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Abstract. Ontology-based data access (OBDA) is a popular approach
for integrating and querying multiple data sources by means of an on-
tology, which is usually expressed in a description logic (DL) of DL-Lite
family. The conventional semantics of OBDA and DLs is set-based—that
is, duplicates are disregarded. This disagrees with the standard database
bag (multiset) semantics, which is especially important for the correct
evaluation of aggregate queries. In this article, we study two variants
of bag semantics for query answering over DL-LiteF , extending basic
DL-Litecore with functional roles. For our first semantics, which follows
the semantics of primary keys in SQL, conjunctive query (CQ) answer-
ing is coNP-hard in data complexity in general, but it is in TC0 for the
restricted class of rooted CQs; such CQs are also rewritable to the bag
relational algebra. For our second semantics, the results are the same ex-
cept that TC0 membership and rewritability hold only for the restricted
class of ontologies identified by a new notion of functional weak acyclicity.

1 Introduction

Ontology-based data access (OBDA) is an increasingly popular approach for in-
tegrating multiple relational data sources under a global schema [7, 24, 32]. In
OBDA, an ontology provides a unifying conceptual model for the data sources,
which is linked to each source by mappings assigning views over the data to
ontology predicates. Users access the data by means of queries formulated us-
ing the vocabulary of the ontology; query answering amounts to computing the
certain answers to the query over the union of ontology and the materialisation
of the views defined by the mappings. The formalism of choice for representing
ontologies in OBDA is usually the lightweight description logic DL-LiteR [8],
which underpins OWL 2 QL [28]. DL-LiteR was designed to ensure that con-
junctive queries (CQs) against the ontology are first-order rewritable—that is,
they can be reformulated as relational database queries over the sources [8].

There is, however, an important semantic mismatch between standard
database query languages, such as SQL, and OBDA: the former commit to a
bag (multiset) semantics, where tuples are allowed to occur multiple times in
query answers, whereas the latter is usually set-based, where multiplicities are
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disregarded. This semantic difference becomes apparent when evaluating queries
with aggregation, where the multiplicities of tuples are important [1]. Motivated
by the need to support database-style aggregate queries in OBDA systems and
inspired by the work of Kostylev and Reutter [23] on the support of aggre-
gates queries in DL-LiteR, Nikolaou et al. [30, 31] proposed a bag semantics for
DL-LiteR and OBDA, where duplicates in the views defined by the mappings are
retained. The most common reasoning tasks of ontology satisfiability and query
answering in this new language, called DL-LitebR, generalise the counterpart
problems defined under the traditional set semantics. This generalisation does
not come for free though as it raises the data complexity of query answering from
AC0 to coNP-hard, and this holds already for the core fragment DL-Litebcore of
DL-LitebR. To regain tractability, Nikolaou et al. [30, 31] studied restrictions on
CQs and showed that query answering for the class of so-called rooted CQs [6]
becomes again tractable in data complexity. This result was obtained by showing
that rooted CQs are rewritable to BCALC, a logical counterpart of the relational
algebra BALG1 for bags [15,26] whose evaluation problem is known to be in TC0

in data complexity [25].

In this paper, building on the work of Nikolaou et al. [30,31], we consider the
logic DL-LitebF—that is, the extension of DL-Litebcore with functionality axioms.
Such axioms comprise a desirable feature in description logics and OBDA since
they are able to deliver various modelling scenarios encountered in information
systems [9, 10, 27, 33], such as key and identification constraints. We propose
two alternative semantics for DL-LitebF , both of which generalise the standard
set-based semantics, and which differ from each other in the way they han-
dle functionality axioms. Our first semantics, called SQL semantics, interprets
functionality axioms following the semantics of primary keys in SQL—that is,
the interpretation of a functional role is required to be a set satisfying the key
constraint in the sense that for each first component in the interpretation of a
functional role there exists exactly one second component, and, moreover, the
multiplicity of this relation between the components is exactly one. By contrast,
our second semantics, called multiplicity-respectful (MR) semantics, retains the
key constraint requirement but allows for several copies of the same pair in the
interpretation.

Our results are summarised below. First, we study how the two semantics
relate to the set-based semantics of DL-LiteF and to each other in terms of
the standard reasoning tasks of satisfiability checking and query answering. On
the one hand, we show that under the MR semantics both problems generalise
the corresponding ones under set semantics. On the other hand, under the SQL
semantics the notion of satisfiability becomes stronger than under set semantics,
while query answering for satisfiable ontologies again generalises set semantics.
Second, we investigate whether the class of rooted CQs is rewritable to BCALC
under each of the semantics. For the SQL semantics, we obtain a positive answer,
which implies that query answering is feasible in TC0 in data complexity. For
the MR semantics, however, we obtain LogSpace-hardness of query answering
even for the simple class of instance queries, which prevents rewritability to
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BCALC (under the usual complexity-theoretic assumptions). To address this,
we identify a class of TBoxes, called functionally weakly acyclic, for which rooted
CQs become rewritable to BCALC, thus regaining feasibility of query answering.

