
On The Supervision and Assessment Of Part-Time Postgraduate Software
Engineering Projects

Andrew Simpson, Andrew Martin, Jeremy Gibbons, Jim Davies, and Steve McKeever
Software Engineering Programme

Wolfson Building, Parks Road, Oxford OX1 3QD, United Kingdom

Abstract

This paper describes existing practices in the supervision
and assessment of projects undertaken by part-time, post-
graduate students in Software Engineering. It considers this
aspect of the learning experience, and the educational issues
raised, in the context of existing literature—much of which
is focussed upon the experience of full-time, undergraduate
students. The importance of these issues will increase with
the popularity of part-time study at a postgraduate level; the
paper presents a set of guidelines for project supervision and
assessment.

1. Introduction

In [25] a lack of Computer Science-specific literature con-
cerning projects is noted. This has started to be addressed
within the community. For example, the United Kingdom’s
Effective Projectwork in Computer Science (EPCoS) con-
sortium [30, 17] and the collection of papers of [22] repre-
sent positive moves in this respect. Internationally, journals
such as Computer Science Educationhave also published
many articles on the subject.

A significant proportion of this literature, as one would ex-
pect, is primarily concerned with projects undertaken by full-
time undergraduates. However, the literature does step out-
side the boundaries of the traditional ‘design-build-report’-
style project module: some projects are run with an indus-
trial partner [1, 13, 23], while others involve international
collaboration [7, 27].

No matter what form projects take, efforts should be di-
rected towards evaluating their role in the Computer Science
curriculum [11]. This is done in [17], where a collection of
examples of good practice for various forms of computing
project are presented: allocation methods, supervision tech-
niques and assessment methods are detailed for industrial-
based projects, taught MSc courses, and so on. Our spe-
cific concern—projects undertaken by part-time postgradu-
ate Software Engineering students—is not represented there.

This paper has been written in the spirit of that collection.
We pay particular attention to the topics of intellectual prop-
erty and confidentiality, as this is perhaps more of a concern
for our students (and their employers) than it is for full-time
undergraduate students.

The structure of the remainder of this paper is as follows.
In Section 2 we describe the University of Oxford’s Software
Engineering Programme, and outline the context in which
the projects undertaken by the Programme’s students are
supervised and assessed. In Section 3 we relate our experi-
ences of supervising and assessing projects to the published
literature. In particular, we consider the six themes identi-
fied in [17]: allocation, supervision, assessment, reflection,
team or group projects, and motivation. In Section 4 we offer
some guidelines for the supervision of part-time postgradu-
ate Software Engineering projects that may be of benefit to
similar programmes. Finally, we summarise the contribu-
tion of this paper, and indicate areas for future work.

2. Software Engineering at the University of
Oxford

Both in the United Kingdom and in the United States
there is, on the one hand, the need for a highly-skilled work
force, and, on the other hand, there is a decline in public
support for higher education [4]. In addition, as more young
people enter higher education in the United Kingdom, the
possession of a postgraduate degree is becoming a more sig-
nificant factor in the job market—at the same time as the
level of funding for postgraduate taught courses is being re-
duced. This pattern is being replicated worldwide.

In [15], several themes that characterise higher educa-
tion’s response to these problems are identified. Two of these
themes—“a shift from faculty-centered to learner-centered
institutions” and “lifelong learning”—are at the heart of the
Software Engineering Programme at the University of Ox-
ford, the philosophy of which echoes the sentiments of [33],
in which a vision for software engineering education and
training for the twenty-first century is outlined.



There has also been a shift in higher education’s mission
to include three additional goals: providing knowledge to the
workforce, retooling people for new careers, and catering to
the need for mental simulation [2]. Universities are now be-
ing asked to consider what it means to be a graduate [20] and
to debate the transferable skills that such graduates should
possess [18].

The Software Engineering Programme at the University
of Oxford1 is a joint venture between Oxford University
Computing Laboratory and the University’s Department for
Continuing Education, which has the aim of making the ed-
ucational resources of the University of Oxford more acces-
sible to a wider public. The Programme offers a number of
short courses—which may be taken individually, combined
to form short programmes of study, or used as credit towards
a postgraduate qualification—that covers a wide range of
software engineering topics.

At any one time, approximately 200 students are regis-
tered for a part-time qualification: either a Postgraduate Cer-
tificate, a Postgraduate Diploma, an MSc, or a doctorate in
Software Engineering (although we do not concern ourselves
with doctoral students in this paper). These students—many
of whom come from overseas—attend intensive, one-week
courses at the Programme’s own teaching facility. The Pro-
gramme currently has a core staff of eight: five university
lecturers, supported by an administrative staff of three.

