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Abstract
This pearl aims to demonstrate the ideas of wholemeal and projec-
tive programming using the Towers of Hanoi puzzle as a running
example. The puzzle has its own beauty, which we hope to expose
along the way.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications—Applicative (func-
tional) languages, Haskell; D.3.3 [Programming Languages]:
Language Constructs and Features—Frameworks, patterns, recur-
sion

General Terms Algorithms, Design, Languages

Keywords Towers of Hanoi, wholemeal programming, projective
programming, Hanoi graph, Sierpiński graph, Sierpiński gasket
graph, Gray code

1. Introduction
Functional languages excel at wholemeal programming, a term
coined by Geraint Jones. Wholemeal programming means to think
big: work with an entire list, rather than a sequence of elements; de-
velop a solution space, rather than an individual solution; imagine
a graph, rather than a single path. The wholemeal approach often
offers new insights or provides new perspectives on a given prob-
lem. It is nicely complemented by the idea of projective program-
ming: first solve a more general problem, then extract the interest-
ing bits and pieces by transforming the general program into more
specialised ones. This pearl aims to demonstrate the techniques us-
ing the popular Towers of Hanoi puzzle as a running example. This
puzzle has its own beauty, which we hope to expose along the way.

2. The Hanoi graph
The Towers of Hanoi puzzle was invented by the French number
theorist Édouard Lucas more than a hundred years ago. It consists
of three vertical pegs, on which discs of mutually different diame-
ters can be stacked. For reference, we call the pegs A, B and C and
let a , b and c range over pegs.

data Peg = A | B | C
I own a version of the puzzle where the pegs are arranged in a row.
However, the mathematical structure of the puzzle becomes clearer,
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if we arrange them in a circle. Initially, the discs are placed on one
peg in decreasing order of diameter. The task is then to move the
disks, one at a time, to another peg subject to the rule that a larger
disk must not be placed on a smaller one.

This restriction implies that a configuration can be represented
by a list of pegs: the first element determines the position of the
largest disc, the second element the position of the second largest
disc, and so forth. Consequently, there are 3n possible configura-
tions where n is the total number of discs. Lucas’ original puzzle
contained 8 discs. The instructions of the puzzle refer to an old
Indian legend, attributed to the French mathematician De Parville,
according to which monks were given the task of moving a total
of 64 discs. Since the day of the world’s creation, they transfer the
discs, one per day. According to the legend, once they complete
their sacred task, the world will come to an end.

Now, taking a wholemeal approach, let us first develop the
big picture. The set of all configurations together with the set
of legal moves defines a graph, which turns out to enjoy a nice
inductive definition. If there are no discs to move around, the graph
consists of a singleton node: ◦. For the inductive step we reason as
follows: the largest disc can only be moved, if all the smaller discs
reside on one other peg. The smaller discs, however, can be moved
independent of the largest one. As the largest disk may rest on one
of three pegs, the graph for n + 1 discs consequently incorporates
three copies of the graph for n discs linked by three edges. The
diagram in Fig. 1 illustrates the construction. The graph has the
shape of a triangle; the dashed lines indicate the sub-graphs (for
n = 0 the sub-graphs collapse to singleton nodes); the three solid
lines connect the sub-graphs. The inductive construction shows that
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Figure 1. Inductive construction of the Hanoi graph.

the graph is planar: it can be drawn so that no edges intersect. Fig. 2
displays the graph for 4 discs. To reduce clutter, the peg of the
largest disc is always written in the centre of the respective sub-
graph, with the size of the font indicating the size of the disc. Can
you find the configuration [B, A, B, C]? The corners of the triangle
correspond to perfect configurations: all the discs reside on one
peg. The example graph shows that every configuration permits
three different moves, except for the three perfect configurations,
where only two moves are possible.
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Figure 2. The Hanoi graph for 4 discs.