The rest of the paper is organised as follows. Section 2 introduces the rele-
vant background. Section 3 defines the SQL and MR semantics as extensions of
the bag semantics proposed in [30, 31] accounting for functionality axioms, and
relates the new semantics to the set semantics and to each other. Section 4 stud-
ies the query answering problem, establishing the rewritability and complexity
results. Last, Section 5 discusses related work and Section 6 concludes the paper.

2 Preliminaries

We start by defining DL-LiteF ontologies as well as the notions of query an-
swering and rewriting over such ontologies, all over the usual set semantics [4,8],
after which we summarise the bag semantics of queries in databases [15,26,31].

Syntax of DL-LiteF . We fix a vocabulary consisting of countably infinite and
pairwise disjoint sets of individuals I (i.e., constants), atomic concepts C (i.e.,
unary predicates) and atomic roles R (i.e., binary predicates). A role is an
atomic role P ∈ R or its inverse P−. A concept is an atomic concept in C or
an expression ∃R with R a role. Expressions C1 v C2 and Disj(C1, C2) with C1,
C2 concepts are inclusion and disjointness axioms, respectively. An expression
(funct R) with R a role is a functionality axiom. A DL-LiteF TBox is a finite set
of inclusion, disjointness, and functionality axioms. A concept assertion is A(a)
with a ∈ I and A ∈ C, and a role assertion is P (a, b) with a, b ∈ I and P ∈ R. A
(set) ABox is a finite set of concept and role assertions. A DL-LiteF ontology is
a pair (T ,A) with T a DL-LiteF TBox and A an ABox. A DL-Litecore ontology
is the same except that functionality axioms are disallowed.

Semantics of DL-LiteF . A (set) interpretation I is a pair (∆I , ·I), where the
domain ∆I is a non-empty set, and the interpretation function ·I maps each
a ∈ I to an element aI ∈ ∆I such that aI 6= bI for all distinct a, b ∈ I (i.e., as
usual for DL-Lite we adopt the UNA—that is, the unique name assumption),
each A ∈ C to AI ⊆ ∆I , and each P ∈ R to P I ⊆ ∆I × ∆I . Interpretation
function ·I extends to non-atomic concepts and roles as follows, for each P ∈ R
and each role R:

(P−)I = {(u, u′) | (u′, u) ∈ P I}, (∃R)I = {u ∈ ∆I | ∃u′ ∈ ∆I : (u, u′) ∈ RI}.

An interpretation I satisfies a DL-LiteF TBox T if CI1 ⊆ CI2 for each inclusion
axiom C1 v C2 in T , CI1 ∩CI2 = ∅ for each disjointness axiom Disj(C1, C2) in T ,
and v1 = v2 for each (u, v1), (u, v2) in RI with functionality axiom (funct R) in T .
Interpretation I satisfies an ABox A if aI ∈ AI for all A(a) ∈ A and (aI , bI) ∈
P I for all P (a, b) ∈ A. An interpretation I is a model of an ontology (T ,A) if
it satisfies both T and A. An ontology is satisfiable if it has a model. Checking
satisfiability of a DL-LiteF ontology is NLogSpace-complete in general and in
AC0 if the TBox is fixed [4, 8] (note however that the latter problem becomes
P-complete if the UNA is dropped).
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Queries over DL-LiteF . A conjunctive query (CQ) q(x) with answer variables
x is a formula ∃y. φ(x,y), where x, y are (possibly empty) repetition-free disjoint
tuples of variables from a set X disjoint from I, C and R, and φ(x,y) is a
conjunction of atoms of the form A(t), P (t1, t2) or (z = t), where A ∈ C,
P ∈ R, z ∈ x ∪ y, and t, t1, t2 ∈ x ∪ y ∪ I. If x is inessential, then we write
q instead of q(x). The equality atoms (z = t) in φ(x,y) yield an equivalence
relation ∼ on terms x∪ y ∪ I, and we write t̃ for the equivalence class of a term
t. The Gaifman graph of q(x) has a node t̃ for each t ∈ x ∪ y ∪ I in φ, and
an edge {t̃1, t̃2} for each atom in φ over t1 and t2. We assume that all CQs are
safe—that is, for each z ∈ x ∪ y, z̃ contains a term mentioned in an atom of
φ(x,y) that is not equality. A CQ q(x) is rooted if each connected component of
its Gaifman graph has a node with a term in x ∪ I [6]. A union of CQs (UCQ)
is a disjunction of CQs with the same answer variables. The certain answers
qK to a (U)CQ q(x) over a DL-LiteF ontology K are the set of all tuples a of
individuals such that q(a) holds in every model of K. Checking whether a tuple
of individuals is in the certain answers to a (U)CQ over a DL-LiteF ontology
is an NP-complete problem with AC0 data complexity (i.e., when the query
and TBox are fixed) [4, 8]. The latter follows from the rewritability of the class
of UCQs to itself over DL-LiteF—that is, from the fact that for each UCQ q

and DL-LiteF TBox T there is a UCQ q1 such that q(T ,A) = q
(∅,A)
1 for each

ABox A [8].