The Programme allows students to register initially for
one of three qualifications: a Postgraduate Certificate, a
Postgraduate Diploma, or an MSc. It is only for the latter of
these that the completion of a project is required (although, in
previous years, this was also a requirement for the Diploma).
Students on the MSc undertake a project carrying about a
quarter of the weight of the degree; the dissertation has a
20,000 word limit. The project typically involves applica-
tion of techniques taught on the Programme to a real-world
problem or product of the student’s employer. The project is
supervised by one of the Programme lecturers, and graded
by two people: one of the Programme lecturers other than
the supervisor, and one of a committee of three examiners.

As well as allowing students to move from registration
for a lower qualification to a higher one, the Programme also
allows students to move back down the ladder: many part-
time students find themselves in the position of being unable
to make sufficient time to undertake the research associated
with a project or to write up their findings (or, for that matter,
both)—even though they have completed (and passed) the
required number of taught courses. It would be a pity for
such students to leave the Programme without an award of
any sort; hence, the possibility of transferring to a lower
award.

In this mode of delivery, the Programme is relatively
novel, though by no means unique. For example, the Safety

1www.softeng.ox.ac.uk

Critical Systems Engineering and System Safety Engineer-
ing2 courses run by the University ofYork are both organised
in a similar way. The University of Kansas also offers a part-
time MSc in Software Engineering aimed at students from
industry.3 In addition, as is noted in [16], some institutes
have gone further and are offering the electronic delivery of
such courses.

3. Software Engineering projects: theory and
practice

In [14], it is argued that the Graduate Engineer must be ca-
pable of demonstrating practical competence in action. This
is the fundamental basis for including projects in the Com-
puter Science curriculum. Furthermore, it is a requirement
for the Programme’s accreditation by the British Computer
Society (BCS) 4 that a project component be included in the
MSc. However, we feel that the project aspect of our degree
is significantly different to the traditional project aspect—in
terms of, for example, its role in the curriculum, the demands
on supervision, the nature of topics undertaken, and the na-
ture of assessment. We discuss such issues in this section.

The role of project work In [3], the view that the role
of project work can be unclear is presented: students en-
ter it with expectations that are often based upon ill-defined
preparation, resulting in a preoccupation with technical is-
sues [32]; prospective research students may be exercised
in areas that they might later pursue [31]; and so on. Such
issues are of little relevance to our students, as the role of
project work for them is very clear. They are now in a po-
sition to use, or evaluate, these techniques with respect to
problems that they face within their working environment;
this is the role played by project work within our Programme.
However, there are—of course—exceptions. For example,
a student who works on a test team for an industrial strength
Java Virtual Machine implementation must be stretched in
different ways.

Industry relevance In the United Kingdom, criticisms
have been made of the preparedness of graduates for entering
the ‘real world’: the Dearing Report [12] and the UK Engi-
neering Council’s SARTOR (Standards and Routes to Reg-
istration) Report [34] have both made this point forcefully in
recent years. As a result, some admirable efforts have been
made to make projects of full-time Computer Science stu-
dents more relevant to industry. For example, [35] describes
the use of ‘University based industrial projects’ to provide
full-time students with the advantages of industrial contacts,

2www.cs.york.ac.uk/MSc/SCSE
3www.eecs.ku.edu
4www.bcs.org.uk

2



while [21] describes an MSc course involving a real client
and a professional software project manager. Another exam-
ple is described in [36], which reports on “classroom expe-
riences in software engineering coursework where students
are placed in an industrial environment and given a real cus-
tomer, a real project, and held to commercial practices and
accountability.” Such efforts are not, of course, restricted to
the United Kingdom. Other examples include [19], which
describes experiences at Monash University, and [10], which
details experiences at Uppsala University of project-oriented
courses in which the courses are chosen to be similar to gen-
uine industrial projects. The projects undertaken by our stu-
dents are, by their very nature, relevant to industry. Indeed,
the projects have the added bonus of determining the indus-
trial relevance of the techniques and methods that they have
been taught as part of the Programme: this is an extremely
valuable means of validating the material taught. Our stu-
dents, however, face slightly different problems here. For
example, a company whose student has submitted a project
that includes a detailed critique of their internal practices
risks losing a lot if such sensitive information were to leak
out.