Let us turn our attention to the layout of the sub-graphs. The fol-
lowing notation proves to be useful: the arrangement x

y
z denotes

a permutation of x , y and z , which by assumption are pairwise dif-
ferent. Using a

b
c to indicate the position of the largest disc—the

largest disc in the left triangle resides on a and so forth—we ob-
serve that if the corners of the graph are a

b
c , then the corners of the

sub-graphs are a
c
b , c

b
a and b

a
c , respectively. Using this observa-

tion, we can capture the informal description of the construction as
a pseudo-Haskell program.

graph0 (a
b
c) = ◦

graphn+1 (a
b
c) = b / graphn (c

b
a)

/ \
a / graphn (a

c
b) — c / graphn (b

a
c)

The function graphn maps an arrangement a
b
c to an undirected

graph, whose vertices are lists of pegs of length n . The notation
a / g means prepend a to all the vertices of g ; ◦ denotes a
singleton node labelled with the empty list. We leave the type of
graphs unspecified. If the type were a functor, then a / g would be
fmap (a :) g . The call graph4 (A

B
C) yields the graph in Fig. 2.

A few observations are in order. The definition of graphn im-
plies that the graph has 3n nodes (a0 = 1, an+1 = 3 · an) and
(3n+1−3)/2 edges (a0 = 0, an+1 = 3 ·an +3). Furthermore, the
length of a side of the triangle is 2n−1 (a0 = 0, an+1 = 2·an+1).
Since there are only 3! = 6 permutations of three different items,
the graph contains at most six different mini-triangles: A

B
C, C

A
B,

B
C

A, A
C

B, C
B

A and B
A

C. Note that the first three arrange the
pegs clockwise and the last three counterclockwise. Inspecting the
definition of graphn , we see that the direction changes with every
recursive step. The diagram in Fig. 3 illustrates the change of di-
rection. This observation implies that the recursion pattern is quite
regular: at any depth there are only three different recursive calls.
Fig. 4 visualises the call structure using three different colours.
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Figure 3. Change of direction.

3. Towers of Hanoi, recursively
Solving the Towers of Hanoi puzzle amounts to finding a shortest
path in the corresponding graph. Clearly, the shortest path between
two corners is along the side of the triangle. Projecting onto the
lower side, we transform graphn to

hanoi ′0 (a
b
c) = [[ ]]

hanoi ′n+1 (a
b
c) = a / hanoi ′n (a

c
b) ++ c / hanoi ′n (b

a
c) .

Now, a / x is shorthand for fmap (a :) x . The call hanoi ′n (a
b
c)

returns a list of configurations solving the problem of ‘moving n
discs from a to c using b’.

Instead of configurations (vertices of the graph) we can alterna-
tively return a list of moves (corresponding to edges).

hanoi0 (a
b
c) = [ ]

hanoin+1 (a
b
c) = hanoin (a

c
b) ++ [(a, c)] ++ hanoin (b

a
c)



Figure 4. Call structure of hanoi at recursion depth 4.

The pair (a, c) represents the instruction ‘move the topmost disc
from a to c’. Here is the sequence of moves for n = 4:

>> hanoi4 (A
B

C)
[(A,B), (A,C), (B,C), (A,B), (C,A), (C,B), (A,B), (A,C),
(B,C), (B,A), (C,A), (B,C), (A,B), (A,C), (B,C)] .

Note that the lower part of the list can be obtained from the upper
part via a clockwise rotation of the pegs: a

c
b becomes b

a
c .

There is at least one further variation: instead of an arrangement
one can pass a source and a target peg.

hanoi0 a c = [ ]
hanoin+1 a c

= hanoin a (a ⊥ c) ++ [(a, c)] ++ hanoin (a ⊥ c) c

The function ⊥, which determines ‘the other peg’, is given by

A ⊥A = A; A ⊥ B = C; A ⊥ C = B
B ⊥A = C; B ⊥ B = B; B ⊥ C = A
C ⊥A = B; C ⊥ B = A; C ⊥ C = C .

We will find some use for ⊥ later on. For the moment, we just
note that the operation is commutative and idempotent, but not
associative.

4. Towers of Hanoi, parallelly
Imagine that the monastery always accommodates as many monks
as there are discs. The tallest monk is responsible for moving
the largest disc, the second tallest monk for moving the second
largest disc, and so forth. Can we set up a work schedule for the
monastery?

Inspecting Fig. 2, we notice that, somewhat unfairly, the small-
est monk is the busiest. Since the smallest triangles correspond to
moves of the smallest disc, he is active every other day. We can ex-

tract his work plan from hanoin by omitting all the moves, except
when n equals 1.

cycle0 (a
b
c) = [ ]

cycle1 (a
b
c) = [(a, c)]

cyclen+1 (a
b
c) = cyclen (a

c
b) ++ cyclen (b

a
c)

The function is called cycle , because the smallest disc cycles
around the pegs: in the recursive call it is moved from a to b
and then from b to c. Whether it cycles clockwise or counterclock-
wise depends on the parity of n—the direction changes with every
recursive call of cycle .

