
Bootstrapping One-sided Flexible Arrays

RALF HINZE

Institut für Informatik III, Universität Bonn, Römerstraße 164

53117 Bonn, Germany

Email: ralf@informatik.uni-bonn.de
Homepage: http://www.informatik.uni-bonn.de/~ralf

February, 2002

(Pick the slides at .../~ralf/talks.html#T31.)

Motivation

One-sided flexible arrays support look-up and update of elements and

can grow and shrink at one end.

A variety of tree-based implementations is available.

✖ Braun trees:

all operations in Θ(log n) time.

✖ Binary random-access lists:

Θ(log n) access and Θ(1) list operations (amortized).

✖ Skew binary random-access list:

Θ(log n) access and Θ(1) list operations (worst-case).

A common characteristic of the tree-based implementations is the

logarithmic time bound for the look-up operation.

1

Motivation—continued

Assume that you have an application that uses indexing a lot but also

updates or extends occasionally (ruling out ‘real’ arrays).

There is no data structure available that fits these needs.

Idea: Improve look-up by using fat multiway trees trading the running

time of look-up operations for the running time of update operations

(this idea is due to Chris Okasaki).

2

Signature

infixl 9 !
class Array a where

-- array-like operations

(!) :: a x → Int → x
update :: (x → x) → Int → a x → a x

-- list-like operations

empty :: a x → Bool
size :: a x → Int
nil :: a x
copy :: Int → x → a x
cons :: x → a x → a x

3

Signature—continued

head :: a x → x
tail :: a x → a x

-- mapping functions

map :: (x → y) → (a x → a y)
zip :: (x → y → z) → (a x → a y → a z)

-- conversion functions

list :: a x → [x]
array :: [x] → a x

Notational convenience: we write both map f and zip f simply as f ∗.

4

Multiway trees

Idea: bootstrap an implementation based on multiway trees from a

standard implementation of flexible arrays.

data Tree a x = 〈a x , a (Tree a x)〉

A node 〈xs, ts〉 is a pair consisting of an array xs of elements, called

the prefix, and an array ts of subtrees.

We will show how to turn Tree a into an instance of Array given that

a is already an instance.

instance (Array a) ⇒ Array (Tree a) where

5

List-like operations

Let us start with the cons operation since this operation will determine

the way indexing is done.

Idea: fill up the root node; if it is full up, distribute the elements

evenly among the subtrees and start afresh.

cons x 〈xs, ts〉
| size xs < size ts = 〈cons x xs, ts〉
| otherwise = 〈cons x nil , cons∗ xs ts〉

To make this algorithm work, we have to maintain some invariants.

6

Invariants

For all nodes t = 〈array [x1, . . . , xm], array [t1, . . . , tn]〉:

➊ m 6 n and 1 6 n,

➋ |t1| = · · · = |tn|,

➌ |t | = 0 ⇐⇒ m = 0.

where |t | denotes the size of a tree (the total number of elements).

NB. The third invariant is necessary so that we can effectively check

whether a given tree is empty.

7

List-like operations—continued

empty 〈xs, ts〉 = empty xs
head 〈xs, ts〉
| empty xs = error "head: empty array"
| otherwise = head xs

tail 〈xs, ts〉
| empty xs = error "tail: empty array"
| size xs > 1 = 〈tail xs, ts〉
| all empty ts = 〈nil , ts〉
| otherwise = 〈head∗ ts, tail∗ ts〉

8

Array-like operations

After q overflows the r -th subtree comprises the q elements at positions

s + 0 ∗ b + r , s + 1 ∗ b + r , . . . , s + (q − 1) ∗ b + r , where s is the

size of the prefix and b is the total number of subtrees.

s︷ ︸︸ ︷
· · · r

· · · ×
· · · ×

...

· · · ×
· · · ×

q

︸ ︷︷ ︸
b

9

Array-like operations–continued

This explains the implementation of ‘!’.

〈xs, ts〉 ! i
| empty xs = error "index out of range"
| i < size xs = xs ! i
| otherwise = (ts ! r) ! q
where (q , r) = divMod (i − size xs) (size ts)

NB. update is implemented in an analogous fashion.

10

Array creation

The shape of the multiway trees is solely determined by the array

creation functions nil , copy , and array .

We may think of an initial array as an infinite tree, whose branching

structure is fixed and which will be populated through repeated

applications of cons.

☞ To be able to analyze the running times reasonably well, we make

one further assumption: we require that nodes of the same level have

the same size.

Given this assumption the structure of trees can be described using a

special number system, the so-called mixed-radix number system

11

Mixed-radix number systems

A mixed-radix numeral is given by a sequence of digits d0, d1, d2,

. . . (determining the size of the element arrays) and a sequence of

bases b0, b1, b2, . . . (determining the size of the subtree arrays).

[
d0, d1, d2, . . .

b0, b1, b2, . . .

]
=

∑

i=0

di · wi where wi = bi−1 · · · · · b1 · b0

The bases are positive numbers 1 6 bi and we require the digits to

lie in the range 0 6 di 6 bi (cf Invariant 1). Furthermore, we require

di = 0 =⇒ di+1 = 0 (cf Invariant 3).

☞ Each natural number has a unique representation in this system.

