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Abstract. Two of the major imaging modalities used to detect and
monitor breast cancer are (contrast enhanced) magnetic resonance (MR)
imaging and mammography. Image fusion, including accurate registra-
tion between MR images and mammograms, or between CC and MLO
mammograms, is increasingly key to patient management (for example
in the multidisciplinary meeting), but registration is extremely difficult
because the breast shape varies massively between the modalities, due
both to the different postures of the patient for the two modalities and
to the fact that the breast is forcibly compressed during mammography.
In this paper, we develop a 3D, patient-specific, anatomically accurate,
finite element model of the breast using MR images, which can be de-
formed in a physically realistic manner using nonlinear elasticity theory
to simulate the breast during mammography.

1 Introduction

Breast cancer is one of the biggest killers of women in the Western world, killing
400,000 and affecting over a million people each year worldwide. As with all
cancers, treatment can be lengthy, extremely unpleasant, and ultimately fruit-
less. Early diagnosis is the most effective way to improve the prognosis, and so
screening programmes have been established in several western countries.

Currently, the imaging modalities used to image the breast are magnetic
resonance (MR) imaging, mammography and ultrasound. Due to the highly de-
formable nature of the breast, and the difference in body position and external
forces applied to the breast in the different imaging procedures, the shape of
the breast varies massively between images of the different types, hindering at-
tempts at image fusion for more effective diagnosis or predicting tumour location
during surgery/biopsy. Various methods have been proposed to model breast de-
formation. Most are either based on linear elasticity theory, the theory used for
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small deformations, or to some extent on heuristics. In this paper, we describe
the development of a finite element (FE) model of the breast based on the full
nonlinear theory of elasticity (also known as finite elasticity). The FE mesh has
a geometry determined from MR images of the subject, with an anatomical
structure that is determined from segmented MR data. As such, we propose a
patient-specific, not generic, model. Such a method models the deformation in
a physically realistic manner, hence has a significantly higher likelihood of ac-
curately simulating breast deformation than a linearised or heuristic method.
Modelling large deformations with nonlinear elasticity has previously been con-
sidered computationally intractable; however, as we shall demonstrate, simula-
tions on a moderately high-resolution mesh can be computed in a reasonable
length of time on standard modern PC.

2 Applications of a Physically Realistic Finite Element
Model

A robust, accurate deformable model of the breast would have many uses. Firstly,
an accurate model could benefit image registration and fusion. For example, dur-
ing mammography the patient’s breast is forcibly compressed (typically 130N),
so that fusing mammograms with MR data is extremely difficult. Also, in clinical
practice mammograms are taken from different views, the most common being
cranio-caudal (CC), (head-to-toe), and medio-lateral oblique (MLO), (shoulder-
to-opposite-hip). Combining the information provided by different mammogram
views significantly enhances the detection of tumours, but the large deformation
of the breast makes it hard for a radiologist to establish correspondences between
these views, hence to reconstruct the tumour (or microcalcification cluster) in
3D. A deformable model of the breast (built from MR data) that can simulate
both the CC compressed breast and the MLO compressed breast can be used to
match the two types of mammogram. As well as inter-modality matching, the
model can be used for temporal matching of images of the same modality.

MR images are generally carried out with the patient in the prone position.
During surgery however, the patient will be supine, and a surgeon using MR data
to predict the position of a tumour will have to resort to a degree of guesswork.
A deformable model of the breast could be used to predict breast shape and
tumour location during surgery, enabling minimally invasive surgery. Similarly,
the model can be used as a guide during fine-needle or core biopsy, or even
eventually to help automate the biopsy procedure.

Finally, the model we develop could be used as a visualisation tool, allowing
a doctor to show the patient the position and size of the tumour in 3D, and as
a teaching tool for radiologists. An extension of the model could also be used to
simulate breast shape after reconstructive surgery.

Current methods used to model breast deformation are often not patient-
specific, and/or they embody linear elastic or partially heuristic models of de-
formation. In [5] the breast edge is assumed to take the shape of quadratic
curves, and compression is modelled by assuming that these curves map to new



Lecture Notes in Computer Science 3

quadratic curves. In [4] the breast shape is obtained from patient data but the
fibroglandular region is assumed to be cone shaped, and the tissues are assumed
to be linearly elastic. In [1], a deformable MR based model of the breast is de-
veloped based on linear elasticity, where the large deformation is considered as
a sequence of small linear deformations. However, the deformations the breast
undergoes are extremely large and are not in the typical strain range assumed
for small-strain linear elasticity (0-10% strains). A physically-motivated nonlin-
ear model is necessary to accurately model such deformations. Nonlinear models
have, as far as we are aware, only been considered by Samani et al [8]. We aim
to develop a fully nonlinear model with the ultimate goal of comparing nonlinear
models of varying complexity with linear and simpler models to determine which
factors are of greatest importance in breast deformation.

The modelling procedure is as follows: the FE geometry is built using the
skin surface and pectoral muscle surface obtained from MR images. The MR
images are (easily and accurately) segmented into regions of fat, fibroglandular
and tumour tissue, which can be performed to sub-voxel precision. Using the
segmented data, each element of the FE mesh is assigned a tissue type. The size
of the elements in the mesh determine the potential accuracy of the deforma-
tion simulations. With a reasonably refined mesh accuracy to within 2-5mm is
possible, assuming the material laws of the tissues are known.

