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Motivation

One-sided flexible arrays support look-up and update of elements and

can grow and shrink at one end.

A variety of tree-based implementations is available.

✖ Braun trees:

all operations in Θ(log n) time.

✖ Binary random-access lists:

Θ(log n) access and Θ(1) list operations (amortized).

✖ Skew binary random-access list:

Θ(log n) access and Θ(1) list operations (worst-case).

A common characteristic of the tree-based implementations is the

logarithmic time bound for the look-up operation.
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Motivation—continued

Assume that you have an application that uses indexing a lot but also

updates or extends occasionally (ruling out ‘real’ arrays).

There is no data structure available that fits these needs.

Idea: Improve look-up by using fat multiway trees trading the running

time of look-up operations for the running time of update operations

(this idea is due to Chris Okasaki).
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Signature

infixl 9 !
class Array a where

-- array-like operations

(!) :: a x → Int → x
update :: (x → x ) → Int → a x → a x

-- list-like operations

empty :: a x → Bool
size :: a x → Int
nil :: a x
copy :: Int → x → a x
cons :: x → a x → a x
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Signature—continued

head :: a x → x
tail :: a x → a x

-- mapping functions

map :: (x → y) → (a x → a y)
zip :: (x → y → z ) → (a x → a y → a z )

-- conversion functions

list :: a x → [x ]
array :: [x ] → a x

Notational convenience: we write both map f and zip f simply as f ∗.
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Multiway trees

Idea: bootstrap an implementation based on multiway trees from a

standard implementation of flexible arrays.

data Tree a x = 〈a x , a (Tree a x )〉

A node 〈xs, ts〉 is a pair consisting of an array xs of elements, called

the prefix, and an array ts of subtrees.

We will show how to turn Tree a into an instance of Array given that

a is already an instance.

instance (Array a) ⇒ Array (Tree a) where
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List-like operations

Let us start with the cons operation since this operation will determine

the way indexing is done.

Idea: fill up the root node; if it is full up, distribute the elements

evenly among the subtrees and start afresh.

cons x 〈xs, ts〉
| size xs < size ts = 〈cons x xs, ts〉
| otherwise = 〈cons x nil , cons∗ xs ts〉

To make this algorithm work, we have to maintain some invariants.
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Invariants

For all nodes t = 〈array [x1, . . . , xm ], array [t1, . . . , tn ]〉:

➊ m 6 n and 1 6 n,

➋ |t1| = · · · = |tn|,

➌ |t | = 0 ⇐⇒ m = 0.

where |t | denotes the size of a tree (the total number of elements).

NB. The third invariant is necessary so that we can effectively check

whether a given tree is empty.
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List-like operations—continued

empty 〈xs, ts〉 = empty xs
head 〈xs, ts〉
| empty xs = error "head: empty array"
| otherwise = head xs

tail 〈xs, ts〉
| empty xs = error "tail: empty array"
| size xs > 1 = 〈tail xs, ts〉
| all empty ts = 〈nil , ts〉
| otherwise = 〈head∗ ts, tail∗ ts〉
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Array-like operations

After q overflows the r -th subtree comprises the q elements at positions

s + 0 ∗ b + r , s + 1 ∗ b + r , . . . , s + (q − 1) ∗ b + r , where s is the

size of the prefix and b is the total number of subtrees.

s︷ ︸︸ ︷
· · · r

· · · ×
· · · ×

... ... ... ... ... ... ...

· · · ×
· · · ×





q

︸ ︷︷ ︸
b
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Array-like operations–continued

This explains the implementation of ‘!’.

〈xs, ts〉 ! i
| empty xs = error "index out of range"
| i < size xs = xs ! i
| otherwise = (ts ! r) ! q
where (q , r) = divMod (i − size xs) (size ts)

NB. update is implemented in an analogous fashion.
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Array creation

The shape of the multiway trees is solely determined by the array

creation functions nil , copy , and array .

We may think of an initial array as an infinite tree, whose branching

structure is fixed and which will be populated through repeated

applications of cons.

☞ To be able to analyze the running times reasonably well, we make

one further assumption: we require that nodes of the same level have

the same size.

Given this assumption the structure of trees can be described using a

special number system, the so-called mixed-radix number system
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Mixed-radix number systems

A mixed-radix numeral is given by a sequence of digits d0, d1, d2,

. . . (determining the size of the element arrays) and a sequence of

bases b0, b1, b2, . . . (determining the size of the subtree arrays).

[
d0, d1, d2, . . .

b0, b1, b2, . . .

]
=

∑

i=0

di · wi where wi = bi−1 · · · · · b1 · b0

The bases are positive numbers 1 6 bi and we require the digits to

lie in the range 0 6 di 6 bi (cf Invariant 1). Furthermore, we require

di = 0 =⇒ di+1 = 0 (cf Invariant 3).

☞ Each natural number has a unique representation in this system.

