Bootstrapping One-sided Flexible Arrays

RALF HINZE

Institut für Informatik III, Universität Bonn, Römerstraße 164 53117 Bonn, Germany
Email: ralf@informatik.uni-bonn.de
Homepage: http://www.informatik.uni-bonn.de/~ralf

$$
\text { February, } 2002
$$

(Pick the slides at . . ./ ${ }^{\sim}$ ralf/talks.html\#T31.)

Motivation

One-sided flexible arrays support look-up and update of elements and can grow and shrink at one end.

A variety of tree-based implementations is available.

* Braun trees: all operations in $\Theta(\log n)$ time.
* Binary random-access lists: $\Theta(\log n)$ access and $\Theta(1)$ list operations (amortized).
* Skew binary random-access list: $\Theta(\log n)$ access and $\Theta(1)$ list operations (worst-case).

A common characteristic of the tree-based implementations is the logarithmic time bound for the look-up operation.

Motivation-continued

Assume that you have an application that uses indexing a lot but also updates or extends occasionally (ruling out 'real' arrays).

There is no data structure available that fits these needs.
Idea: Improve look-up by using fat multiway trees trading the running time of look-up operations for the running time of update operations (this idea is due to Chris Okasaki).

Signature

infixl 9 !

class Array a where
-- array-like operations
(!) $\quad:: \quad a x \rightarrow$ Int $\rightarrow x$
update $:: \quad(x \rightarrow x) \rightarrow$ Int $\rightarrow a x \rightarrow a x$
-- list-like operations
empty $:: \quad a x \rightarrow$ Bool
size $\quad:: \quad a x \rightarrow$ Int
nil :: $a x$
copy $\quad::$ Int $\rightarrow x \rightarrow a x$
cons $\quad:: x \rightarrow a x \rightarrow a x$

Signature-continued

$$
\begin{array}{ll}
\text { head } & :: \quad a x \rightarrow x \\
\text { tail } & :: \quad a x \rightarrow a x \\
& \text {-- mapping functions } \\
\text { map } & :: \quad(x \rightarrow y) \rightarrow(a x \rightarrow a y) \\
\text { zip } & :: \quad(x \rightarrow y \rightarrow z) \rightarrow(a x \rightarrow a y \rightarrow a z) \\
& \text {-- conversion functions } \\
\text { list } & :: \quad a x \rightarrow[x] \\
\text { array } & :: \quad[x] \rightarrow a x
\end{array}
$$

Notational convenience: we write both map f and $z i p f$ simply as f^{*}.

Multiway trees

Idea: bootstrap an implementation based on multiway trees from a standard implementation of flexible arrays.
data Tree $a x=\langle a x, a($ Tree $a x)\rangle$

A node $\langle x s, t s\rangle$ is a pair consisting of an array $x s$ of elements, called the prefix, and an array $t s$ of subtrees.

We will show how to turn Tree a into an instance of Array given that a is already an instance.

[^0]
List-like operations

Let us start with the cons operation since this operation will determine the way indexing is done.

Idea: fill up the root node; if it is full up, distribute the elements evenly among the subtrees and start afresh.

$$
\begin{aligned}
& \text { cons } x\langle x s, t s\rangle \\
& \qquad \begin{array}{ll}
\mid \text { size } x s<\text { size ts } & =\langle\text { cons } x \text { xs, ts }\rangle \\
\mid \text { otherwise } & =\left\langle\text { cons } x \text { nil, } \text { cons }^{*} \text { xs ts }\right\rangle
\end{array}
\end{aligned}
$$

To make this algorithm work, we have to maintain some invariants.

Invariants

For all nodes $t=\left\langle\operatorname{array}\left[x_{1}, \ldots, x_{m}\right]\right.$, array $\left.\left[t_{1}, \ldots, t_{n}\right]\right\rangle$:
(1) $\quad m \leqslant n$ and $1 \leqslant n$,
(2) $\left|t_{1}\right|=\cdots=\left|t_{n}\right|$,
(3) $\quad|t|=0 \Longleftrightarrow m=0$.
where $|t|$ denotes the size of a tree (the total number of elements).
NB. The third invariant is necessary so that we can effectively check whether a given tree is empty.