Supervisor influence In [6], the view that “individual stu-
dents’ experience of project work will depend heavily on
the attitudes and beliefs of their supervisor” is given. The
projects undertaken by our students are very much work-
oriented, and, therefore, the potential impact of supervisors’
attitudes and beliefs is restricted—and, at times, restricted
to workload planning.

Technical challenges Many full-time students, at the end
of their course of study, may have to demonstrate a sig-
nificant amount of technical competence simply to use the
development environment that they have chosen. As far as
most of our students are concerned, they demonstrate this
every day of their working lives. Therefore, the challenges
presented by completing a project as part of their course
are different to those of full-time students: work and family
pressures have a far greater impact than the technical chal-
lenges presented to them.

Learning objectives The learning objectives for project
work can “encompass the exercise and development of a
wide range of skills varying from generic personal transfer-
able skills, such as communication and teamwork, to tech-
nical skills such as the ability to design, construct and de-
liver a system meeting stated requirements . . . The required
deliverables should reflect and reinforce the learning objec-
tives” [5]. The impact of the learning outcomes can be in-
creased if the objectives are stated clearly and explicitly at
the start of the project process—something that we endeav-
our to do.

Allocation As with undergraduate courses, the Software
Engineering Programme allows a degree of choice with re-
gards to the selection of MSc project topics. There are,
however, two main aspects that determine this choice. First,
the project is seen as a culmination of the students’ course of
study. As such, the project is expected to involve the appli-
cation of some of the techniques learnt during their studies.
The specific problem to be solved is the second aspect that
determines choice—it is typically expected that the problem
area will be one associated with the students’ workplace.
It follows that the ‘assignment problem’ identified in [9],
which requires the “variation of a classical approach to the
Assignment Problem” [29] is not a concern here.

Supervision Due to the very nature of the Programme’s
students, the form of supervision taken is unusual. Supervi-
sion meetings are more infrequent than is the case for full-
time undergraduate students. This is mainly due to the fact
that the Programme’s students are not (typically) located in
Oxford. There are, of course, extremes: one student may
visit every couple of weeks; another may visit right at the
start of their project work and never be seen again. When stu-
dents do make the trip to see their supervisor, this means that
such meetings are longer and—arguably—more productive
than is the case for full-time students. Another result of this
distance is that regular email contact is far more important
than is the case for full-time students.

Assessment A number of authors have discussed the con-
cept of assessment authenticity (see, for example, [28], [8],
and [37]). As noted in [17], there are many forms of such as-
sessment. The fundamental basis for assessment of projects
submitted by Programme students is the level to which they
have demonstrated skill at understanding and applying the
techniques taught.

Reflection To quote [17], “reflection on experience under-
pins the process of successful learning and is essential to the
success of education.” Nowhere is this more true than in
project work, where, typically, this is the main opportunity
for such activity. Our students are at an advantage in this re-
gard: because the project is the culmination of their course
of study (and also because of the nature of the project be-
ing undertaken), the reflection process is more widespread:
there is the opportunity for reflection on the benefits of the
whole course, as well as on the project work undertaken.

Team or group projects The projects undertaken by our
students are all individual projects: given that there is no
set start or end date (or duration), that the students are geo-
graphically distributed, and some projects may involve com-
mercially sensitive material, it cannot be otherwise. That is

3



not to say, however, that we do not value the roles of team or
group projects: the final module undertaken by all students
prior to them starting on their project work is a compulsory
module in which students work in groups to specify, design,
implement, and test a system. In addition, some students
report on work they have individually carried out within a
team context in their place of work, with the other members
of the team being unconnected with the Programme.

Motivation In [24], four particular points in the learning
cycle at which motivation may be addressed are listed: it can
be affected by their interestin their work; their perception of
its relevance; their expectationthat they will succeed; and
their satisfactionin their achievement. This has a neat fit
with the philosophy of the Software Engineering Programme
and—in particular—the project work undertaken.

Planning As detailed in [17], work schedules stretching
over weeks or months are new to most full-time students:
they should be encouraged to produce a time plan to enable
both the student and supervisor to monitor progress. Most
part-time students are used to generating time plans: typi-
cally the drive to produce a time plan comes from the student
rather than the supervisor.

4. Guidelines

In this section we present some guidelines (in the spirit
of [17]) that can be employed with regards to part-time post-
graduate Software Engineering projects.