There are three distinct types of deformation which we have to simulate. The
first is what we will call the forward problem, where body forces (e.g. gravity) are
applied to an undeformed (unloaded) state to compute a deformed equilibrium
state. This can be used to compute supine breast shape, for example. The second
is the inverse problem (the backward problem): given a loaded deformed state,
compute the unloaded undeformed state. This is necessary because the mesh
built from MR data is initially in a gravity-loaded state. The third is modelling
the compression of the breast during mammography. Here, the area of the skin
in contact with the breast is unknown, and as such the boundary conditions are
unknown. Such a problem is known as a contact problem.

3 Nonlinear Elasticity

In this section, we briefly formulate the problems which need to be solved. Let
Ω0 be the undeformed state of the elastic body, let X be the position of a point
in the undeformed state, let Ω be the deformed equilibrium state of the body
(i.e. when it is loaded under gravity or external tractions), and let the unknown
vector field x ≡ x(X) be the position of that point in the deformed configuration.
The deformation gradient is defined as the tensor FiM = dxi

dXM
. The (Lagrangian)

strain is defined as E = 1
2

(
FT F − I

)
. In nonlinear elasticity theory, a distinc-

tion is made between quantities defined in the undeformed coordinate system
and those defined in the deformed coordinate system. Force balance equations
can only initially be derived in the deformed equilibrium state, whereas the
equations to be solved have to be written in terms of the known variables X. It
follows that the notion of stress can be defined in a number of ways, the most
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important being the Cauchy Stress, σij , defined as the force acting on the de-
formed body measured per unit deformed area, and the Second Piola-Kirchoff
Stress, TMN , defined as the force acting on the undeformed body measured per
unit undeformed area. σ and T are related by the expression det(F )σ = FTFT .
In a gravity-loaded equilibrium deformed state all forces must balance, and it
can be shown [6] that this leads to

∂σij

∂xj
+ ρgi = 0 in Ω , (1)

where ρ is the density in the deformed body and g is gravitational acceleration.
This equation has to be reformed in terms of the known variables, leading to the
following equilibrium equation

∂

∂XM

(
TMN

∂xi

∂XN

)
+ ρ0gi = 0 in Ω0 , (2)

where ρ0 is the density in the undeformed body.
To relate stress to strain, we need the material dependent constitutive rela-

tion between them. Linear stress-strain relationships are often assumed in linear
elasticity (small-strain elasticity); however, biological tissues have been shown
to exhibit nonlinear stress-strain laws [2] and this is certainly the case for the
range of substantial strains involved in breast deformation, so we consider the
full nonlinear laws for our model. To do so, we assume there exists a strain
energy function W ≡ W (EMN ) for each tissue which satisfies

∂W

∂EMN
= TMN . (3)

Note that in this equation we ignore viscoelastic effects, which we assume to be
negligible on the long-timescale problems we are considering. The constitutive
law for each tissue can only be determined experimentally. The relative lack of
experimentally-determined tissue material laws is perhaps the major factor in-
hibiting the use of nonlinear elasticity in modelling large biological deformations.

As discussed in Section 2, there are three types of problems which need to
be solved:

The Forward Problem: Here the undeformed breast shape is given and
the breast shape under gravity (say) is required, a standard elasticity problem.
For this, we need to solve (2), together with tissue material laws of the form
(3), for x, subject to zero displacement boundary conditions on the part of the
mesh corresponding to the pectoral muscle and zero surface pressure boundary
conditions on the skin surface.

The Backward Problem: A mesh built from MR data will typically be
for the breast under the influence of gravity. We initially need to calculate the
unloaded state (the shape the breast would take in the absence of gravity) before
any other deformation calculations can be computed. This involves solving an
inverse finite elasticity problem: we know the deformed position x and wish to
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compute X. This can be accomplished by solving (1), with the material law (3),
but writing the strain as E = 1

2 ((G−1)T (G−1) − I), where G = ∂X
∂x = F−1, so

that E is a function of x, and using the relationship between σ and T to obtain
σ from the material law.

The Contact Problem: The problem of modelling breast compression has
to be considered separately from the other two types of problem. In this case,
we do not know which part of the breast will be in contact with the compression
plates, and therefore cannot just specify displacement boundary conditions. To
derive the contact problem formulation, it is necessary to reformulate (2) as an
energy minimisation problem:

min
∫

Ω0

W (EMN )− ρ0g · xdV0 over x satisfying b.c.s, (4)

where the boundary conditions (b.c.s) are that the displacement is zero on the
pectoral muscle. The (frictionless) contact problem can now be stated as:

min
∫

Ω0

W (EMN )− ρ0g · xdV0 over x satisfying b.c.s and constraints, (5)

where the constraints are that no point penetrates either compression plate. One
method of solving such a problem is to add a penalty function to the energy and
minimise over unconstrained x:

min
∫

Ω0

W − ρ0g · xdV0 +
∫

Γ

P

2
(
[−g(x(X))]+

)2 dS0 over x satisfying b.c.s,

(6)
where Γ is the skin surface and g(x) is the signed normal distance of a point x
to the nearest plate, and [z]+ is 0 if z ≤ 0 and z if z > 0. [−g(x)]+ is therefore
the penetration of a point into the plates, which we wish to be zero. The penalty
function penalises violation of the constraint, with greater values of the penalty
parameter P leading to greater penalisation.

