
Soundness of Data Flow Analyses for

Weak Memory Models⋆

Jade Alglave, Daniel Kroening, John Lugton,
Vincent Nimal, and Michael Tautschnig

Department of Computer Science, University of Oxford, UK

Abstract. Modern multi-core microprocessors implement weak memory

consistency models; programming for these architectures is a challenge.
This paper solves a problem open for ten years, and originally posed by
Rinard: we identify sufficient conditions for a data flow analysis to be
sound w.r.t. weak memory models. We first identify a class of analyses
that are sound, and provide a formal proof of soundness at the level of
trace semantics. Then we discuss how analyses unsound with respect to
weak memory models can be repaired via a fixed point iteration, and
provide experimental data on the runtime overhead of this method.

1 Introduction

Modern computing systems frequently employ multiple CPU cores, generating
strong demand for concurrent software that exploits multiple threads of execu-
tion for better performance. However, the concurrency model implemented by
these architectures is a formidable challenge for the programmer: with a goal of
improving throughput, modern multi-core or multiprocessor architectures such
as Intel’s x86 series or IBM’s PowerPC relinquish the standard execution model
known as Sequential Consistency (SC) [1], in favour of much weaker models [2,
3]. Multiprocessors featuring a weak memory model permit execution traces that
do not correspond to any interleaving of the program’s instructions, that is, the
architecture does not implement SC.

Init: x=0; y=0;

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

Fig. 1. Litmus test illustrat-
ing store buffering

Program bugs that relate to weak memory
consistency are often difficult to reproduce and
to diagnose. Fig. 1 shows a standard example to
illustrate the problem. At line (a), processor P0

writes the value 1 into memory address x; then
at line (b) it reads from memory address y and
writes the result into the processor-local register
r1. Similarly, at line (c), processor P1 writes the
value 1 into memory address y; then at line (d) it reads from memory address
x and writes the result into processor-local register r2. We underline the fact

⋆ Supported by EPSRC under grants no. EP/G026254/1 and EP/H017585/1, by the
ARTEMIS CESAR project, and under the European Union’s Seventh Framework
Programme (FP7/2007–2013)/ERC grant agreement no. 280053.

that registers are private to the processor holding them, e.g., r1 is private to
P0, whereas the memory addresses, e.g., x and y, are shared. Assuming SC, at
least one of the registers has to hold 1 after the execution of the four statements.
However, when executing this program on a multi-core x86 or PowerPC machine,
traces are observed in which both registers hold 0 in the final state [4]. This
outcome can be caused by the store buffers implemented in these architectures.
The situation is exacerbated by the fact that this non-SC observation only occurs
in a small fraction of the executions. For instance, execution of the code of Fig. 1
using the litmus tool presented in [5] on an x86 system results in 99.13% SC-
conforming traces among one billion executions.

These relaxations permitted in weak memory models affect the semantics of
high-level languages such as Java [6] or C++ [7]. One way to address this issue is
to restrict program analyses to programs that are guaranteed to only exhibit SC
executions such as programs free of data races [8], or programs where memory
barriers have been inserted to ensure that they only have SC executions [9, 10].

Yet we cannot restrict ourselves to this limited view on programs: engi-
neers often choose to retain non-SC executions for performance reasons. In other
terms, we do not restrict our study to data-race free programs. Consequently, ef-
fects relating to weak memory consistency need to be modelled appropriately in
program analysis algorithms for concurrent software. The issue of soundness of
program analyses w.r.t. weak memory models has been identified, among others,
by Rinard, who wrote ten years ago in [11]:

“We suspect that many existing analyses are sound for programs with
weak consistency models [...], but this soundness is clearly inadvertent,
in some cases a consequence of the imprecision in the analysis, and not
necessarily obvious to prove formally.”

As an example, we first perform an interval analysis [12] on Fig. 1, to deter-
mine the possible values of r1 and r2. We compute an interval for each variable.
The join of two intervals yields the smallest interval that contains both of them.
We consider all possible interleavings of statements of the two threads and com-
pute the join over all these traces. For instance, for the traces (a); (b); (c); (d) and
(c); (d); (a); (b) we obtain the intervals [0, 0]× [1, 1] and [1, 1]× [0, 0], respectively.
The join [1, 1]× [0, 0]⊔ [0, 0]× [1, 1] yields the box [0, 1]× [0, 1], already including
the result that can be derived from the other interleavings, i.e., [1, 1]×[1, 1]. More
interestingly, this overapproximation also includes the additional value that one
can observe on a weak memory model, i.e., (0, 0).

As a second example of a program analysis, we consider the octagon abstract
domain [13], which is a relational domain that describes (octagonal) faces of
polyhedra. Joining two polyhedra in this abstraction consists in computing the
smallest polyhedron which contains these polyhedra. For the two traces given
above we obtain {1} × {0} ⊔ {0} × {1} = {r1 + r2 ≤ 1, −r1 − r2 ≤ −1, r1 ≤
1, −r1 ≤ 0}, which concretizes to the diagonal line segment going from (0, 1) to
(1, 0). No join of interleavings, however, will include the point (0, 0).