Understand the student’s subject area The process of
choosing of subject area for a student’s project is signif-
icantly different than it is when dealing with a full-time
undergraduate Computer Science student. Full-time under-
graduates choose their project topics for a variety of reasons:
they are keen on the subject area and want to explore it fur-
ther; they want to work with a particular member of staff; or
maybe they are assigned a project by a ‘project supremo’.
Part-time postgraduate students go through a very differ-
ent process in their choice of project area. Typically, they
will want to extend or reanalyse something associated with
their everyday work (indeed, the Software Engineering Pro-
gramme at Oxford encourages this)—the choice then be-
comes very simple. The difference here is that there is un-
likely to be a supervisor who is familiar with the project,
working practice, or work place in which the project is to be
embedded—thus, there is a learning curve for the supervisor
as well as the student. This brings us to the second guideline.

Understand that the supervisor-student relationship is
genuinely a two-way relationship The supervision of stu-

dents who actually work in the industry results in a flow of
information is genuinely two-way. For example, part-time
students can be the source of potential (applied) research
ideas for their supervisors. The relationship between part-
time students and their supervisors is unlike that between
full-time students and their supervisors. In the latter, there
is nearly always a huge gulf in age, experience, status, and
authority; with regards to the former, it is more of a rela-
tionship between peers, with each party bringing different
contributions to the table.

Understand the pressures faced by the student Full-
time students typically have time pressures with regards to
project submission: increasingly such students have to fi-
nance their studies through part-time (and, in some cases,
full-time) jobs. Part-time students also have time pressures,
but of a slightly different variety. Full-time students (usu-
ally) have a set date by which they should submit their
project; part-time students (again, usually) do not. With-
out a firm target, real life gets in the way and progress is
slow: therefore a realistic work plan with plenty of slack
and a fixed submission date are essential.

Be realistic with regards to assessment Part-time stu-
dents are not immersed in an academic culture, day-in, day-
out. They do not have easy access to the university library—
although they can access Web resources easily; they do not
have easy access to their supervisor—although email con-
tact is easy to establish. Most part-time software engineer-
ing students cannot be expected to produce research-based
projects; they cannot be expected to work with recent re-
search results; they cannot be expected to work with a su-
pervisor in his or her specialist area. They can, however, be
expected to demonstrate, apply, and evaluate what they have
learnt during the taught part of the course. This must be the
basis for the assessment of such projects.

Provide both formative and summative feedback We
have found that our students have a strong desire for sum-
mative feedback: they feel that they have invested a tremen-
dous amount of time and energy into their project work, and
wish to know on what basis the grade awarded to them was
arrived at. However, formative feedback is also a vital part
of the project process. The students have gone through a
process of employing techniques taught during their study
to genuine problems in their workplace: many of these stu-
dents wish to carry on doing so, and to be able to exploit
this new knowledge successfully. In this regard, a final bit
of constructive advice can be valuable.

Confidentiality The very nature of the projects undertaken
by our students means that the issue of confidentiality is of

4



concern, and so there is a responsibility on the Programme to
ensure that—for some projects—only approved individuals
(such as, for example, the supervisor and examiners) may
have access to the final project.

As students are encouraged to undertake projects which
are directly connected with their work, the majority are under
a duty of confidentiality to their employer, and most are well
aware of this. As a result, projects are undertaken within the
confines of a non-disclosure agreement. The Programme
has a pro-forma agreement to which most companies are
happy to give their consent. This covers discussion with
lecturers and examiners, and allows the project to be kept on
very restricted access in the library. This, of course, has a
negative impact on the pool of previous projects that can be
made available for current students to read.

Intellectual property The University’s normal practice is
to place the projects in a library after they have been exam-
ined, and the University claims intellectual property rights
in (among other things) software developed in the course
of, or incidentally tothe student’s studies, if it possesses
commercial potential.

Intellectual property raises a wider range of issues. The
University’s statutes are so phrased in order to protect it
against exploitation by others of ideas substantially devel-
oped by its staff. In the case of full-time students this may
be a significant concern. Part-time students, by the nature
of their studies, have less interaction with University staff,
and are much less likely therefore to discover a valuable idea
with their aid. The delineation of work related or incidental
to their studies, and work undertaken for their employer is
often impossible; the two are intertwined.

Most students appear unaware of such concerns—consent
to the University statutes is a small matter when they register
for a degree. For very few will it be remotely of interest, the
majority of projects generating little by way of valuable (or
directly-exploitable) intellectual property. For many, how-
ever, if the issue is raised it will generate concern, even if
they fall into this group.

