Proceedings of the 6th Symposium on Oper-
ating Systems Design and Implementation (OSDI’04),,
December 2004.

[10] D. Bertsekas. Dynamic Programming and Optimal
Control. Athena Scientific, 1995.

[11] J. M. Brady, D. J. Gavaghan, A. C. Simpson, M. Mulet-
Parada, and R. P. Highnam. eDiaMoND: A grid-
enabled federated database of annotated mammograms.
In F. Berman, G. C. Fox, and A. J. G. Hey, editors,Grid
Computing: Making the Global Infrastructure a Real-
ity, pages 923–943. Wiley Series, 2003.

[12] M. Chen, E. Kiciman, E. Brewer, and A. Fox. Pinpoint:
Problem determination in large, dynamic internet ser-
vices.Proc of DSN, 2002.

[13] R. David and H. Alla.Petri Net and Grafcet: Tools for
modelling descrete event systems. Prentice Hall, 1992.

[14] N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt. Re-
sponse time densities in generalised stochastic petri net
models. InWOSP ’02: Proceedings of the third inter-
national workshop on Software and performance, pages
46–54. ACM Press, 2002.

[15] B. T. et. al. A grid monitoring architec-
ture. http://wwwdidc.lbl.gov/GGFPERF/GMA-
WG/papers/GWD-GP-16-2.pdf, 2002.

[16] M. A. et. al. Ogsa-dai: Two years on,
2002. http://www.nesc.ac.uk/events/GGF10-
DA/programme/papers/15-Antonioletti-OGSA-
DAI-DA-WS-final.pdf.

[17] I. Foster and C. Kesselman.The Grid 2: Buleprint for
a New Computing Infrastructuer. Morgan Kaufmann,
2004.

[18] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid
services for distributed system integration.Computer,
35(6):37–46, 2002.

[19] D. Gunter, B. Tierney, B. Crowley, M. Holding, and
J. Lee. Netlogger: A toolkit for distributed system per-
formance analysis.Proceedings of the IEEE Mascots
2000 Conference (Mascots 2000), LBNL-46269, August
2000.

[20] M. Hapner, R. Burridge, R. Sharma, J. Fialli, and
K. Stout. Java messaging service specification. Techni-
cal report, Sun Microsystems, 2002.

[21] S. Heisig. Treemap for workload visualization.IEEE
Computer Graphics and Applications, 23, 2003.

[22] K. Nichols, S. Blake, F. Baker, and D. Black. Definition
of the differentiated service fields (ds field) in the ipv4
and ipv6 headers. RFC 2474, Internet Engineering Task
Force, 1998.

[23] T. Sandholm and J. Gawor. Globus toolkit 3 core c a
grid service container framework, 2003. http://www-
unix.globus.org/toolkit/3.0/ogsa/docs/gt3core.pdf.

[24] H.-L. Truong and T. Fahringer. Scalea-g: a unified mon-
itoring and performance analysis system for the grid.
Proceeding of 2nd European Across Grids Conference,
Nicosia, Cyprus, Jan 28-30, 2004.