Bags. A bag over a set M is a function Ω : M → N∞0 , where N∞0 is the set N0

of non-negative integers extended with the (positive) infinity∞. The value Ω(c)
is the multiplicity of element c in Ω. A bag Ω is finite if there are finitely many
c ∈M with Ω(c) > 0 and there is no c with Ω(c) =∞. The empty bag ∅ over M
is the bag such that ∅(c) = 0 for each c ∈M . A bag Ω1 over M is a subbag of a
bag Ω2 over M , in symbols Ω1 ⊆ Ω2, if Ω1(c) ≤ Ω2(c) for each c ∈M . Often we
will use an alternative syntax for bags: for instance, we will write {| c : 5, d : 3 |}
for the bag that assigns 5 to c, 3 to d, and 0 to all other elements. We use the
following common operators on bags [15,26]: the intersection ∩, maximal union
∪, arithmetic union ], and difference − are the binary operators defined, for
bags Ω1 and Ω2 over a set M , and for every c ∈M , as follows:

(Ω1 ∩Ω2)(c) = min{Ω1(c), Ω2(c)}, (Ω1 ∪Ω2)(c) = max{Ω1(c), Ω2(c)},
(Ω1 ]Ω2)(c) = Ω1(c) +Ω2(c), (Ω1 −Ω2)(c) = max{0, Ω1(c)−Ω2(c)}.

Note that bag difference is well-defined only if Ω2(c) is a finite number for each
c ∈ M . The unary duplicate elimination operator ε is defined for a bag Ω over
M and for each c ∈M as (ε(Ω))(c) = 1 if Ω(c) > 0 and (ε(Ω))(c) = 0 otherwise.

Queries over Bags. Following [31], a BCALC query Φ(x) with (a tuple of)
answer variables x is any of the following, for Ψ , Ψ1, and Ψ2 BCALC queries:

– S(t), where S ∈ C ∪R and t is a tuple over x ∪ I mentioning all x;
– Ψ1(x1) ∧ Ψ2(x2), where x = x1 ∪ x2;
– Ψ(x0) ∧ (x = t), where x ∈ x0, t ∈ X ∪ I, and x = x0 ∪ ({t} \ I);
– ∃y. Ψ(x,y), where y is a tuple of distinct variables from X that are not in x;
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– Ψ1(x) opΨ2(x), where op ∈ {∨,∨. , \}; or
– δ Ψ(x).

In particular, all UCQs are syntactically BCALC queries. BCALC queries are
evaluated over bag database instances, which are, in the context of this paper,
bag ABoxes—that is, finite bags over the set of concept and role assertions. The
bag answers ΦA to a BCALC query Φ(x) over a bag ABox A is the finite bag
over I|x| defined inductively as follows, for every tuple a over I with |a| = |x|,
where ν : x∪ I→ I is the function such that ν(x) = a and ν(a) = a for all a ∈ I:

– ΦA(a) = A(S(ν(t))), if Φ(x) = S(t);
– ΦA(a) = ΨA1 (ν(x1))× ΨA2 (ν(x2)), if Φ(x) = Ψ1(x1) ∧ Ψ2(x2);
– ΦA(a) = ΨA(ν(x0)), if Φ(x) = Ψ(x0) ∧ (x = t) and ν(x) = ν(t);
– ΦA(a) = 0, if Φ(x) = Ψ(x0) ∧ (x = t) and ν(x) 6= ν(t);
– ΦA(a) =

∑
ν′:y→I Ψ

A(a, ν′(y)), if Φ(x) = ∃y. Ψ(x,y);

– ΦA(a) = (ΨA1 opΨA2 )(a), if Φ(x) = Ψ1(x) op′ Ψ2(x), where op is ∪, ], or −,
and op′ is ∨, ∨. , or \, respectively;

– ΦA(a) =
(
ε(ΨA)

)
(a), if Φ(x) = δ Ψ(x).

As shown in [31], BCALC is a logical counterpart of the bag relational algebra
BALG1 [15], with the same expressive power. Evaluation of a fixed BALG1 (and
hence BCALC) query is in TC0 [25] (i.e., between AC0 and LogSpace).