List-like operations-continued

$$
\begin{aligned}
& \text { empty }\langle x s, t s\rangle=\text { empty xs } \\
& \text { head }\langle x s, t s\rangle \\
& \mid \text { empty xs }=\text { error "head: empty array" } \\
& \mid \text { otherwise }=\text { head xs } \\
& \text { tail }\langle x s, t s\rangle \\
& \mid \text { empty xs }=\text { error "tail: empty array" } \\
& \mid \text { size xs }>1=\langle\text { tail } x s, t s\rangle \\
& \mid \text { all empty ts }=\langle\text { nil }, \text { ts }\rangle \\
& \mid \text { otherwise }=\left\langle\text { head }^{*} t s, \text { tail }^{*} t s\right\rangle
\end{aligned}
$$

Array-like operations

After q overflows the r-th subtree comprises the q elements at positions $s+0 * b+r, s+1 * b+r, \ldots, s+(q-1) * b+r$, where s is the size of the prefix and b is the total number of subtrees.

Array-like operations-continued

This explains the implementation of '!'.

$$
\begin{aligned}
\langle x s, t s\rangle!i & \\
\mid \text { empty xs } & =\text { error "index out of range" } \\
\mid i<\text { size } x s & =x s!i \\
\mid \text { otherwise } & =(t s!r)!q \\
\text { where }(q, r) & =\operatorname{divMod}(i-\text { size } x s)(\text { size } t s)
\end{aligned}
$$

NB. update is implemented in an analogous fashion.

Array creation

The shape of the multiway trees is solely determined by the array creation functions nil, copy, and array.

We may think of an initial array as an infinite tree, whose branching structure is fixed and which will be populated through repeated applications of cons.

4 To be able to analyze the running times reasonably well, we make one further assumption: we require that nodes of the same level have the same size.

Given this assumption the structure of trees can be described using a special number system, the so-called mixed-radix number system

Mixed-radix number systems

A mixed-radix numeral is given by a sequence of digits d_{0}, d_{1}, d_{2}, ... (determining the size of the element arrays) and a sequence of bases $b_{0}, b_{1}, b_{2}, \ldots$ (determining the size of the subtree arrays).

$$
\left[\begin{array}{l}
d_{0}, d_{1}, d_{2}, \ldots \\
b_{0}, b_{1}, b_{2}, \ldots
\end{array}\right]=\sum_{i=0} d_{i} \cdot w_{i} \text { where } w_{i}=b_{i-1} \cdots b_{1} \cdot b_{0}
$$

The bases are positive numbers $1 \leqslant b_{i}$ and we require the digits to lie in the range $0 \leqslant d_{i} \leqslant b_{i}$ (cf Invariant 1). Furthermore, we require $d_{i}=0 \Longrightarrow d_{i+1}=0(c f$ Invariant 3).
$4 \geq 8$ Each natural number has a unique representation in this system.

Converting from the mixed-radix number system

$$
\begin{aligned}
\text { type Bases } & =[\text { Int }] \\
\text { type Mix } & =[(\text { Int }, \text { Int })]
\end{aligned}
$$

Converting a mixed-radix number to a natural number is straightforward (using the Horner's rule).

$$
\begin{aligned}
& \text { decode } \\
& \text { decode }((d, b): \\
& \qquad \begin{array}{ll}
\sigma) & \text { Mix } \rightarrow \text { Int } \\
\mid d==0 & =
\end{array} \\
& \mid \text { otherwise }
\end{aligned}=d+b * \text { decode } \sigma \text {. } \quad d .
$$

Converting to the mixed-radix number system

Given a list of bases we can easily convert a natural number into a mixed-radix number.

$$
\begin{array}{ll}
\text { encode } & :: \text { Bases } \rightarrow(\text { Int } \rightarrow \text { Mix }) \\
\text { encode }(b: b s) n & \\
\mid n==0 & =(0, b): \text { zip }(\text { repeat } 0) \text { bs } \\
\mid \text { otherwise } & =(r+1, b): \text { encode bs } q \\
\text { where }(q, r) & =\operatorname{divMod}(n-1) b
\end{array}
$$

Generic array creation functions

$$
\begin{array}{ll}
\text { gnil } & ::(\text { Array } a) \Rightarrow \text { Bases } \rightarrow \text { Tree a } x \\
\text { gnil }(b: b s) & =\langle\text { nil, copy } b(\text { gnil } b s)\rangle \\
\text { gcopy } & ::(\text { Array } a) \Rightarrow \text { Mix } \rightarrow x \rightarrow \text { Tree a } x \\
\text { gcopy }((d, b): \sigma) x & =\langle\text { copy } d x, \text { copy } b(\text { gcopy } \sigma x)\rangle
\end{array}
$$

[国 Now, all we have to do is to come up with interesting bases.