Of course, where the student is in employment, they will
have already (probably) assigned intellectual property rights
to their employer, and so at the point of registering for a
degree are not able to give any such rights to the University.

It is frequently necessary to advise a student to construct
their project in such a way as to avoid placing interesting
and/or ground-breaking developments within the scope of
the project. For example, one student is developing a frame-
work to enable companies in a particular sector to construct
e-commerce solutions with particular ease. Rather than de-
scribe this work as an MSc project, and gain credit for doing
so, they find themselves writing instead a project describing
an application of the framework, developed alongside it in
order to validate and refine its definition. Another student

has developed a tool which will substantially aid their com-
pany in maintenance and development of a class of product.
This student might happily submit a description of that tool
for their MSc without fear of the company’s rights being
damaged. These two examples represent extremes. The
inequity between students due to their employment situa-
tion with regard to intellectual property is seldom great, and
very seldom likely to affect the outcome of the student’s de-
gree. Very few MSc projects develop intellectual property
of significant value; the situation is nevertheless far from
satisfactory.

5. Summary

In [17] a collection of examples of good practice are pro-
duced to aid potential supervisors of various forms of Com-
puting projects. Our specific concern—projects undertaken
by part-time postgraduate Software Engineering students—
is not represented there. As a consequence, this paper has
been written in the spirit of that collection. We paid par-
ticular emphasis to intellectual property and confidentiality
because it is of considerable relevance to the projects under-
taken by our students.

The role of projects within Computing curricula is very
much an accepted part of such degree programmes—mainly
because it helps prepare students for life in the ‘real world’.
Although the benefits that come from including a project
component as part of our degree are very different to those
associated with full-time undergraduate projects, the benefits
are very real—for both students and supervisors.

In [26] four stakeholders in project work are identified:
academic staff, students (before the work), students (after the
work), and employers. In this paper we have focussed on
the views of one of these stakeholders—the academic staff.
We shall focus on the views of the others in future papers.
Furthermore, it may be that many of the themes identified in
this paper are relevant to similar courses in other fields—this
shall also be a subject for future work.

References

[1] C. Bergman. Senior design projects with industry. In Pro-
ceedings of FIE’98. IEEE, November 1998.

[2] H. Blustain, P. Goldstein, and G. Lozier. Assessing the new
competitive landscape. In R. N. Katz and associates, editors,
Dancing With The Devil: Information Technology And The
New Competition In Higher Education, pages 51–72. Jossey-
Bass inc., 1999.

[3] R. D. Boyle and M. A. C. Clark. Non-technical issues in
undergraduate CS project work or what are we (all) here for?
In M. Holcombe, A. Stratton, S. Fincher, and G. Griffiths,
editors, Projects in the Computing Curriculum: Proceedings
of the Project ’98 Workshop, pages 117–128. Springer, 1998.

5



[4] D. W. Breneman, J. E. Finney, and B. M. Roherty. Shaping
The Future: Higher Education Finances In The 1990s. San
Jose: California Higher Education Policy Centre, 1997.

[5] P. Capon. Maximizing learning outcomes of computer sci-
ence projects. Computer Science Education, 9(3):184–199,
1999.

[6] M.A. C. Clark and R. D. Boyle. A personal theory of teaching
computing through final year projects. Computer Science
Education, 9(3):200–214, 1999.

[7] T. Clear. A collaborative learning trial between New Zealand
and Sweden using Lotus Notes Domino in teaching the con-
cepts of human computer interaction. In Proceedings of ACM
Innovation and Technology in Computer Science Education,
1999.

[8] A. Collins. Portfolios for science education: issues in pur-
pose, structure and authenticity. Science Education, 76:451–
463, 1992.

[9] R. Cooper and R. Welland. Computing science projects at
the University of Glasgow. In M. Holcombe, A. Stratton,
S. Fincher, and G. Griffiths, editors, Projects in the Comput-
ing Curriculum: Proceedings of the Project ’98 Workshop,
pages 169–183. Springer, 1998.

[10] M. Daniels and L.Asplund. Full scale industrial project work:
a one semester course. In IEEE Frontiers in Education, San
Juan, Costa Rica, November 1999.

[11] M. Daniels, A. Berglund, and M. Petre. Some thoughts on
international projects in the undergraduate education. In
Project 99, EPCoS, Exeter, UK, September 1999.

[12] Report Of The National Committee On Higher Education.
HM Government, HM Stationary Office, 1997.

[13] D. Dekker. Issues when using company sponsored projects
to provide a design experience for students. In Proceedings
of FIE’97. IEEE, November 1997.