Of course, the smallest disc is by no means special: all the discs
cycle around the pegs, albeit at a slower pace and in alternating
directions. In fact, hanoi satisfies the following ‘fractal’ property:

hanoin+1 (a
b
c) = cyclen+1 (a

b
c) g hanoin (a

b
c) , (1)

where g denotes the interleaving of two lists.

[ ] g bs = bs
(a : as) g bs = a : (bs g as)

The fractal property suggests the following alternative definition of
hanoi , which has a strong parallel flavour.

phanoi0 (a
b
c) = [ ]

phanoin+1 (a
b
c) = cyclen+1 (a

b
c) g phanoin (a

b
c)

In words, the smallest monk starts to work on the first day; he is
active every second day and moves his disc, say, clockwise around
the pegs. The second smallest monk starts on the second day; he
is active every fourth day and moves his disc counterclockwise.
And so forth. Actually, only the smallest monk must remember the
direction; for the larger discs there is no choice, as one of the other
two pegs is blocked by the smallest disc.



There is an intriguing cross-connection to binary numbers: the
activity diagram of the monks (Which monk has to work on a given
day?)

discs0 = [ ]
discsn+1 = discsn ++ [n ] ++ discsn

yields the binary carry sequence or ruler function as n goes to
infinity (Hinze, 2008). This sequence gives the number of trailing
zeros in the binary representations of the positive numbers, most
significant bit first. Or put differently, it specifies the running time
of the binary increment. We will make use of this observation later
on.

The fractal property (1) enjoys a simple inductive proof, which
makes essential use of the following abide law. If x1 and x2 are of
the same length, then

(x1 ++ y1) g (x2 ++ y2) = (x1 g x2) ++ (y1 g y2) .

The basis of the induction is straightforward. Here is the inductive
step.

cyclen+2 (a
b
c) g hanoin+1 (a

b
c)

= { definition of cycle and definition of hanoi }
(cyclen+1 (a

c
b) ++ cyclen+1 (b

a
c))

g (hanoin (a
c
b) ++ [(a, c)] ++ hanoin (b

a
c))

= { abide law }
(cyclen+1 (a

c
b) g hanoin (a

c
b)) ++ [(a, c)]

++(cyclen+1 (b
a
c) g hanoin (b

a
c))

= { ex hypothesi }
hanoin+1 (a

c
b) ++ [(a, c)] ++ hanoin+1 (b

a
c)

= { definition of hanoi }
hanoin+2 (a

b
c)

The abide law is applicable in the second step, because the two
lists, cyclen+1 (a

c
b) and hanoin (a

c
b) ++ [(a, c)], have the

same length, namely, 2n. Speaking of the length of lists, note
that 2n+1 − 1 =

Pn
i=0 2i is a simple consequence of the fractal

property.

5. When will the world come to an end?
Many visitors come to the monastery. Looking at the configuration
of discs, they often wonder how many days have passed since the
creation of the world. Or, when will the world come to an end?

We can answer these questions by locating the current config-
uration in the Hanoi graph. If we use as positions the three digits
0
2
1—that is, 0 for the left triangle, 2 for the upper triangle and 1

for the right triangle—then we obtain the answer to the first ques-
tion in binary. Fig. 5 displays the Hanoi graph for 4 discs suit-
ably re-labelled—this graph is also known as the Sierpiński graph.
The 24 nodes on the lower side of the triangle, and only those, are
labelled with binary numbers. Consequently, if the current position
contains a 2, we know that the monks have lost track. (To answer
the second question, we use as positions 1

2
0 instead of 0

2
1. If we

are only interested in the distance to the final configuration, we
simply replace the digit 2 by a 1.)

pos (a
b
c) [ ] = [ ]

pos (a
b
c) (p : ps)

| p a = 0 : pos (a
c
b) ps

| p b = 2 : pos (c
b
a) ps

| p c = 1 : pos (b
a
c) ps

For instance, pos (A
B

C) [A,B,C,A] yields [0, 1, 0, 1], the bi-
nary representation of 5, most significant bit first. The function
pos (a

b
c) defines a bijection between {A,B,C}n and {0, 2, 1}n

for any given initial arrangement a
b
c . This arrangement can be seen

as representing the bijective mapping {a 7→ 0, b 7→ 2, c 7→ 1}. Al-
ternatively, we can use an arrangement, say, l

t
r as a representation

of the ‘inverse’ mapping {A 7→ l ,B 7→ t ,C 7→ r} obtaining the
following slightly more succinct variant of pos .