Fig. 2 provides a comparison of the results of intervals and octagons. In
Fig. 2(c) we furthermore provide the code for reproducing these results using

2

r1

r2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(a) Box abstraction

r1

r2

(0, 0)

(0, 1)

(1, 0)

(1, 1)

(b) Octagon abstraction

var x,y:int; // shared memory

initial x==0 and y==0;

thread P0:

var r1:int; // P0 register

begin

x = 1;

r1 = y;

end

thread P1:

var r2:int; // P1 register

begin

y = 1;

r2 = x;

end

(c) Implementation of Fig. 1 for
ConcurInterproc

Fig. 2. Running interval and octagon on Fig. 1 to compute the values of (r1, r2)

ConcurInterproc1 [14]. The octagon domain is thus unsound w.r.t. weak
memory models, whereas the (less precise) interval domain belongs to a class of
analyses sound for weak memory models, as we show in this paper.

Few proofs of soundness of program analyses for weak memory models exist.
In addition, existing proofs are usually tailored to a particular analysis and a
particular memory model [15, 16]. These proofs thus offer only limited general
insight into what makes an analysis sound for weak memory models.

Contributions We establish sufficient conditions for a data flow analysis to
be sound w.r.t. weak memory models. We identify a large class of data flow
analyses—the non-relational ones—that satisfy these conditions. These are guar-
anteed to be sound for a wide range of modern architectures, namely all those
that respect the uniproc axiom as defined in [17, 4] and recalled in Sec. 2. Our
results use trace semantics, hence are independent of the programming language
and the specific representation of the concurrent program used in the analysis.
Our classification confirms recent research results for specific analyses [15, 16,
18, 19] as part of a broader result. It also simplifies existing ad-hoc proofs, and
provides proofs that new analyses are sound w.r.t. weak memory models.

We furthermore address the question of repairing an analysis that is unsound
for weak memory models. We provide a general method to extend a sequentially
sound forward analysis to an analysis for concurrent programs that is sound for
weak memory models. We illustrate the method with the octagon domain.

We omit the proofs for brevity, but they can be found together with the
details of our experiments at http://www.cprover.org/wmm/.

1 http://pop-art.inrialpes.fr/interproc/concurinterprocweb.cgi

3

Init: x=0; y=0;

P0 P1

(a) x← 1 (c) y← 1

(b) r1← y (d) r2← x

Observed? r1=0; r2=0;

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0 po:1

(a) Wx1

(b) Ry0

(c) Wy1

(d) Rx0

po:0

fr

po:1

fr

(a) Program
(b) Events (and program

order)
(c) An execution witness

Fig. 3. A program and a candidate execution

2 Background

To apply program analyses to concurrent programs running on modern multi-
core processors or multiprocessors, we need to prove that these analyses are
actually sound w.r.t. weak memory models. To describe weak memory models,
we use the generic framework of Alglave et al. [4, 17], which covers a wide range
of existing architectures, in particular x86-TSO [20] and a fragment of Power.
We summarise the relevant parts of this framework.

2.1 Weak Memory Models

Events Instead of dealing directly with programs, we reason in terms of the
events occurring in a program execution. An event e is a memory access, com-
posed of a direction R (read) or W (write), an address addr(e), a value val(e), a
processor proc(e), and a program location loc(e). We will use registers, which are
processor-local (thread-local) variables, in place of values when the actual valua-
tion is not known a priori. Note that an address always refers to shared memory,
and thus never to a register. We represent each instruction by the events it issues.
In Fig. 3, we associate the store (a) x← 1 on P0 with the event e =(a)Wx1. For
this example we have addr(e) = x, val(e) = 1, proc(e) = P0, and loc(e) =(a).We
write E for the set of events. We write w (resp. r) for a write (resp. read), and
e when the direction of the event is irrelevant.

Executions We associate a program with an event structure E , (E,
po
→),

composed of its events E and the program order
po
→, a per-processor total order

over E. In Fig. 3, the store (a) to x on P0 is in program order with the read (b)

from y on P0, i.e., (a)Wx1
po
→ (b)Ry0.

4

Given an event structure E, we represent an execution witness X , (
ws
→,

rf
→)

of the corresponding program by two relations over E: the write serialisation
ws
→

is a per-address total order on writes, linking a write w to all other writes w′

to the same address hitting the memory after w; the read-from map
rf
→ links

a single write w to a read event r that reads from the address that w writes

to. The relations
ws
→ and

rf
→ are the key objects for defining the validity of an

execution, as explained below. We derive the from-read map
fr
→ from

ws
→ and

rf
→.

A read r is in
fr
→ with a write w when r reads from the address of some write w′

that hits the memory before w does: r
fr
→ w , ∃w′. w′ rf

→ r ∧ w′ ws
→ w.

The observable result, r1=r2=0, shown in Fig. 3(a) corresponds to the exe-
cution of Fig. 3(c) if each address and register initially holds 0. If r1=0 in the
end, the read (b) obtained its value from the initial state, hence before the write

(c) on P1, thus (b)
fr
→ (c). Similarly, if r2=0, then (d)

fr
→ (a).

Uniprocessor Behaviour The condition uniproc(E, X) , acyclic(
ws
→ ∪

fr
→ ∪

rf
→

∪
po-loc
→) (where

po-loc
→ is the program order restricted to events with the same

address) forces a processor in a multiprocessor context to respect the memory
coherence widely assumed by modern architectures [21, 22, 2, 3].