[14] P. J. Denning. Educating a new engineer. Communications
of the ACM, 35(12):82–97, December 1992.

[15] J. J. Duderstadt. Can colleges and universities survive in
the information age? In R. N. Katz and associates, editors,
Dancing With The Devil: Information Technology And The
New Competition In Higher Education, pages 1–26. Jossey-
Bass inc., 1999.

[16] G. C. Farrington. The new technologies and the future of
residential undergraduate education. In R. N. Katz and asso-
ciates, editors, Dancing With The Devil: Information Tech-
nologyAndThe New Competition In Higher Education, pages
73–94. Jossey-Bass inc., 1999.

[17] S. Fincher, M. Petre, and M. Clark, editors. Computer Sci-
ence Project Work: Principles and Pragmatics. Springer,
2001.

[18] A. Griffin. Transferring learning in higher education: prob-
lems and possibilities. In R. Barnett, editor, Academic Com-
munity: Discourse or Discord?Jessica Kingsley, 1992.

[19] D. Hagan, S. Tucker, and J. Ceddia. Industrial experience
projects: A balance of process and product. Computer Sci-
ence Education, 9(3):215–229, 1999.

[20] HEQC. Assessment In Higher Education And The Role Of
‘Graduateness’. Higher Education Quality Council, London,
1997.

[21] M. Holcombe and H. H. Lafferty. Using computer profes-
sionals for managing student software projects. In D. Bate-
man and T. Hopkins, editors, Proceedings of the Conference
on Developments in the Teaching of Computer Science. Uni-
versity of Kent at Canterbury, 1992.

[22] M. Holcombe, A. Stratton, S. Fincher, and G. Griffiths, edi-
tors. Projects in the Computing Curriculum: Proceedings of
the Project ’98 Workshop. Springer, 1998.

[23] A. Jackson. An industry-centered capstone experience for
aeronautical management technology students at Arizona
State University. In Proceedings of FIE’98. IEEE, November
1998.

[24] J. M. Keller. Motivational design of instruction. In C. M.
Reigeluth, editor, Instructional-DesignTheories and Models.
Lawrence Erlbaum Associates, 1983.

[25] M. Knudsen and T. Vinther, editors. Project Work in Uni-
versity Studies. Roskilde University, Denmark, September
1997.

[26] M. R. Luck. Undergraduate research projects — why bother?
In EPCoS workshop, Leeds, UK, January 1998.

[27] T. Macek, B. Mannova, J. Kolar, and B. Williams. Global
cooperation project in computer programming course. In
Proceedings of SIGCSE’99. ACM Press, March 1999.

[28] R. Mitchell. What is ‘authentic assessment’? Portfolio: The
Newsletter of Arts PROPEL, Harvard University, December
1989.

[29] C. H. Papdimitrou and K. Sterglitz. Combinatorial Optimiza-
tion. Prentice Hall, 1982.

[30] M. Petre and S. Fincher. Using other people’s experience of
project work: realising fitness for purpose. In M. Holcombe,
A. Stratton, S. Fincher, and G. Griffiths, editors, Projects in
the Computing Curriculum: Proceedings of the Project ’98
Workshop, pages 19–30. Springer, 1998.

[31] S. Rowett. Experience of a student-led final year degree
project. In M. Boyle, editor, Student led Projects at the Uni-
versity of Leeds. University of Leeds, 1995.

[32] J. Ryder and J. Leach. Research projects in the UG sci-
ence course: students learning about science through encul-
turation. In G. Gibbs, editor, Improving Student Learning
Through Course Design. Oxford Centre for Staff Learning
and Development, 1997.

[33] H. Saiedian. Software engineering education and training
for the next millennium. Journal of Systems and Software,
47(12), December 1999.

[34] Standards and routes to registration (SARTOR). Engineering
Council, 1997.

[35] A. Stratton, M. Holcombe, and P. Croll. Improving the qual-
ity of software engineering courses through university based
industrial projects. In M. Holcombe, A. Stratton, S. Fincher,
and G. Griffiths, editors, Projects in the Computing Curricu-
lum: Proceedings of the Project ’98 Workshop, pages 47–69.
Springer, 1998.

[36] J. B. Vaughn jr. Teaching industrial practices in an under-
graduate software engineering course. Computer Science
Education, 11(1):21–32, 2001.

[37] G. Wiggins. A true test: toward more authentic and equitable
assessment. Phi Delta Kappan, pages 703–713, 1989.

6