pos ′ (l
t
r ) [ ] = [ ]

pos ′ (l
t
r ) (A : ps) = l : pos ′ (l

r
t) ps

pos ′ (l
t
r ) (B : ps) = t : pos ′ (r

t
l) ps

pos ′ (l
t
r ) (C : ps) = r : pos ′ (t

l
r ) ps

The two variants are related by pos (A
B

C) = pos ′ (0
2
1). The

latter definition is particularly easy to invert.

conf (a
b
c) [ ] = [ ]

conf (a
b
c) (0 : ps) = a : conf (a

c
b) ps

conf (a
b
c) (2 : ps) = b : conf (c

b
a) ps

conf (a
b
c) (1 : ps) = c : conf (b

a
c) ps

The call conf (A
B

C) [0, 1, 0, 1] yields [A,B,C,A], the configu-
ration we obtain after 5 days. The functions pos ′ and conf are actu-
ally identical, if we identify A with 0, B with 2 and C with 1. Then
pos ′ is an involutive graph isomorphism between Hanoi graphs and
Sierpiński graphs of the same order.

If the monks have lost track—a 2 appears in the answer list—
then we can use the idea of locating a configuration in the Hanoi
graph to determine the shortest path to the final configuration cn.
This leads to the following generalised version of hanoi .

ghanoi0 [ ] (a
b
c) = [ ]

ghanoin+1 (p : ps) (a
b
c)

| p a = ghanoin ps (a
c
b) ++ [(a, c)] ++ hanoin (b

a
c)

| p b = ghanoin ps (b
c
a) ++ [(b, c)] ++ hanoin (a

b
c)

| p c = ghanoin ps (a
b
c)

(The index n is actually redundant: it always equals the length of
the peg list.) Depending on the location of p, we either walk within
the left triangle and then along the lower side, or within the upper
triangle and then along the right side, or within the right triangle.
The reader should convince herself that ghanoin ps (a

b
c) indeed

yields the shortest path between ps and cn. Note that the first two
equations are perfectly symmetric, in fact, ghanoin ps (a

b
c) =

ghanoin ps (b
a
c). As an aside, if we fuse ghanoi with length ,

then we obtain a function that yields the distance to the final
configuration.

6. Towers of Hanoi, iteratively
The generalised version of the puzzle—moving from an arbitrary
configuration to a perfect configuration—serves as an excellent
starting point for the derivation of an iterative solution, that is, a
function that maps a configuration to the next move or to the next
configuration.

The next move is easy to determine: we fuse ghanoi with the
natural transformation

first :: [α ]→ Maybe α
first [ ] = Nothing
first (a : as) = Just a

that maps a list to its first element. We obtain

move0 [ ] (a
b
c) = Nothing

moven+1 (p : ps) (a
b
c)

| p a = moven ps (a
c
b) ++ Just(a, c) ++ first(hanoin(b

a
c))

| p b = moven ps (b
c
a) ++ Just(b, c) ++ first(hanoin(a

b
c))

| p c = moven ps (a
b
c) .
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Figure 5. The Sierpiński graph of order 4.

The operator ++ is overloaded to also denote concatenation of
Maybe values (++ is really the mplus method of MonadPlus).

(++) :: Maybe α→ Maybe α→ Maybe α
Nothing ++ m = m
Just a ++ m = Just a

We can simplify the definition of move drastically: since Just a ++
m = Just a , the calls to hanoi can be eliminated; because of
that the index n is no longer needed. Furthermore, the first two
equations can be unified through the use of ⊥, the operator that
determines ‘the other peg’. Finally, the second argument, a

b
c , can

be simplified to c, the target peg.

move [ ] c = Nothing
move (p : ps) c
| p 6 c = move ps (p ⊥ c) ++ Just (p, c)
| p c = move ps c

Here is a short interactive session that illustrates the use of move .
>>move [A,B,B,A,C,C,C,B] C
Just (B,C)
>>move [A,B,B,A,C,C,C,C] C
Just (A,B)
>>move [C,C,C,C,C,C,C,C] C
Nothing

Since the pair (B,C) means ‘move the topmost disc from peg B
to peg C, the configuration following [A,B,B,A,C,C,C,B] is
[A,B,B,A,C,C,C,C]. Incidentally, if we start with the initial
peg list [A,A,A,A,A,A,A,A] and target C, we obtain these
configurations after 110 and 111 steps.