3 DL-LiteF under Bag Semantics

In this section we introduce the bag version DL-LitebF of the ontology language
DL-LiteF by proposing two semantics and then study their properties and rela-
tionships. Both semantics extend the bag semantics of DL-Litecore proposed by
Nikolaou et al. [30, 31] but differ in their interpretation of functionality axioms.

3.1 Syntax and Semantics of DL-LitebF

Syntactically, DL-LitebF is the same as DL-LiteF except that assertions in
ABoxes may have arbitrary finite multiplicities—that is, bag ABoxes are consid-
ered instead of set ABoxes. Thus, at the syntax level DL-LitebF is a conservative
extension of DL-LiteF since each set ABox can be seen as a bag ABox with
assertion multiplicities 0 and 1.

Definition 1. A DL-LitebF ontology is a pair (T ,A) of a DL-LiteF TBox T and
a bag ABox A. A DL-Litebcore ontology is the same except that T is DL-Litecore.

The semantics of DL-LitebF ontologies is based on bag interpretations, which
are the same as set interpretations except that concepts and roles are interpreted
as bags rather than sets. The extension of the interpretation function to non-
atomic concepts and roles is defined in a way that respects the multiplicities: for
example, the concept ∃P for an atomic role P is interpreted by a bag interpreta-
tion I as the bag projection of P I to its first component, where each occurrence
of a pair (u, v) in P I contributes separately to the multiplicity of u in (∃P )I .
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Definition 2. A bag interpretation I is a pair (∆I , ·I) where the domain ∆I is
a non-empty set, and the interpretation function ·I maps each individual a ∈ I
to an element aI ∈ ∆I such that aI 6= bI for all distinct a, b ∈ I, each atomic
concept A ∈ C to a bag AI over ∆I , and each atomic role P ∈ R to a bag P I

over ∆I × ∆I . Interpretation function ·I extends to non-atomic concepts and
roles as follows, for all P ∈ R, R a role, and u, u′ ∈ ∆I :

(P−)I(u, u′) = P I(u′, u) and (∃R)I(u) =
∑

u′∈∆I
RI(u, u′).

Note that, same as in the set case, we adopt the UNA by requiring different
individuals be interpreted by different domain elements.

We are now ready to present our two semantics of DL-LitebF . Both semantics
extend the semantics of DL-Litebcore considered in [31], but handle the functional
axioms differently. Our first semantics, called SQL, follows the semantics of pri-
mary keys in SQL: if R is a functional role then for every domain element u of
a model there exists at most one element u′ related to u by R; moreover, the
multiplicity of the tuple (u, u′) in R cannot be more than one. Our second seman-
tics, called MR (i.e., multiplicity-respectful), allows more freedom for functional
roles: same as before, only one u′ may be related to u by a functional role R,
but the multiplicity of (u, u′) may be arbitrary.

Definition 3. A bag interpretation I satisfies an inclusion axiom C1 v C2 if
CI1 ⊆ CI2 . It satisfies a disjointness axiom Disj(C1, C2) if CI1 ∩ CI2 = ∅. It
satisfies a functionality axiom (funct R) under SQL semantics (or SQL-satisfies,
for short) if u′ = u′′ and RI(u, u′) = RI(u, u′′) = 1 for every u, u′, and u′′

in ∆I such that RI(u, u′) > 0 and RI(u, u′′) > 0; it satisfies (funct R) under
MR semantics (or MR-satisfies) if the same holds except that the requirement
RI(u, u′) = RI(u, u′′) = 1 is not imposed.

For X being SQL or MR, a bag interpretation I X-satisfies a DL-LiteF
TBox T , written I |=X T , if it satisfies every inclusion and disjointness ax-
iom in T and X-satisfies every functionality axiom in T . A bag interpreta-
tion I satisfies a bag ABox A, written I |= A, if A(A(a)) ≤ AI(aI) and
A(P (a, b)) ≤ P I(aI , bI) for each concept assertion A(a) and role assertion
P (a, b), respectively. A bag interpretation I is an X-model of a DL-LitebF ontol-
ogy (T ,A), written I |=X (T ,A), if I |=X T and I |= A. A DL-LitebF ontology
is X-satisfiable if it has an X-model.

Since MR-satisfaction is a relaxation of SQL-satisfaction, every SQL-model
of a DL-LitebF ontology is also an MR-model of this ontology. However, as illus-
trated by the following example, the opposite does not hold.

Example 1. Consider an online store that employs atomic concept Customer
and atomic roles hasItem, placedBy for recording the items ordered by cus-
tomers in a purchase. A sample DL-LitebF ontology recording customers’ orders
is Kex = (Tex,Aex) with

Tex = {∃hasItem v ∃placedBy, ∃placedBy− v Customer, (funct placedBy)} and
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Aex = {| hasItem(o, i1) : 1, hasItem(o, i2) : 1, placedBy(o, c) : 1, Customer(c) : 1 |}.