P0 P1

(a) x← 1 (b) r1← x

(c) x← 2

Forbidden: x=1; r1=1;

(a) Wx1

(b) Rx1

(c) Wx2

rf

po:1 po-loc

ws

Fig. 4. An invalid execution, violating
the uniproc condition.

This means that if a processor
writes, e.g., the value v to the memory
location ℓ and then reads v′ from ℓ,
then the associated writes w and w′

should be in this order in the write se-
rialisation, i.e., w′ should not precede
w. In Fig. 4, we have (c)

ws
→ (a) (by x

final value) and (a)
rf
→ (b) (by r1 fi-

nal value). The cycle (a)
rf
→ (b)

po-loc
→

(c)
ws
→ (a) invalidates this execution: (b) cannot read from (a) as it is a future

value of x in
ws
→. In every model of our framework, there is no valid execution

which ends up with x = 1, r1 = 1.
The uniproc condition actually corresponds to checking that SC holds per

address [17]. We rely heavily on this axiom in the proofs of this paper2.

Architectures; validity of executions We define formally in [4, 17] the notions of
architecture and validity of an execution w.r.t. an architecture, but we abstract
them away in the present paper, for two reasons. First, the exposition of this
paper does not need to detail them. Second, and more importantly, our results
only require the architecture that we consider to respect the uniproc axiom.

Thus, in the following, we consider an abstract notion of architecture, which
acts as a filter over executions. Given an architecture A, an event structure E

2 All the results presented here hold with a weaker version of uniproc, which allows
us to embrace Sun’s RMO in our framework. We omit this restriction for clarity and
brevity, but more details can be found in [17, p.47–48].

5

and an execution witness X , we write validA(E, X) when the execution (E, X)
is valid on A. We only impose that validA(E, X) implies uniproc(E, X), i.e.,
that a valid execution should pass the uniproc check.

We also abstract the notion of comparison over architectures of [4, 17]. Intu-
itively, an architecture A1 is weaker than another one A2 when the executions
valid on A2 are valid on A1. Thus, SC is stronger than any other architecture.

2.2 Programs vs. Event Structures

Event structures describe programs in terms of their trace semantics. In the pro-
grams considered above, each right hand side of a store was a single concrete
value, which immediately translated to a (concrete) event. To derive event struc-
tures from a description of general high-level programs, however, we proceed in
two steps. Each control flow path at program level first translates to an abstract
event structure, where events take the form of a direction and two variables. This
allows us to translate, e.g., a store (a) x← σ to the (abstract) event (a)Wxσ.

We write E for the set of all abstract event structures, A for the set of all
addresses, and V for the set of all values. We define the type R of results (or
valuations) as R , ℘ (A× V), i.e., a result is a set of pairs (x, v) where x is an
address and v a value (we denote the powerset with ℘ (·)).

Given a specific language L, we write PL for the set of all the programs
which can be written in this language. We introduce α : PL → ℘ (E ×R), which
maps a program P to corresponding abstract event structures and initial values,
respecting the semantics of the language L. Each event created by α is labelled
by the program counter of the corresponding statement in P .

Each abstract event structure induces multiple concrete event structures un-
der a given set of initial valuations. That is, an abstract event (a)Wxσ with
R = {(σ, 0), (σ, 1)} translates to concrete events (a)Wx0 and (a)Wx1. The set
of all sets of concrete event structures is denoted by Econc. We use the mapping
conc : E → R → Econc to translate abstract to concrete event structures. We
require conc to yield a set of concrete event structures such that at least for each
execution witness valid on an architecture A there is a concrete event structure.

We distinguish abstract from concrete event structures as follows: program
analyses will be applied to abstract event structures, but reasoning about actual
values will be performed in concrete event structures.

3 Soundness of Analyses on Weak Memory Models

We define an analysis J·K as mapping abstract event structures and initial valu-
ations to sets of pairs (i, r) where i is a program location (of type L) and r is a
result as defined in the preceding section. We make explicit the initial state of
values of type R, commonly being the empty set or the set of all possible values:

J·K : E → R → ℘ (L×R)

6

Note that our definition captures relational analyses [23]; indeed the result type
℘ (L×R) can be rewritten as L→ ℘ (A→ ℘ (V)).

Consider an abstract event (a)Wxσ with initial valuations R = {(σ, 0), (σ, 1)}.
We track the concrete values of x and the relation between x and σ as follows:

J(a)Wxσ, {(σ, 0), (σ, 1)}K = {((a), {(x, 0), (σ, 0)}), ((a), {(x, 1), (σ, 1)})}

3.1 Definition of Soundness

Rinard and Rugina define in [24, A.3] an analysis to be sound

“[. . .] if it is at least as conservative as the result obtained by using
the standard pointer analysis algorithm for sequential programs on all
the interleavings of the legal executions.”

A legal execution corresponds to the execution of one thread. Thus their work
assumes SC (i.e., the interleaving semantics) as the execution model. We gen-
eralise their idea to weak memory models. Given an architecture A, we write
valuesA(E, R) for the set of values that execution witnesses X can yield on
A, where X is an execution witness associated to a concrete event structure
E′ ∈ conc(E, R), i.e., obtained from concretizing E with initial valuations R.