Analysis of running times

Let $\mathrm{H}(n)$ be the height of the tallest tree with size n.
The running time of '!' and update is

$$
\begin{aligned}
\mathcal{T}_{!}(n) & =\sum_{i=0}^{\mathrm{H}(n)-1} \overline{\mathcal{T}}_{!}\left(b_{i}\right) \\
\mathcal{T}_{\text {update }}(n) & =\sum_{i=0}^{\mathrm{H}(n)-1} \overline{\mathcal{T}}_{\text {update }}\left(b_{i}\right)
\end{aligned}
$$

where $\overline{\mathcal{T}}_{o p}$ is the running time of $o p$ on base arrays.

Analysis of running times-continued

The amortized running-time of cons is given by

$$
\mathcal{T}_{\text {cons }}(n)=\frac{1}{n} \sum_{i=0}^{\mathrm{H}(n)-1} \frac{n}{w_{i}} w_{i} \overline{\mathcal{T}}_{\text {cons }}\left(b_{i}\right)=\sum_{i=0}^{\mathrm{H}(n)-1} \overline{\mathcal{T}}_{\text {cons }}\left(b_{i}\right) .
$$

The sum calculates the costs of n successive cons operations. If we divide the result by n, we obtain the amortized running-time. Each summand describes the total costs at level i : we have a carry every n / w_{i} steps; if a carry occurs w_{i} nodes must be rearranged; and the rearrangement of one node takes $\overline{\mathcal{T}}_{\text {cons }}\left(b_{i}\right)$ time.

Variant 1: b-ary trees

Mixed-radix numeral:

$$
\left[\begin{array}{l}
d_{0}, d_{1}, d_{2}, \ldots, d_{n}, \ldots \\
b, \quad b, \quad b, \ldots, b, \ldots
\end{array}\right]
$$

The radices are constant.

$$
\begin{array}{ll}
\text { bary } & :: \text { Int } \rightarrow \text { Bases } \\
\text { bary } b & =\text { repeat } b
\end{array}
$$

b-ary trees-running times

Performance:

base array	bootstrapped array
$\Theta(1)$	$\Theta(\log n)$
$\Theta(\log n)$	$\Theta(\log n)$
$\Theta(n)$	$\Theta(\log n)$

Of course, the constants hidden in the Θ notation differ widely.

$$
\mathcal{T}_{o p}(n) \approx \lg n \cdot \overline{\mathcal{T}}_{o p}(b) / \lg b
$$

Variant 2: arithmetic progression trees

Mixed-radix numeral:

$$
\left[\begin{array}{ccc}
d_{0}, d_{1}, & d_{2}, & \ldots, d_{n}, \\
\alpha, \alpha+\beta, \alpha+2 \beta, \ldots, \alpha+n \beta, \ldots
\end{array}\right]
$$

The radices form the elements of an arithmetic progression.

$$
\begin{array}{ll}
\text { arithmetic } & :: \text { Int } \rightarrow \text { Int } \rightarrow \text { Bases } \\
\text { arithmetic } \alpha \beta & =\alpha: \text { arithmetic }(\alpha+\beta) \beta
\end{array}
$$

Arithmetic progression trees-running times

If we fix $\alpha=\beta=1$, we obtain the so-called factorial number system.

$$
\left[\begin{array}{l}
d_{0}, d_{1}, d_{2}, \ldots, d_{n}, \\
1,2,3, \ldots, n+1, \ldots
\end{array}\right]
$$

Performance $(\alpha=\beta=1)$:

base array	bootstrapped array
$\Theta(1)$	$\Theta(\log n / \log \log n)$
$\Theta(\log n)$	$\Theta(\log n)$
$\Theta(n)$	$\Theta\left((\log n)^{2} /(\log \log n)^{2}\right)$