Let Iex be the bag interpretation that interprets all individuals by them-
selves, and the atomic roles and concepts as follows: CustomerIex = {| c : 2 |},
hasItemIex = {| (o, i1) : 1, (o, i2) : 1 |}, and placedByIex = {| (o, c) : 2 |}. It is imme-
diate that Iex is an MR-model of Kex but not a SQL-model. /

To conclude this section, we note that each semantics has its advantages and
drawbacks. Indeed, on the one hand, SQL semantics is compatible with primary
keys in SQL, so a large fragment of DL-LitebF under this semantics can be easily
simulated by a SQL engine. On the other hand, one can show that entailment of
axioms under set and bag semantics coincides only for the case of MR models;
this means that the adoption of MR semantics does not affect the standard TBox
reasoning services implemented in ontology development tools. So neither of the
two semantics is clearly preferable to the other.

3.2 Queries over DL-LitebF

We next define the answers qI to a CQ q(x) over a bag interpretation I as
the bag of tuples of individuals such that each valid embedding λ of the atoms
in q into I contributes separately to the multiplicity of the tuple λ(x) in qI ,
and where the contribution of each specific λ is the product of the multiplicities
of the images of the query atoms under λ in I. This may be seen as usual CQ
answering under bag semantics over relational databases when the interpretation
is seen as a bag database instance [12]. In fact, when q is evaluated over this bag
database instance as a BCALC query (see Section 2), it produces exactly qI .

Definition 4. Let q(x) = ∃y. φ(x,y) be a CQ and I = (∆I , ·I) be a bag inter-
pretation. The bag answers qI to q over I are the bag over tuples of individuals
from I of size |x| such that, for every such tuple a,

qI(a) =
∑

λ∈Λ

∏
S(t) in φ(x,y)

SI(λ(t)),

where Λ is the set of all valuations λ : x ∪ y ∪ I → ∆I such that λ(x) = aI ,
λ(a) = aI for each a ∈ I, and λ(z) = λ(t) for each z = t in φ(x,y).

Note that conjunction φ(x,y) in a CQ may contain repeated atoms, and
hence can be seen as a bag of atoms; while repeated atoms are redundant in the
set case, they are essential in the bag setting [12,18], and thus in the definition of
qI(a) each occurrence of a query atom S(t) is treated separately in the product.

The following definition of certain answers, which captures open-world query
answering, is a natural extension of certain answers for DL-LiteF to bags. For
DL-Litebcore, this definition coincides with the one in [31] for both semantics.

Definition 5. For X being SQL or MR, the X-bag certain answers qKX to a
CQ q over a DL-LitebF ontology K are the bag

⋂
I |=X K q

I .
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Note that in this definition the intersection is the bag intersection, and we
assume that the intersection of zero bags (which is relevant when K is not X-
satisfiable) assigns ∞ to all tuples over I.

The (data complexity version of the) decision problem corresponding to com-
puting the X-bag certain answers to a CQ q over an ontology with a DL-LiteF
TBox T , for X begin SQL or MR, is defined as follows, assuming that all num-
bers in the input are represented in unary.

BagCertX [q, T ]
Input: ABox A, tuple a of individuals from I, and k ∈ N∞0 .

Question: Is q
(T ,A)
X (a) ≥ k?

The idea of bag certain answers is illustrated by the following example.

Example 2. Recall ontology (Tex,Aex) and interpretation Iex specified in Exam-
ple 1, and let q(x) = ∃y. placedBy(x, y)∧Customer(y) be the rooted CQ request-
ing orders placed by customers. The bag answers qIex to q over interpretation
Iex is the bag {| o : 4 |}. Moreover, it is not hard to see that the MR-bag certain

answers to q over (Tex,Aex) coincide with bag qIex , and that q
(Tex,Aex)
SQL (a) =∞

for every a ∈ I since (Tex,Aex) does not have any SQL-model. /

Besides the complexity of query answering, an important related property of
any description logic is query rewritability: since TBoxes are much more stable
than ABoxes in practice, it is desirable to be able to rewrite a query and a
TBox into another query so that the answers to the original query over each
satisfiable ontology with this TBox are the same as the answers to the rewriting
over the ABox alone. The rewriting may be in a richer query language than the
language of the original query, provided we have an efficient query engine for the
target language; it is important, however, that the rewriting does not depend
on the ABox. As mentioned above, rewritings of (U)CQs to UCQs are usually
considered in the set setting. In our bag setting, the source language is CQs and
the target language is BCALC, which can be easily translated to SQL.