12

Converting from the mixed-radix number system

type Bases = [Int]
type Mix = [(Int , Int)]

Converting a mixed-radix number to a natural number is

straightforward (using the Horner’s rule).

decode :: Mix → Int
decode ((d , b) : σ)
| d 0 = 0
| otherwise = d + b ∗ decode σ

13

Converting to the mixed-radix number system

Given a list of bases we can easily convert a natural number into a

mixed-radix number.

encode :: Bases → (Int → Mix)
encode (b : bs) n
| n 0 = (0, b) : zip (repeat 0) bs
| otherwise = (r + 1, b) : encode bs q
where (q , r) = divMod (n − 1) b

14

Generic array creation functions

gnil :: (Array a) ⇒ Bases → Tree a x
gnil (b : bs) = 〈nil , copy b (gnil bs)〉
gcopy :: (Array a) ⇒ Mix → x → Tree a x
gcopy ((d , b) : σ) x = 〈copy d x , copy b (gcopy σ x)〉

☞ Now, all we have to do is to come up with interesting bases.

15

Analysis of running times

Let H(n) be the height of the tallest tree with size n.

The running time of ‘!’ and update is

T!(n) =
H(n)−1∑

i=0

T̄!(bi)

Tupdate(n) =
H(n)−1∑

i=0

T̄update(bi),

where T̄op is the running time of op on base arrays.

16

Analysis of running times—continued

The amortized running-time of cons is given by

Tcons(n) =
1
n

H(n)−1∑

i=0

n

wi
wi T̄cons(bi) =

H(n)−1∑

i=0

T̄cons(bi).

The sum calculates the costs of n successive cons operations. If we

divide the result by n, we obtain the amortized running-time. Each

summand describes the total costs at level i: we have a carry every

n/wi steps; if a carry occurs wi nodes must be rearranged; and the

rearrangement of one node takes T̄cons(bi) time.

17

Variant 1: b-ary trees

Mixed-radix numeral:
[

d0, d1, d2, . . . , dn, . . .

b, b, b, . . . , b, . . .

]

The radices are constant.

bary :: Int → Bases
bary b = repeat b

18

b-ary trees—running times

Performance:

base array bootstrapped array

Θ(1) Θ(log n)
Θ(log n) Θ(log n)
Θ(n) Θ(log n)

Of course, the constants hidden in the Θ notation differ widely.

Top(n) ≈ lg n · T̄op(b)/ lg b.

19

Variant 2: arithmetic progression trees

Mixed-radix numeral:
[

d0, d1, d2, . . . , dn, . . .

α, α + β, α + 2β, . . . , α + nβ, . . .

]

The radices form the elements of an arithmetic progression.

arithmetic :: Int → Int → Bases
arithmetic α β = α : arithmetic (α + β) β

20

Arithmetic progression trees—running times

If we fix α = β = 1, we obtain the so-called factorial number system.
[

d0, d1, d2, . . . , dn, . . .

1, 2, 3, . . . , n + 1, . . .

]

Performance (α = β = 1):

base array bootstrapped array

Θ(1) Θ(log n/ log log n)
Θ(log n) Θ(log n)
Θ(n) Θ((log n)2/(log log n)2)

21

An excerpt of the asymptotic hierarchy

log log n

≺ √
log n

≺ log n/ log log n

≺ log n

≺ (log n)2/(log log n)2

≺ 2
√

log n

≺ n

22

Variant 3: Geometric progression trees

Mixed-radix numeral:
[

d0, d1, d2, . . . dn, . . .

α, αβ, αβ2, . . . αβn, . . .

]

The radices form the elements of a geometric progression.

geometric :: Int → Int → Bases
geometric α β = α : geometric (α ∗ β) β

23

Arithmetic progression trees—running times

Performance (α = 1 and β = 2):

base array bootstrapped array

Θ(1) Θ(
√

log n)
Θ(log n) Θ(log n)
Θ(n) Θ(2

√
log n)

24

Conversion functions

The conversion functions make use of the following helper functions.

Destructors:

elements :: (Array a) ⇒ Tree a x → [x]
elements 〈xs, ts〉 = list xs
subtrees :: (Array a) ⇒ Tree a x → [Tree a x]
subtrees 〈xs, ts〉 = list ts

Constructor:

node :: (Array a) ⇒ [x] → [Tree a x] → Tree a x
node xs ts = 〈array xs, array ts〉

25

Conversion functions: list

A straightforward recursive implementation of list .

list :: (Array a) ⇒ Tree a x → [x]
list t
| empty t = []
| otherwise = elements t ++ riffle (list∗ (subtrees t))

riffle :: [[x]] → [x]
riffle x
| all empty x = []
| otherwise = head∗ x ++ riffle (tail∗ x)

NB. riffle = concat · transpose.

26

Conversion functions: array

A generic version of array .

garray :: (Array a) ⇒ Mix → [x] → Tree a x
garray ((d , b) : σ) xs
| d 0 = gnil (b : map snd σ)
| otherwise = node ys ((garray σ)∗ (unriffle b zs))
where (ys, zs) = splitAt d xs

unriffle :: Int → [x] → [[x]]
unriffle n xs
| empty xs = replicate n []
| otherwise = cons∗ ys (unriffle n zs)
where (ys, zs) = splitAt n xs

27

Programming challenge

Give linear-time implementations of list and garray .

28

Conclusion

✖ Bootstrapped arrays are simple to implement.

✖ Again, number systems have proven their worth in designing

purely functional data structures.

✖ One can nicely trade the running time of look-up operations

for the running time of update operations.

✖ Sensible choices for the base arrays are ‘real’ arrays or lists

(‘logarithmic base arrays’ don’t lead to improvements).

✖ Preliminary measurements show that bootstrapped arrays

perform well for random access, the main factor being the

underlying base array.

29