We write <X for the order on program locations induced by an execution X .
We omit the formal definition of <X for brevity; it corresponds to A.ghb(E, X)
as defined in [17, 4]. Intuitively, it describes the order in which the memory events
of X hit the memory. For example in Fig. 3(c), on an architecture A 6= SC—
for otherwise the execution X depicted would not be valid—<X corresponds to
{((d), (a))} ∪ {((b), (c))}.

We write last(r, i, x) when the location of x is less than (or unrelated to)
(i) in <X , and x is one of the last elements in the relation r, i.e., there is no
element x′ such that (x, x′) ∈ r. If a given write w = (i)Wxv is the last element
in ws(X) at location (i), then the value v is the current value of x at location (i).
For example in Fig. 4, the current value of x at line (c) (resp. (a)) is 1 (resp. 2),
for the last write to x at line (c) (resp. (a)) is the write (c)Wx2 (resp. (a)Wx1).

Thus, we define valuesA(E, R) as the set of possible results, i.e., mappings
of each address to its current value, at each location. In other words, the set
valuesA(E, R) collects all the possible values in memory addresses that can arise
in an execution (E, X) that is valid on A:

valuesA(E, R) , {(i, r) | ∃X. validA(conc(E, R), X) ∧ ∀x, v. (x, v) ∈ r ⇒

∃w. (last(ws(X), i, w) ∧ addr(w) = x ∧ val(w) = v)}

For example in Fig. 3, valuesSC(E, R) contains, for program location (a),
the result ((a), {(r1, 0), (r2, 0), (x, 1), (y, 0)}). Formally, we define soundness of
over-approximating analyses for a weak architecture A as follows:

Definition 1. An analysis J·K is A-sound iff the result of J·K on an abstract
event structure E with initial values R describes a state space at least as large
as that of valuesA(E, R) (with U � V iff ∀(i, r) ∈ U. ∃r′.(i, r′) ∈ V ∧ r′ ⊆ r):

soundA(J·K) , ∀E, R. valuesA(E, R) � JE, RK

7

We have, e.g., {((a), {(r1, 0), (r2, 0), (x, 1), (y, 0)})} � {((a), {(r1, 0), (r2, 0)}).
This means that we consider an analysis result to be A-sound if it is at least as
conservative as taking all the values yielded by all valid executions on A.

Note that under-approximating analyses for SC are also under-approximating
for all weak memory models, since for all weak architectures A, the values valid
on SC are also valid on A, i.e., valuesSC(E, R) � valuesA(E, R). We therefore
focus the presentation on showing soundness of over-approximating analyses.

3.2 SC-soundness Entails A-soundness for Non-relational Analyses

We now define a particular class of program analyses by restricting the signature

of the output of the analysis. We only consider analyses Ĵ·K that map abstract
event structures to pairs (i, r) where i is a program location and r a result, with
the additional constraint that r is a singleton:

Ĵ·K : E → R → ℘ (L× (A× V))

This type can be rewritten as L → (A → ℘ (V)). In practice, we apply a
projection to our general type of analyses to obtain non-relational ones [23]:

projection(J·K)(E, R) , {(i, {(x, v)}) | ∃r. (x, v) ∈ r ∧ (i, r) ∈ JE, RK}

We restrict the type of valuesA similarly by computing valuesA and then

using the projection abstraction given above. We write ̂valuesA(E, R) to indicate

this, i.e., ̂valuesA(E, R) is of type L→ (A→ ℘ (V)). In the example of Fig. 3,
̂valuesSC(E, R) contains {((a), (r1, 0)), ((a), (r2, 0)), ((a), (x, 1)), ((a), (y, 0))}.

We want to determine when a given analysis, although designed with SC in
mind, is sound for a weak architecture A. For example, for the program given

in Fig. 3, we have ̂valuesx86(E, R) = ̂valuesSC(E, R) (with the initial state R

mapping all variables to 0). Hence in this case, an analysis that computes at

least ̂valuesSC(E, R) is also sound for x86, since it also computes all the values
that this specific program can yield on an x86 machine. We show that any

analysis Ĵ·K with (1) matching signature and (2) that is SC-sound as defined
above satisfies this requirement. This means that collecting the values produced

by the SC executions (i.e., ̂valuesSC(E, R)) suffices to obtain the values yielded
by a weaker model A. This property is guaranteed by the uniproc check as
defined in Sec. 2, since uniproc means that SC holds per location. To prove this
claim, we first show the inclusion of value sets:

Lemma 1. ∀E, R. ̂valuesA(E, R) ⊆ ̂valuesSC(E, R)

The lemma is sufficient to show our main theorem, which states that for a non-

relational analysis Ĵ·K, its SC-soundness (i.e., ∀E, R. ̂valuesSC(E, R) ⊆ ĴE, RK)
entails its A-soundness on any architecture A. That is to say, we show in Thm. 1
that a non-relational analysis, though defined with SC in mind, is sound on a
weaker architecture A when this analysis collects at least all the values yielded
by all the executions valid on SC. We formalise this as follows.