Definition 6. For X being SQL or MR, a BCALC query Φ is an X-rewriting

of a CQ q with respect to a DL-LiteF TBox T if q
(T ,A)
X = ΦA for every bag ABox

A with (T ,A) X-satisfiable. A class Q of CQs is X-rewritable to a class Q′ of
BCALC queries over a sublanguage L of DL-LiteF if, for every CQ in Q and
TBox in L, there is an X-rewriting of the CQ with respect to the TBox in Q′.

Since evaluation of fixed BCALC queries is in TC0 [25], rewritability to
BCALC implies TC0 data complexity of query answering provided rewritings
are effectively constructible. BagCertX [q, T ] is coNP-hard even for DL-Litebcore
ontologies (for both X) [31], which precludes efficient query answering and (con-
structive) BCALC rewritability (under the usual complexity-theoretic assump-
tions). However, rewritability and TC0 complexity of query answering are re-
gained for rooted CQs, which are common in practice. The main goal of this
paper is to understand to what extent these results transfer to DL-LitebF .
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We next establish some basic properties of the proposed bag semantics and
relate them to the standard set semantics. The following theorem states that
satisfiability and query answering under the set semantics and MR semantics
are essentially equivalent when multiplicities are ignored, while SQL semantics
is in a sense stronger as only one direction of the statements holds.

Theorem 1. The following statements hold for every DL-LiteF TBox T and
every bag ABox A (recall that ε is the duplicate elimination operator):

1. if (T ,A) is SQL-satisfiable then (T , ε(A)) is satisfiable; and

2. for every tuple a over I, if a ∈ q(T ,ε(A)) then q
(T ,A)
SQL (a) ≥ 1, and the converse

holds whenever (T ,A) is SQL-satisfiable.

The same holds when MR semantics is considered instead of SQL; moreover, in
this case the converses of both statements hold unconditionally.

In fact, the converse direction of statement 1 does not hold for SQL semantics;
indeed, the DL-LitebF ontology Kex of Example 1 is not SQL-satisfiable but
ontology (Tex, ε(Aex)) is satisfiable.

Statement 1 for MR semantics implies that we can check MR-satisfiability
of DL-LitebF ontologies using standard techniques for DL-LiteF under the set
semantics; in particular, we can do it in AC0 for fixed TBoxes. The following
proposition says that for SQL semantics the problem is not much more difficult.

Proposition 1. The problem of checking whether a DL-LitebF ontology is SQL-
satisfiable is in TC0 when the TBox is fixed.

Finally, note that, since every SQL-model of a DL-LitebF ontology is also an
MR-model, qKMR ⊆ qKSQL for every CQ q and DL-LitebF ontology K; it is not
difficult to see that the inclusion may be strict even if K is SQL-satisfiable.

4 Rewriting and Query Answering in DL-LitebF

We next study rewritability of rooted CQs to BCALC over DL-LitebF under
our two semantics (recall that the class of all CQs are not rewritable even over
DL-Litebcore [31]). We first show that for SQL semantics and satisfiable ontologies
we can apply the same rewriting as for DL-Litebcore [31], which implies TC0

data complexity of query answering. However, MR semantics is more complex,
because, as we show, even simple rooted CQs (in particular, instance queries)
have LogSpace-hard query answering, which precludes rewritability (assuming
TC0 ( LogSpace). To address this limitation, we introduce a new acyclicity
condition on TBoxes, for which we show that the rewritability is regained.

4.1 SQL Semantics

The key ingredient for rewritability and tractability of CQ answering in many
description logics is the existence of a universal model.
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Definition 7. For X being SQL or MR, an X-model I of a DL-LitebF ontology
K is X-universal for a class of CQs Q if qKX = qI for every q ∈ Q.

In the set case, it is well-known that if the ontology is satisfiable, then the
so-called canonical interpretation, which can be constructed by the chase proce-
dure, is always a universal model for all CQs [4, 8]. Nikolaou et al. generalised
this idea to DL-Litebcore [31] and rooted CQs, and it turns out that their canon-
ical interpretation is a universal model for rooted CQs also for DL-LitebF under
SQL semantics. Before we give the main construction, we introduce the relevant
notions from [31].

The concept closure cclT [u, I] of an element u ∈ ∆I in a bag interpretation
I = (∆I , ·I) over a TBox T is the bag of concepts such that, for any concept C,

cclT [u, I](C) = max{CI0 (u) | T |= C0 v C}.

In other words, cclT [u, I](C) is the minimal multiplicity of CJ (u) required for
an extension J of I to satisfy TBox T locally in u.