A well-known drawback of penalty functions is that P needs to be large in
order to assure accurate results, but this can lead to badly conditioned matrices
when the problem is solved with the finite element method. The Augmented
Lagrangian Method, which we have used, is an extension of the penalty function
method which deals with this problem. For details see [3], but the basic idea is
that the penalty function is replaced with

∫

Γ

1
2P

(
[−λ(x)− Pg(x)]+

)2 dS0 , (7)

where λ is an estimate of the Lagrange multipliers associated with the constraint
(which are also the compressive forces applied by the plates) that is updated
iteratively and converges to the true Lagrange multipliers. With this method P
need not be very large to guarantee accurate results.
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4 Modelling and Results

A finite element model has been built from MR data of a standing patient. A
mesh hexahedral elements was created and adapted to the breast geometry, by
fitting the front surface of the mesh to the skin surface and the back surface
of the mesh to the pectoral muscle surface. Hexahedral elements are preferred
to tetrahedral elements since they have been shown to have better convergence
properties [8]. The next stage would be to assign a tissue to each element based
on segmented MR data; however with these preliminary results each element has
just been considered to be fibroglandular tissue. The final mesh has 5625 nodes
and 4608 elements, with trilinear basis functions used to interpolate position,
and is shown in Figure 1.

We have assumed the breast tissues are incompressible, since breast tissues
are primarily comprised of water. We have currently also made the incorrect as-
sumption that the tissues are isotropic. Breast tissues are likely to be anisotropic,
since the connective structures known as Cooper’s Ligaments are oriented in the
muscle-to-skin direction. In future work, we will investigate the effect of mod-
elling tissues as transverse isotropic or fully anisotropic. If a material is isotropic,
the constitutive law for the material simplifies somewhat, in this case the strain
energy function W satisfies W ≡ W (I1, I2, I3), where I1, I2 and I3 are the prin-
cipal invariants4 of FT F [9]. We have assumed the exponential constitutive law

W (I1, I2, I3) = a
(
eb(I1−3) − 1

)
− p

2
(I3 − 1) , (8)

where a and b are material constants and p is the Lagrange multiplier associ-
ated with the incompressibility constraint which can be interpreted as internal
pressure. We have estimated a and b using experimental data in [10].

The equations discussed in Section 3 are solved on the mesh using the
Galerkin finite element method [7]. For incompressible elastic deformations, the
internal pressure p has to be computed together with the displacements. Piece-
wise constant basis functions are used to interpolate the pressure, as the pressure
must be interpolated by lower order basis functions than the position [7]. Since
the equations are highly nonlinear, Newton’s method has been used.

The results of two simulations on this mesh are shown in Figures 1 and 2.
Figure 1 displays the undeformed breast shape which is the result of solving
the backward problem on the mesh built from the MR data, together with a
supine simulation. Figure 2 is an example of a simulation of CC mammographic
compression. The simulations of the supine and compressed breast shape take
less than 1.5 hours on a 2 GHz Linux PC. Due to badly-conditioned matrices
inherent in the backward problem, computing the undeformed state currently
takes significantly longer, up to 24 hours on a 2 GHz Linux PC. Precondition-
ing the backward problem matrices or finding methods of improving Newton
convergence to reduce the time to solve the backward problem is an open prob-
lem. In later work will verify these simulations using both phantom models and
4 The principal invariants of a matrix C are I1 = tr(C), I2 = 1

2
((tr(C))2− tr(C2)) and

I3 = det(C).
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patient data. The latter will involve reproducing supine or compressed breast
shape and comparing the surface deformation with photographic results, and
simulating the breast shape with a new direction of gravity and comparing with
MR images.

Fig. 1. Left: mesh of the breast built from MR images of a standing patient, right: the
undeformed (gravity-loading removed) breast shape (wireframe) and supine patient
breast shape (surface)

5 Conclusions

In this paper we have demonstrated that using the full nonlinear formulation
to model the large deformations the breast undergoes is not a computationally
intractable problem, and have used a nonlinear patient-specific finite element
model to predict surgery breast shape and breast shape under mammographic
compression. This method can ultimately be used to perform image matching
and predict tumour location for surgery or biopsy. Current work is aimed at val-
idating the simulations. We have described the three types of deformation prob-
lem which have to be tackled, and outlined procedures for solving them. In future
work we will perform simulations with heterogeneity obtained from segmented
MR images, investigate the effect of material parameters on the deformations,
and investigate whether the tissues have to be modelled as transversely isotropic
or anisotropic. We will also model mammographic compression as a frictional
contact problem. Verification using both phantom and patient data studies will
be performed.
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Fig. 2. Various views of the breast under simulated CC mammographic compression
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