8

Theorem 1. ∀Ĵ·K : E → R → ℘ (L× (A× V)). soundSC(Ĵ·K)⇒ soundA(Ĵ·K)

The result is obtained by reasoning over traces, which is the most precise,
yet not necessarily computable, representation for program executions. Hence
our results are independent of (1) programming language specifics such as locks
or dynamic synchronization primitives and hold for all other program repre-
sentations, such as (concurrent) control flow graphs or Petri nets, for they are
overapproximations of the sets of traces (cf. [25] for a discussion of representa-
tions for concurrent programs); (2) analysis specifics such as fixed point iteration
strategies and sources of imprecision.

Note that for a relational analysis, its SC-soundness would not, in general,
entail its A-soundness, for the weaknesses of multiprocessors’ execution models
is precisely observable via relations over variables, as shown in Fig. 3. We discuss
means of obtaining an A-sound analysis from a relational analysis in Sec. 4.

Octagon and Box As seen in Sec. 1, the octagon abstract interpretation is not
sound on weak memory models. Indeed, this analysis reasons over conjunctions
of statements, e.g., for Fig. 3, it computes values that r1 and r2 can have at
the same time. More formally, in [13], Miné defines the octagon concretization
function with D+ : DBM → ℘ (A→ V), where DBM is the set of difference-
bound matrices m+. There is one matrix m+

i per line i, and the concrete domain
computation takes the form λi.D+(m+

i) : L→ ℘ (A→ V). We have ℘ (A× V) (
℘ (A→ V) (℘ (℘ (A× V)), hence octagon analyses cannot be represented with
the non-relational analysis type, E → R → ℘ (L× (A× V)), but always with
the relational analysis type, i.e., E → R → ℘ (L× ℘ (A× V)).

As we show in the introduction, the interval abstraction, however, collects
along the way the values that r1 and r2 can have on a weak memory model.
This is a non-relational analysis, expressible with E → R → L → ℘ (A× V),
and we can deduce from Thm. 1 that it is sound for weaker memory models if
originally implemented for SC.

3.3 Proving Soundness of Analyses over Programs

Thm. 1 gives sufficient conditions for an analysis over event structures to be
A-sound. We explain here how this result transfers to programs.

Let P be a program written in a language L. To express the soundness of
a program analysis J·KL, we require valuesA(E, R) and JPKL to have the same
type ℘ (L×R), with L being the program counters of statements in program P .

As above, we define ṽaluesA(P) as the values yielded by executions of P on A,

i.e., ṽaluesA(P) ,
⋃

(E,R)∈α(P) valuesA(E, R) (recall that α : PL → ℘ (E ×R)
maps a program P to corresponding abstract event structures and initial values,
w.r.t. the semantics of the language L).

Hence the A-soundness of a program analysis is merely a lifting of the A-
soundness of the corresponding event structure analysis:

s̃oundA(J·KL) , ∀P . ṽaluesA(P) � JPKL

9

Therefore, the A-soundness of SC-sound non-relational program analyses
holds as a corollary of Thm. 1:

Corollary 1. ∀J·KL : PL → ℘ (L× (A× V)). s̃oundSC(J·KL)⇒ s̃oundA(J·KL)

Rugina and Rinard’s Pointer Analysis Rugina and Rinard define in [24] a non-
relational analysis (denoted RR in the following) for a subset of C with basic
pointer assignments and control flow instructions. They prove that RR(P) con-
tains all the values appearing in the interleavings of the program P , i.e., RR is
SC-sound. Thus by Cor. 1, RR is sound for memory models weaker than SC.

4 Repairing Unsound Analyses

We have shown that a non-relational analysis is A-sound if it is SC-sound. Yet
some analyses, such as the octagon one, cannot be defined in the non-relational
framework. Using the projection abstraction defined in Sec. 3.2, we may turn a
relational analysis into a non-relational one. Thus, projecting an unsound anal-
ysis makes it sound (provided it is SC-sound) by Thm. 1.

Yet, this projection is very coarse, as it breaks all the relations over variables
maintained by the analysis (cf. [13] for an example of the projection from octagon
to interval). We present in the following a method to ensure the soundness of
an analysis w.r.t. weak memory models that preserves the relational type of
the analysis and conserves some of its precision. This method, which we call
repair loop, is already implemented in several existing analyses, for performance
reasons. Its consists of analysing each thread separately to capture the values
the memory locations get, then feeding back the collected possible values to each
of the other threads to simulate the effects of thread interference (cf. Sec. 6 for
a discussion of several approaches already following this idea). We choose to
simulate the process by:

1. building enough concatenations of the threads of a program;
2. analysing each of these as a sole thread without killing any values.

Concatenations of Threads We now assume that our event structures are finite,
i.e., have an arbitrary large yet finite number of events. We say that an event
structure is a thread when all of its events belong to the same processor. Given
an event structure E, a thread corresponds to the restriction of E to the events
that run on processor p, written Ep. The sequence of two threads Ei and Ej

is itself a thread, in the sense that it has only one processor; it gathers both
the events of Ei and Ej , and its program order corresponds to the program
order of Ei followed by the program order of Ej . We write ei (resp. ej) for
the last (resp. first) event in program order on Ei (resp. Ej). We write evts(E)
(resp. procs(E)) for the events (resp. processors) of a given event structure E:

Ei; Ej ,
(
evts(Ei) ∪ evts(Ej), po(Ei) ∪ po(Ej) ∪ {(ei, ej)}

)

10

We further define the concatenation of n threads of an event structure E as:

concat(E, n) , {Ebig | ∃T1, . . . , Tn. Ebig = T1; . . . ; Tn∧

∀i. ∃p ∈ procs(E). Ti = Ep}

We prove that for a finite E there exists an integer nSC (bounded by the
cardinality of evts(E)) such that each interleaving (an SC-valid execution) can
be found as a subsequence of some Ebig in concat(E, nSC). For example in
Fig. 3, we simulate the interleaving (a), (b), (c), (d) by building the concatenation
P0; P0; P1; P1. Note that, since the Ebig are themselves threads, we can analyse
them with a sequential analysis. Thus, analysing all the Ebig of concat(E, nSC)
gives us all the possible values yielded by the interleavings of E.