The function move implements a two-way algorithm: on the
way down the recursion it calculates the target peg for each disc
(using ⊥); on the way up the recursion it determines the smallest
disc that is not yet in place (using ++). The following table makes

the target pegs explicit. The rows labelled ci lists the target peg for
each disc: the first, user-supplied target is c0 = C, the next target
is c1 = p0 ⊥ c0, and so forth.

i 0 1 2 3 4 5 6 7

110 pi A B B A C C C B
ci C B B B C C C C A

111 pi A B B A C C C C
ci C B B B C C C C C

The smallest disc is not in place, so it is moved from B to C. In the
next round, disc 3 has to be moved from A to B.

The smaller discs are moved more frequently, so it is actually
prudent to reverse the list of pegs so that the peg on which the
smallest disc is located comes first. The situation is similar to the
binary increment: visiting the digits from least to most significant
bit is more efficient than the other way round. Let us assume for
the moment that we know the ‘last target’, the value of c that is
discarded in the first equation of move (the pegs that stick out in
the example above). Since⊥ is reversible, p⊥c = c′ iff c = p⊥c′,
we can reconstruct the previous target c from the next target c′.
The following variant of move makes use of this fact—the suffix
‘i’ indicates that the input list is now arranged in increasing order
of diameter.

movei [ ] c′ = Nothing
movei (p : ps) c′

| p 6 (p ⊥ c′) = Just (p, p ⊥ c′) ++ movei ps (p ⊥ c′)
| p (p ⊥ c′) = movei ps c′

We consistently changed the second argument of move to reflect
the fact that we compute the previous from the next target and
additionally replaced the remaining occurrences of c by p ⊥ c′.
Again, we can simplify the code: p 6 (p ⊥ c′) is the same as
p 6 c′. Applying Just a ++ m = Just a once more, we can
eliminate the first recursive call to movei so that the function



stops as soon as the smallest displaced disc is found—this was the
purpose of the whole exercise. We obtain

movei [ ] c′ = Nothing
movei (p : ps) c′

| p 6 c′ = Just (p, p ⊥ c′)
| p c′ = movei ps c′ .

In a nutshell, movei determines the smallest disc that does not
reside on the last target.

So, for an iterative version of hanoi we have to maintain two
pieces of information: the current configuration and the current ‘last
target’. It remains to determine the initial last target and how the
last target changes after each move. If the list of pegs is given in the
original decreasing order, then we can transform move to

last [ ] c = c
last (p : ps) c = last ps (p ⊥ c) ,

which yields the last target. It is not hard to see that last is an
instance of the famous foldl : last ps c = foldl (⊥) c ps . If
we reverse the list, we simply have to replace foldl by foldr addi-
tionally using the fact that ⊥ is commutative: foldr (⊥) c ps =
foldl (⊥) c (reverse ps).

Next, we augment movei so that it returns the next configura-
tion instead of the next move and additionally the next ‘last target’.

step ([ ], c′) = Nothing
step (p : ps, c′)
| p 6 c′ = Just ((p ⊥ c′) : ps, p ⊥ c′)
| p c′ = do {(ps ′, c)← step (ps, c′);

return (p : ps ′, p ⊥ c)}

Consider the second equation: p is moved to p⊥c′. After the move,
the disc resides on the target peg. Consequently, the next target is
also p⊥c′—recall that ⊥ is idempotent. This target is then updated
in the third equation ‘on the way back’ mimicking move’s mode of
operation. The function step runs in constant amortised time, since
it performs the same number of steps as the binary increment—
recall that the activity diagram of the monks coincides with the
binary carry sequence.