12



Converting from the mixed-radix number system

type Bases = [Int ]
type Mix = [(Int , Int)]

Converting a mixed-radix number to a natural number is

straightforward (using the Horner’s rule).

decode :: Mix → Int
decode ((d , b) : σ)
| d 0 = 0
| otherwise = d + b ∗ decode σ
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Converting to the mixed-radix number system

Given a list of bases we can easily convert a natural number into a

mixed-radix number.

encode :: Bases → (Int → Mix )
encode (b : bs) n
| n 0 = (0, b) : zip (repeat 0) bs
| otherwise = (r + 1, b) : encode bs q
where (q , r) = divMod (n − 1) b
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Generic array creation functions

gnil :: (Array a) ⇒ Bases → Tree a x
gnil (b : bs) = 〈nil , copy b (gnil bs)〉
gcopy :: (Array a) ⇒ Mix → x → Tree a x
gcopy ((d , b) : σ) x = 〈copy d x , copy b (gcopy σ x )〉

☞ Now, all we have to do is to come up with interesting bases.
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Analysis of running times

Let H(n) be the height of the tallest tree with size n.

The running time of ‘!’ and update is

T!(n) =
H(n)−1∑

i=0

T̄!(bi)

Tupdate(n) =
H(n)−1∑

i=0

T̄update(bi),

where T̄op is the running time of op on base arrays.
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Analysis of running times—continued

The amortized running-time of cons is given by

Tcons(n) =
1
n

H(n)−1∑

i=0

n

wi
wi T̄cons(bi) =

H(n)−1∑

i=0

T̄cons(bi).

The sum calculates the costs of n successive cons operations. If we

divide the result by n, we obtain the amortized running-time. Each

summand describes the total costs at level i: we have a carry every

n/wi steps; if a carry occurs wi nodes must be rearranged; and the

rearrangement of one node takes T̄cons(bi) time.
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Variant 1: b-ary trees

Mixed-radix numeral:
[

d0, d1, d2, . . . , dn, . . .

b, b, b, . . . , b, . . .

]

The radices are constant.

bary :: Int → Bases
bary b = repeat b
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b-ary trees—running times

Performance:

base array bootstrapped array

Θ(1) Θ(log n)
Θ(log n) Θ(log n)
Θ(n) Θ(log n)

Of course, the constants hidden in the Θ notation differ widely.

Top(n) ≈ lg n · T̄op(b)/ lg b.
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Variant 2: arithmetic progression trees

Mixed-radix numeral:
[

d0, d1, d2, . . . , dn, . . .

α, α + β, α + 2β, . . . , α + nβ, . . .

]

The radices form the elements of an arithmetic progression.

arithmetic :: Int → Int → Bases
arithmetic α β = α : arithmetic (α + β) β
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Arithmetic progression trees—running times

If we fix α = β = 1, we obtain the so-called factorial number system.
[

d0, d1, d2, . . . , dn, . . .

1, 2, 3, . . . , n + 1, . . .

]

Performance (α = β = 1):

base array bootstrapped array

Θ(1) Θ(log n/ log log n)
Θ(log n) Θ(log n)
Θ(n) Θ((log n)2/(log log n)2)
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An excerpt of the asymptotic hierarchy

log log n

≺ √
log n

≺ log n/ log log n

≺ log n

≺ (log n)2/(log log n)2

≺ 2
√

log n

≺ n
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Variant 3: Geometric progression trees

Mixed-radix numeral:
[

d0, d1, d2, . . . dn, . . .

α, αβ, αβ2, . . . αβn, . . .

]

The radices form the elements of a geometric progression.

geometric :: Int → Int → Bases
geometric α β = α : geometric (α ∗ β) β
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Arithmetic progression trees—running times

Performance (α = 1 and β = 2):

base array bootstrapped array

Θ(1) Θ(
√

log n)
Θ(log n) Θ(log n)
Θ(n) Θ(2

√
log n)
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Conversion functions

The conversion functions make use of the following helper functions.

Destructors:

elements :: (Array a) ⇒ Tree a x → [x ]
elements 〈xs, ts〉 = list xs
subtrees :: (Array a) ⇒ Tree a x → [Tree a x ]
subtrees 〈xs, ts〉 = list ts

Constructor:

node :: (Array a) ⇒ [x ] → [Tree a x ] → Tree a x
node xs ts = 〈array xs, array ts〉
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Conversion functions: list

A straightforward recursive implementation of list .

list :: (Array a) ⇒ Tree a x → [x ]
list t
| empty t = [ ]
| otherwise = elements t ++ riffle (list∗ (subtrees t))

riffle :: [ [x ]] → [x ]
riffle x
| all empty x = [ ]
| otherwise = head∗ x ++ riffle (tail∗ x )

NB. riffle = concat · transpose.
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Conversion functions: array

A generic version of array .

garray :: (Array a) ⇒ Mix → [x ] → Tree a x
garray ((d , b) : σ) xs
| d 0 = gnil (b : map snd σ)
| otherwise = node ys ((garray σ)∗ (unriffle b zs))
where (ys, zs) = splitAt d xs

unriffle :: Int → [x ] → [[x ]]
unriffle n xs
| empty xs = replicate n [ ]
| otherwise = cons∗ ys (unriffle n zs)
where (ys, zs) = splitAt n xs
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Programming challenge

Give linear-time implementations of list and garray .
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Conclusion

✖ Bootstrapped arrays are simple to implement.

✖ Again, number systems have proven their worth in designing

purely functional data structures.

✖ One can nicely trade the running time of look-up operations

for the running time of update operations.

✖ Sensible choices for the base arrays are ‘real’ arrays or lists

(‘logarithmic base arrays’ don’t lead to improvements).

✖ Preliminary measurements show that bootstrapped arrays

perform well for random access, the main factor being the

underlying base array.
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