Analyse without Killing We define here what it means to analyse one thread
without killing any values. We give in Alg. 1 the code of the recursive function
awk. The function applies the analysis on the thread and propagates its relations
to collect all the results.

awk (J·K) (E,V) , if evts(E) = ∅ then ∅ else

let e = first(evts(E)) in

let S = Je, V K in

let SR = {R | ∃i. (i, R) ∈ S} in

S ∪
S

R∈SR
awk (J·K) (succ(E, e), (V ∪R))

Algorithm 1: awk function

This analysis is performed one event at a time (note that an event can change
at most one value in memory). To keep the values which might get killed by a
new event, at any given iteration, we do not only propagate the resulting relation
R, but the union of this new result with the previous one V . This means that a
future event will have access to the values of some previous result V computed
during the analysis of the thread.

For example, the non-SC result {(r1, 0), (r2, 0)} of Fig. 1 is not generated
by octagon (written Oct in the following). Indeed, if we perform Oct on P0,
starting with V = {(x, 0), (y, 0), (r1, 0), (r2, 0)}, the only value that x can hold
at line (b) is 1. Yet, the non-SC result is covered by awk(Oct) applied to the
interleaving (a), (b), (c), (d) of the code of Fig. 1. Indeed, if we apply awk(Oct)
with the same initial result V , we get R = {{(x, 1), (y, 0), (r1, 0), (r2, 0)}} as
the result of Oct((a), V) for the first event. Then, we compute V ′ = R ∪ V and
propagate it to line (b), i.e., we compute Oct((b), V ′). This means that the event
at line (b) has access to the value (x, 0), for it appears in V ′.

Fig. 5 gives a call graph of awk(Oct), on the interleaving (a), (b), (c), (d) of the
code of Fig. 1. A sequence vxvyv1v2 represents (x, y, r1, r2) = (vx, vy, v1, v2). The
non-framed sequences are the ones that we propagate at every call of awk(Oct),
and the framed ones are the results that we return for every event.

11

(a) (b) (c) (d)

0000 1000 *000

1000

0000

*000

...

1100

0100

**00

1101

1001

0000

0100

Fig. 5. Call graph of awk (Oct) ((a); (b); (c); (d), 0000).

Observe that we obtain the results 0000 and 0100 (in the ellipses) for event
(d), both of them representing (r1, r2) = (0, 0), i.e., the non-SC behaviour.
Indeed, when awk (Oct) ((d) : r2 ← x, V) is executed, we not only have access
to the previously computed result—as we would if we were directly applying Oct
to the program—but rather to the union of all the previous results, including
the initial one, where x holds 0.

Repair Loop Finally, we define the repair loop as a transformation of an analysis
of type A to a new analysis. The repair loop builds nSC concatenations of the
threads of E to simulate all the interleavings of E, then analyses them without
killing any values, and finally takes the union of the results:

repair-loop(J·K)(E, V) ,
⋃

Ebig∈concat(E,nSC)

awk(J·K)(Ebig, V)

Revisiting the above example, applying repair-loop(Oct) to the code of Fig. 1
will simulate all the interleavings of the program. In particular, as we explained
two paragraphs above, it simulates the interleaving (a), (b), (c), (d) by the con-
catenation P0; P0; P1; P1. Then, it runs awk(Oct) on this concatenation, and
since awk does not kill any value, we obtain the non-SC result (r1, r2) = (0, 0),
as explained in the preceding paragraph, and shown in Fig. 5.

5 Specification vs. Implementations of the Repair Loop

We gave in Sec. 4 a specification of the repair loop. Actual implementations are
likely to use more scalable techniques such as fixed point computations. We leave
the proof that such an implementation matches the specification of Sec. 4 for
future work. Yet, we performed experiments to see how much an implementation
of the repair loop would impair the performance of an analysis.

12

Experimental cost of the repair loop We showed that the points-to analysis of
Rugina and Rinard is sound w.r.t. weak memory models even if performed with
trace semantics, where the most precise results would be obtained. Yet, the
analysis is implemented using a fixed point computation over the concurrent
control flow graph instead of reasoning over all possible traces. As we showed
above, the imprecision incurred by this fixed point iteration can be used to repair
otherwise unsound analyses. A crucial question is, however, how many iterations
are needed to arrive at a fixed point. We have shown that there exists a finite
upper bound. It remains to be seen whether fewer iterations suffice in practice.