The next last target can, in fact, be easily calculated by hand.
Consider the following two subsequent moves (as usual, a , b and c
are pairwise different).

n n− 1 n− 2 1 0

· · · a c c · · · c c
· · · b c c · · · c c c

· · · b c c · · · c c
· · · b b a · · · b a b

Assume that the first configuration ends with an even number of cs.
The topmost disc of a is then moved to b. The new succession
of target pegs consequently alternates between b and a: since the
number of cs is even, the new last target is b; for an odd number,
it is a . So, the monks can be instructed as follows: determine the
smallest disc that is not on c. Transfer it from a to b. If the disc’s
number is even, the new last target is b; otherwise, it is a .

If we solve the original puzzle, that is, if the configurations lie
on one of the sides of the triangle, then the next last target is even
easier to determine: like the discs, it cycles around the pegs. If the
pegs are arranged A

B
C and we move the discs from A to C, then

the last target moves counterclockwise for an even number of discs
and clockwise for an odd number.

Summing up, we obtain the following iterative implementation
for solving the generalised Hanoi puzzle.

ihanoi ps c = map fst (iterate step (ps, foldr (⊥) c ps))

iterate :: (a → Maybe a)→ (a → [a ])
iterate f x = x : case f x of {Nothing → [ ];

Just x ′ → iterate f x ′}

7. Longest paths and Sierpiński’s triangle
So far we have considered shortest paths in the Hanoi graph. Since
the destruction of the world hangs in the balance, as a gift to
future generations, we might want to look for the longest path.
In the following variant of hanoi the largest disc makes a detour.
(According to the Indian legend, the temple is actually in Bramah
rather than in Hanoi, hence the name of the function.)

bramah0 (a
b
c) = [ ]

bramahn+1 (a
b
c) = bramahn (a

b
c) ++ [(a, b)]

++ bramahn (c
b
a) ++ [(b, c)]

++ bramahn (a
b
c)

The largest disc is first moved from a to b, and then from b to c.
Since bramahn returns 3n−1 moves (a0 = 0, an+1 = 3 ·an +2),
we have actually found a Hamiltonian path. The path has another
interesting property: if the pegs are arranged in a row, a b c, then
discs are only moved between adjacent pegs.

The Hamiltonian path for four discs is displayed in Fig. 6. The
picture is quite appealing. Actually, if we move the sub-triangles
closer to each other so that the corners touch, we obtain a nice frac-
tal image. Fig. 7 shows the result for 7 discs. The corresponding
graph is known as the discrete Sierpiński gasket graph.1 The pic-
ture has been drawn using Functional Metapost’s turtle graphics
(Korittky, 1998).

curve0 d = forward N turn (2 ∗ d) N forward
curven+1 d = turn d N curven (−d) N turn d N curven d

N turn d N curven (−d) N turn d

The command forward moves the turtle one step forward, turn d
turns the turtle clockwise by d degrees, and N sequences two
turtle actions. Since turtle graphics is state-based—the turtle has
a position and faces a direction—recursive definitions typically
maintain an invariant. To draw the ‘triangle’ a

b
c , we start at a

looking at b and stop at c looking away from b. The overall change
of direction is twice the second argument of curve , which for
equilateral triangles is either 60◦ or −60◦.

The curve is closely related to Sierpiński’s arrowhead curve. In
fact, both curves yield Sierpiński’s triangle as n goes to infinity.
As an aside, Sierpiński’s triangle is a so-called fractal curve: it has
the Hausdorff dimension log 3/ log 2 ∼= 1.58496, as it consists of
three self-similar pieces with magnification factor 2.

8. Gray code
The function bramah enumerates the configurations {A,B,C}n
changing only one peg at a time. In other words, the succession of
configurations corresponds to a ternary Gray code! To investigate
the correspondence a bit further, here is a version of bramah that
returns a list of configurations, rather than a list of moves.

bramah ′0 (a
b
c) = [[ ]]

bramah ′n+1 (a
b
c) = a / bramah ′n (a

b
c)

++ b / bramah ′n (c
b
a)

++ c / bramah ′n (a
b
c)

1 The term gasket graph is actually not used consistently. Some authors
call the counterpart of the Hanoi graph the Sierpiński gasket graph, and
its contracted variant the Sierpiński graph.
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Figure 6. A Hamiltonian path in the Hanoi graph for 4 discs.

Figure 7. A Hamiltonian path in the Hanoi graph for 7 discs.