The union I ∪ J of bag interpretations I = (∆I , ·I) and J = (∆J , ·J )
interpreting all the individuals in the same way—that is, such that aI = aJ for
each a ∈ I—is the bag interpretation (∆I ∪ ∆J , ·I∪J ) with aI∪J = aI for all
a ∈ I and SI∪J = SI ∪ SJ for all atomic concepts and roles S ∈ C ∪R.

Finally, given a bag ABox A we denote with IA = (∆IA , ·IA) the standard
interpretation of A that is defined as follows: ∆IA = I, aIA = a for each a ∈ I,
and SIA(a) = A(S(a)) for each S ∈ C ∪R and tuple of individuals a.

Definition 8 (Nikolaou et al. [31]). The SQL-canonical bag interpretation
CSQL(K) of a DL-LitebF ontology K = (T ,A) is the bag interpretation that is the

union
⋃
i≥0 CiSQL(K) of the bag interpretations CiSQL(K) = (∆C

i
SQL(K), ·C

i
SQL(K))

such that C0SQL(K) = IA and, for each i > 0, CiSQL(K) is constructed from

Ci−1SQL(K) as follows:

– ∆C
i
SQL(K) extends ∆C

i−1
SQL(K) by fresh anonymous elements w1

u,R, . . . , w
δ
u,R for

each u ∈ ∆C
i−1
SQL(K) and role R with

δ = cclT [u, Ci−1SQL(K)](∃R)− (∃R)C
i−1
SQL(K)(u);

– aC
i
SQL(K) = a for all a ∈ I, and, for all A ∈ C, P ∈ R and u, v in ∆C

i
SQL(K),

AC
i
SQL(K)(u) =

{
cclT [u, Ci−1SQL(K)](A), if u ∈ ∆C

i−1
SQL(K),

0, otherwise,

P C
i
SQL(K)(u, v) =


P C

i−1
SQL(K)(u, v), if u, v ∈ ∆C

i−1
SQL(K),

1, if u = wjv,P or v = wju,P− ,

0, otherwise.

The following example illustrates the construction of SQL-canonical models.
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Example 3. Consider the DL-LitebF ontology K′ex = (T ′ex,A′ex) with

T ′ex = {Order v ∃placedBy, Customer v ∃placedBy−, (funct placedBy)} and

A′ex = {|Order(o) : 1, placedBy(o, c) : 1, Customer(c) : 4 |}.

To compute the SQL-canonical interpretation CSQL(K′ex) of K′ex, we first set

C0SQL(K′ex) = IA′ex . For the second step we take OrderC
1
SQL(K

′
ex) = OrderC

0
SQL(K

′
ex)

and CustomerC
1
SQL(K

′
ex) = CustomerC

0
SQL(K

′
ex) as neither of the concepts sub-

sumes another concept in T ′ex. The interpretation of placedBy by C1SQL(K′ex)
is then determined by the concept closures of o and c for the concepts
∃placedBy and ∃placedBy− over T ′ex, respectively. Since the former is equal

to the multiplicity that o has in (∃placedBy)C
0
SQL(K

′
ex), no new ∃placedBy-

successor is added for o. However, the latter is larger than the multiplicity

of c in (∃placedBy−)C
0
SQL(K

′
ex) by three, and hence c must be associated with

new anonymous ∃placedBy−-successors w1
c,∃placedBy− , . . . , w

3
c,∃placedBy− . Therefore,

C1SQL(K′ex) has domain I ∪ {w1
c,∃placedBy− , . . . , w

3
c,∃placedBy−}, and interprets con-

cepts and roles as follows:

OrderC
1
SQL(K

′
ex) = {| o : 1 |}, CustomerC

1
SQL(K

′
ex) = {| c : 4 |}, and

placedByC
1
SQL(K

′
ex) = {| (o, c) : 1, (w1

c,∃placedBy− , c) : 1, . . . , (w3
c,∃placedBy− , c) : 1 |}.

Since there is no violation of axioms in C1SQL(K′ex), the process terminates at the

following step, and we take CSQL(K′ex) = C2SQL(K′ex) = C1SQL(K′ex). /

We are ready to show that the SQL-canonical bag interpretation is indeed
SQL-universal for rooted CQs.

Theorem 2. The SQL-canonical bag interpretation of an SQL-satisfiable
DL-LitebF ontology K is an SQL-universal model for the class of rooted CQs.

Having this result at hand, we can reuse the rewriting of rooted CQs over
DL-Litebcore introduced in [31] for the SQL semantics of DL-LitebF .

Corollary 1. Rooted CQs are SQL-rewritable to BCALC over DL-LitebF .

Since the proof of rewritability in [31] is constructive, SQL-satisfiability is in
TC0, and BCALC evaluation is in TC0, rooted CQ answering is also in TC0.

Corollary 2. Problem BagCertSQL[q, T ] is in TC0 for every rooted CQ q and
DL-LiteF TBox T .