An excerpt of the asymptotic hierarchy

$$
\begin{aligned}
& \log \log n \\
& \prec \sqrt{\log n} \\
& \prec \log n / \log \log n \\
& \prec \log n \\
& \prec(\log n)^{2} /(\log \log n)^{2} \\
& \prec 2^{\sqrt{\log n}} \\
& \prec n
\end{aligned}
$$

Variant 3: Geometric progression trees

Mixed-radix numeral:

$$
\left[\begin{array}{c}
d_{0}, d_{1}, d_{2}, \ldots d_{n}, \\
\alpha, \alpha \beta, \alpha \beta^{2}, \ldots \alpha \beta^{n}, \ldots
\end{array}\right]
$$

The radices form the elements of a geometric progression.

```
geometric :: Int }->\mathrm{ Int }->\mathrm{ Bases
geometric \alpha \beta}=\alpha:\mathrm{ geometric ( }\alpha*\beta)
```


Arithmetic progression trees-running times

Performance ($\alpha=1$ and $\beta=2$):

base array	bootstrapped array
$\Theta(1)$	$\Theta(\sqrt{\log n})$
$\Theta(\log n)$	$\Theta(\log n)$
$\Theta(n)$	$\Theta\left(2^{\sqrt{\log n}}\right)$

Conversion functions

The conversion functions make use of the following helper functions.
Destructors:

$$
\begin{array}{ll}
\text { elements } & ::(\text { Array } a) \Rightarrow \text { Tree } a x \rightarrow[x] \\
\text { elements }\langle x s, t s\rangle & =\text { list } x s \\
\text { subtrees } & ::(\text { Array } a) \Rightarrow \text { Tree a } x \rightarrow\left[\begin{array}{lll}
\text { Tree } & a & x
\end{array}\right] \\
\text { subtrees }\langle x s, t s\rangle & =\text { list ts }
\end{array}
$$

Constructor:

$$
\begin{array}{ll}
\text { node } & ::(\text { Array } a) \Rightarrow[x] \rightarrow[\text { Tree } a x] \rightarrow \text { Tree a } x \\
\text { node xs ts } & =\langle\text { array xs, array ts }\rangle
\end{array}
$$

Conversion functions: list

A straightforward recursive implementation of list.

$$
\begin{array}{ll}
\text { list } & ::(\text { Array a) } \Rightarrow \text { Tree } a x \rightarrow[x] \\
\text { list } t & =[] \\
\mid \text { empty } t & ::[[x]] \rightarrow[x] \\
\mid \text { otherwise } & =\text { elements } t+\text { riffle }\left(\text { list }^{*}(\text { subtrees } t)\right) \\
\text { riffle } & : \\
\text { riffle } x & \\
\mid \text { all empty } x & =[] \\
\mid \text { otherwise } & =\text { head }{ }^{*} x+\text { riffle }\left(\text { tail }^{*} x\right)
\end{array}
$$

NB. riffle $=$ concat \cdot transpose .

Conversion functions: array

A generic version of array.

```
garray :: (Array a) => Mix }->[x]->\mathrm{ Tree a x
garray ((d,b):\sigma) xs
    | d== 0 = gnil (b:map snd \sigma)
    | otherwise = node ys ((garray \sigma)* (unriffle b zs))
    where (ys,zs) = splitAt d xs
unriffle :: Int }->[x]->[[x]
unriffle n xs
\[
\begin{aligned}
\mid \text { empty } x s & =\text { replicate } n[] \\
\mid \text { otherwise } & =\text { cons* ys (unriffle } n z s) \\
\text { where }(y s, z s) & =\text { splitAt } n x s
\end{aligned}
\]
```


Programming challenge

Give linear-time implementations of list and garray.

Conclusion

Bootstrapped arrays are simple to implement.
Again, number systems have proven their worth in designing purely functional data structures.

One can nicely trade the running time of look-up operations for the running time of update operations.

Sensible choices for the base arrays are 'real' arrays or lists ('logarithmic base arrays' don't lead to improvements).

Preliminary measurements show that bootstrapped arrays perform well for random access, the main factor being the underlying base array.

[^0]: instance $($ Array $a) \Rightarrow$ Array (Tree a) where