There are two standard ternary Gray codes: the so-called modular
code, the digits vary 012|201|120 · · ·, and the reflected code, the
digits vary 012|210|012 · · ·. The definition above yields the latter,
as the discs are only moved between adjacent pegs. In fact, we have
bramah ′n (c

b
a) = reverse (bramah ′n (a

b
c)). Using this property

on the second recursive call, we can simplify bramah ′n (0
1
2)

somewhat.
gray3 0 = [[ ]]
gray3 n+1 = 0 / gray3 n ++ 1 / reverse gray3 n ++ 2 / gray3 n

For comparison, here is the definition of the Gray binary sequence.

gray2 0 = [[ ]]
gray2 n+1 = 0 / gray2 n ++ 1 / reverse gray2 n

Actually, the binary Gray code is also hidden in the Tower of
Hanoi puzzle. We only have to work with a different configuration
space: instead of {A,B,C}n we use {0, 1}n keeping track whether
a disc has been moved an even or an odd number of times. The
initial configuration AAn becomes 00n, the final configuration
CCn becomes 10n. Since the i th disc is moved 2i times, all the
discs make an even number of moves, except for the largest, which
makes a single move.

We can easily adapt ihanoi to generate binary Gray code. We
take as a starting point the first definition of movei , slightly mod-
ified so that the next configuration is returned instead of the next
move (we also applied the Just a ++ m = Just a simplification).

configi [ ] c′ = Nothing
configi (p : ps) c′

| p 6 (p ⊥ c′) = Just (p ⊥ c′ : ps)
| p (p ⊥ c′) = p / configi ps (p ⊥ c′)

Now, the Gray code equivalent of ⊥ is the Boolean operation
exclusive or, that is, inequality of Booleans. This implies that the
last target c′ corresponds to a parity bit. Thus, configi becomes
(the code uses Booleans rather than bits)

codei [ ] p = Nothing
codei (b : bs) p
| b 6 (b 6 p) = Just ((b 6 p) : bs)
| b (b 6 p) = b / codei bs (b 6 p) .

Again, we can simplify the code a bit: inequality and equality of
Boolean values are associative (Backhouse and Fokkinga, 2001),
so b 6 (b 6 p) is simply p. Using False 6 b = b and
True 6 b = ¬ b, we obtain

codei [ ] p = Nothing
codei (b : bs) p
| p = Just (¬ b : bs)
| ¬ p = b / codei bs b .

In words: we traverse the list p : bs up to the first 1; the following
bit, if any, is flipped.

As for ihanoi , we have to maintain two pieces of information:
the current Gray code and the current parity bit. The latter is easy
to update: it is flipped in each step. Summing up, we obtain the
following Gray code generator.

igray bs = map fst (iterate step (bs, foldr ( 6 ) True bs))
where step (bs, p) = do {bs ′ ← codei bs p;

return (bs ′,¬ p)}
This is, in fact, the functional version of Knuth’s Algorithm G
(2005).

9. Conclusion and further reading
We have come to the end of the Tour D’Hanoı̈. In the spirit of the
wholemeal approach we started with an inductive definition of the

Hanoi graph. From that we derived a series of programs evolving
around the Tower of Hanoi theme. Knowing the big picture was
jolly useful: for instance, calculating the number of moves could
be reduced to the problem of locating a configuration in the graph.
Projective program transformations are abundant: hanoi is derived
from graph by projecting onto the lower side of the graph, cycle is
derived from hanoi by mashing out the moves of the larger discs,
and so forth.

The transformations could be made rigorous within the Algebra
of Programming framework (Bird and de Moor, 1997). Occasion-
ally, this comes at an additional cost. For instance, to derive cycle
from hanoi we would additionally need the disc number, which is
not present in hanoi ’s output.

A lot is left to explore. There are literally hundreds of papers
on the subject: Paul Stockmeyer’s comprehensive bibliography has
a total of 369 entries (2005). From that bibliography I learned that
my definition of the Hanoi graph is not original: Er introduced it to
analyse the complexity of the generalised Tower of Hanoi problem
(1983). The original instructions of the game already alluded to the
recursive procedure for solving the puzzle. It has been used since
to illustrate the concept of recursion. The parallel version—usually
classified as iterative— is due to Buneman and Levy (1980). Back-
house and Fokkinga (2001) show that each disc cycles around the
pegs exploiting the associativity of equivalence. To the best of the
author’s knowledge the iterative, or stepwise variant is original. The
connection to Gray codes has first been noticed by Gardner (1972).
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