A similar study of the cost of such a fixed point iteration has recently been
undertaken by Miné [16], and our experiments confirm his results: we use three
sets of benchmarks that were previously used as case studies on the analysis of
concurrent software: (1) concurrency bug patterns from the Apache web server
as used in [26] (atom001, atom001a, atom002, atom002a, banking/av, bank-
ing/no av, banking/some av), (2) the banking and indexer examples from [27]
(banking and indexer), and (3) several Linux device drivers together with nonde-
terministic environments as generated by DDVerify [28]. The detailed results and
the source code of all experiments together with our implementation of Rugina
and Rinard’s points-to analysis is available at http://www.cprover.org/wmm/.

For several benchmarks of different origin our results confirm the findings
of Miné: the typical number of iterations to reach a fixed point is very low, in
fact it is always 2 in our samples. To study the overhead of repair iterations
we summed up the time spent in all but the first iteration for each thread. We
observe that this time overhead is very small with at most 0.034 seconds.

6 Related Work and Conclusion

We refer the reader to [29, 30] for an overview of the issues related to weak
memory models. Program analyses for concurrent programs running on weak
architectures have recently been considered by Ferrara [15] and Miné [16].

To the best of our knowledge, however, there is no general result on the
soundness of program analyses for weak memory models. Both Ferrara and Miné
describe extensions of the abstract interpretation framework to concurrent pro-
grams. In contrast to our work, which is generic, [15] explicitly focuses on an
over-approximation of the Java memory model. Soundness w.r.t. the memory
model is achieved by a fixed point iteration that implements the repair loop
described in our paper. Miné [16] describes an extension of abstract interpreta-
tion to programs with a fixed number of threads and shared memory. He uses
a fixed point iteration that is similar to the approach described by Rugina and
Rinard [24] to compute a safe over-approximation of all possible interleavings.
Furthermore Miné proves these results to be sound for a class of weak memory
models specified as program transformations. Unlike our work, which is based on
a framework for weak memory models that provably embraces several existing
models, the modelling power of these transformations is unclear. With the re-

13

Analysis Soundness w.r.t. weak memory models

Knoop et al. [33] yes (separable)
Chugh et al. [34] yes (if no datarace)
Steensgaard [35] yes (flow-insensitive)

Miné [16] yes
Rugina and Rinard [24] yes

Jeannet [14] no
Ferrara [15] yes on Java Memory Model

Farzan and Kincaid [25] yes (separable)
Khedker and Dhamdhere [36] separable: yes; non-separable: not in general

Constant propagation [32] yes (non-relational)

Fig. 6. Soundness of some concurrent analyses w.r.t. weak memory models

sults presented in the present paper it follows immediately that Miné’s analysis
extends from sequential consistency to weak memory models by the repair loop.

Sevcik and Vafeiadis et al. [18, 19] prove the correctness of a compiler for
concurrent C programs towards x86 assembly, targeting the TSO model of [31].
Thus, they have to prove that analyses such as constant propagation [32] preserve
the semantics from the source to the target program, which requires proving
properties similar to ours. Since constant propagation is non-relational, we not
only showed its soundness for TSO, but also for a large class of other models.

Several other analyses have been extended from sequential programs to the
concurrent setting without explicitly discussing the effect of weak memory mod-
els. In the following, we survey their soundness w.r.t. weak memory models in
the light of the results presented here. We summarise this discussion in Fig. 6.

We already discussed Rugina and Rinard’s analysis [24] in Sec. 3.

Jeannet [14] presents the stack abstraction underlying ConcurInterproc,
which can be combined with data abstraction domains such as octagons [13]
or convex polyhedra [37] to apply abstract interpretation to parallel programs
with a fixed number of threads. This approach is not generally sound for weak
memory models as shown in the introduction.

Khedker and Dhamdhere [36] give a definition of separability for data flow
analyses, i.e., analyses where each data flow fact may be tracked in isolation,
independently of the valuations of other data flow facts. Although separability
is a concept independent of an analysis being (non-)relational, all separable
problems can be expressed with the type that we proved to be sound in Thm. 1.
For non-separable problems, we are unable to make such a general statement.

Most notably, bit-vector analyses are separable data flow analysis problems.
Therefore the approaches described by Knoop et al. [33] and Farzan and Kin-
caid [25], who present methods of adapting a unidirectional bit-vector analysis
designed with sequential programs in mind for use with multi-threaded programs,
are immediately sound for weak memory models if sound for SC.

As another well-established classification of analyses consider flow sensitive
vs. flow insensitive analyses. Rinard observes in [11] that flow insensitive analyses

14

such as Steensgaard’s pointer analysis [35] are SC-sound. Hence by Thm. 1, we
conclude that they are also sound for weak memory models.

The provable soundness of both bit-vector analyses and flow insensitive anal-
yses is of uttermost practical importance as analyses of these kinds are used
in optimizing compilers. Although today’s compilers do not yet implement op-
timizations for multi-threaded programs in a concurrency-aware fashion, our
results show that it would be safe to add such extensions.

Future Work While we already have a strong result for non-relational analyses,
we would like to further refine our results for relational ones, e.g., by lifting
the restriction on the analysis being forward. Moreover, we intend to exercise
our specification of the repair loop as given in Sec. 4, by proving that existing
implementations, e.g., Rugina and Rinard’s, actually satisfy this property.

Acknowledgements We thank Vijay D’Silva, Peter Sewell, Viktor Vafeiadis and
Thomas Wahl for invaluable discussions and comments.

References

1. Lamport, L.: How to Make a Correct Multiprocess Program Execute Correctly on
a Multiprocessor. IEEE Trans. Comput. 46(7) (1979) 779–782

2. Intel: Intel 64 and IA-32 Architectures Software Developer’s Manual, Vol. 3A,
rev. 30. (March 2009) intel.com/products/processor/manuals.

3. IBM: Power ISA Version 2.06B. (July 2010) power.org/resources/downloads/

PowerISA_V2.06B_V2_PUBLIC.pdf.
4. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Fences in Weak Memory Models.

In: CAV, Springer (2010)
5. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: Running Tests Against

Hardware. In: TACAS, Springer (2011)
6. Manson, J., Pugh, W., Adve, S.V.: The Java Memory Model. In: POPL. (2005)
7. Boehm, H.J., Adve, S.V.: Foundations of the C++ concurrency memory model.

In: PLDI. (2008)
8. Adve, S.V., Hill, M.D.: Weak ordering – A new definition. In: ISCA. (1990)
9. Burckhardt, S., Alur, R., Martin, M.K.: Checkfence: Checking consistency of con-

current data types on relaxed memory models. In: PLDI. (2007)
10. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: CAV, Springer

(2011)
11. Rinard, M.C.: Analysis of multithreaded programs. In: SAS, Springer (2001)
12. Cousot, P., Cousot, R.: Static determination of dynamic properties of programs.

In: International Symposium on Programming, Dunod (1976)
13. Miné, A.: The octagon abstract domain. In: Workshop on Analysis, Slicing, and

Transformation (AST), IEEE (2001)
14. Jeannet, B.: Relational interprocedural verification of concurrent programs. In:

SEFM, IEEE (2009)
15. Ferrara, P.: Static analysis via abstract interpretation of the happens-before mem-

ory model. In: TAP, Springer (2008)
16. Miné, A.: Static analysis of run-time errors in embedded critical parallel C pro-

grams. In: ESOP, Springer (2011)

15

17. Alglave, J.: A Shared Memory Poetics. PhD thesis, Université Paris 7 and INRIA
(2010) http://moscova.inria.fr/~alglave/these.

18. Sevcik, J., Vafeiadis, V., Zappa Nardelli, F., Jagannathan, S., Sewell, P.: Relaxed-
memory concurrency and verified compilation. In: POPL. (2011)

19. Vafeiadis, V., Zappa Nardelli, F.: Verifying fence elimination optimisations. In:
SAS. (2011)

20. Sewell, P., Sarkar, S., Owens, S., Zappa Nardelli, F., Myreen, M.: x86-TSO: a
Rigorous and Usable Programmer’s Model for x86 Multiprocessors. In: CACM.
(2010)

21. SPARC: SPARC Architecture Manual Versions 8 and 9. (1992 and 1994) sparc.

org/standards/V8.pdf and sparc.org/standards/SPARCV9.pdf.
22. Compaq: Alpha Architecture Reference Manual, Fourth Edition. (2002) download.

majix.org/dec/alpha_arch_ref.pdf.
23. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-

Verlag New York, Inc., Secaucus, NJ, USA (1999)
24. Rugina, R., Rinard, M.C.: Pointer analysis for multithreaded programs. In: PLDI.

(1999)
25. Farzan, A., Kincaid, Z.: Compositional bitvector analysis for concurrent programs

with nested locks. In: SAS, Springer (2010)
26. Wang, C., Limaye, R., Ganai, M.K., Gupta, A.: Trace-based symbolic analysis for

atomicity violations. In: TACAS, Springer (2010)
27. Wang, C., Kundu, S., Ganai, M.K., Gupta, A.: Symbolic predictive analysis for

concurrent programs. In: FM, Springer (2009)
28. Witkowski, T., Blanc, N., Kroening, D., Weissenbacher, G.: Model checking con-

current Linux device drivers. In: ASE, ACM (2007)
29. Adve, S.V., Gharachorloo, K.: Shared Memory Consistency Models: A Tutorial.

IEEE Computer 29 (1995) 66–76
30. Adve, S., Boehm, H.J.: Memory Models: A Case for Rethinking Parallel Languages

and Hardware. To appear in CACM.
31. Owens, S., Sarkar, S., Sewell, P.: A Better x86 Memory Model: x86-TSO. In:

TPHOL. (2009)
32. Callahan, D., Cooper, K.D., Kennedy, K., Torczon, L.: Interprocedural constant

propagation. In: SIGPLAN Symposium on Compiler Construction. (1986)
33. Knoop, J., Steffen, B., Vollmer, J.: Parallelism for free: Efficient and optimal

bitvector analyses for parallel programs. ACM Trans. Program. Lang. Syst. 18(3)
(1996) 268–299

34. Chugh, R., Voung, J.W., Jhala, R., Lerner, S.: Dataflow analysis for concurrent
programs using datarace detection. In: Programming Language Design and Imple-
mentation (PLDI), ACM (2008) 316–326

35. Steensgaard, B.: Points-to analysis in almost linear time. In: POPL. (1996)
36. Khedker, U.P., Dhamdhere, D.M.: A generalized theory of bit vector data flow

analysis. ACM Trans. Program. Lang. Syst. 16(5) (1994) 1472–1511
37. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables

of a program. In: POPL. (1978)

16