4.2 MR Semantics

We begin the study of MR semantics by proving LogSpace-hardness for an-
swering even very simple rooted CQs (in particular, instance queries), which
emphasises the difference with SQL semantics. Since answering BCALC queries
is in TC0, this result says that such queries are unlikely to be MR-rewritable to
BCALC.
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∃P− ∃P A∗

(a)

Order

∗

∃placedBy

∃placedBy− Customer

(b)

Fig. 1: The functional dependency graphs of TBoxes T and T ′ex from Example 4

Theorem 3. There exist a rooted CQ of the form A(a) with A ∈ C and a ∈ I,
and a DL-LiteF TBox T such that BagCertMR[A(a), T ] is LogSpace-hard.

Proof (Sketch). The proof is by an AC0 reduction from the 1GAP decision
problem which is a prototypical complete problem for LogSpace (under AC0

reductions) [17, 20]. The input of 1GAP consists of a directed acyclic graph
H = (V,E) with nodes V and edges E such that each node has at most one
outgoing edge, and two nodes s, t in V , and the question is whether t is reachable
from s in H. For the reduction, we define a DL-LitebF ontology (T ,AH) over
atomic concept A and role P , where the DL-LiteF TBox T comprises axioms
∃P− v ∃P, (funct P ), and ∃P− v A, and AH is the bag ABox defined as
follows, for individuals av, for each v ∈ V , and a?:

AH(P (a1, a2)) =


1, if a1 = av and a2 = au for (v, u) ∈ E,
|V |, if a1 = a? and a2 = as,

0, otherwise.

Now t is reachable from s in H if and only if q
(T ,AH)
MR () ≥ |V | for q = A(at). ut

Recalling that evaluation of BCALC queries is in TC0, the previous theorem
implies that even very simple rooted CQs are unlikely to be MR-rewritable to
BCALC. Next we introduce a restriction on TBoxes which, as we will see, guar-
antees MR-rewritability. The restriction is based on the notions of functional
dependency graphs and functional weakly acyclic TBoxes that respectively spe-
cialise the notions of dependency graphs and weak acyclicity defined for sets of
tuple-generating dependencies in the context of data exchange [14].

Definition 9. The functional dependency graph GT of a DL-LiteF T is the
directed graph that has all the concepts appearing in T as nodes, a usual edge
(C1, C2) for each C1 v C2 in T , and a special edge (C1,∃R−)∗ for each C1 v ∃R
with (funct R) in T , where, for P ∈ R, R− is P if R is P−. TBox T is func-
tionally weakly acyclic if GT has no cycle through a special edge. The f-depth
of such a TBox T is the maximum number of special edges along a path in GT .

Example 4. The functional dependency graphs of TBoxes T and T ′ex specified
respectively in the proof of Theorem 3 and in Example 3 are depicted in Figure 1.
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From the graph of Figure 1a, we have that the functional depth of T is∞; thus,
T is not functionally weakly acyclic. From the graph of Figure 1b, we have that
the functional depth of T ′ex is 1; thus, T ′ex is functionally weakly acyclic. /

Note that the SQL-canonical interpretation of an MR-satisfiable DL-LitebF
ontology K specified in Definition 8 is not always an MR-model of K (e.g.,
consider ontology ({A v ∃P, (funct P )}, {|A(e) : 2 |})). Below we introduce the
construction of MR-canonical interpretations that always results in MR-models
for MR-satisfiable ontologies, and start with the auxiliary notion of closure.

The closure L(K) of a DL-LitebF ontology K = (T ,A) is the union⋃
i≥0 Li(K) of bag interpretations Li(K) = (∆L

i(K), ·Li(K)) with ∆L
i(K) = I such

that L0(K) = IA and, for each i ≥ 1, Li(K) extends Li−1(K) so that aL
i(K) = a

for all a ∈ I, and, for all A ∈ C, P ∈ R, and a, b, c, c′ ∈ I,

AL
i(K)(a) = cclT [a,Li−1(K)](A),

PL
i(K)(a, b) =

{
0, if PL

i−1(K)(a, b) = 0,

max{`P (a, b), `P−(b, a)}, otherwise, where

`R(c, c′) =

{
cclT [c,Li−1(K)](∃R), if (funct R) is in T ,
RL

i−1(K)(c, c′), otherwise.

In fact, if the TBox of K is functionally weakly acyclic then the closure can
be computed in a finite number of steps that does not depend on the ABox.

Proposition 2. For every DL-LitebF ontology K = (T ,A) with a functionally

weakly acyclic TBox T we have L(K) =
⋃dT +1
i=0 Li(K).

The example below demonstrates the notion of closure.

Example 5. Consider the DL-LitebF ontology K′ex = (T ′ex,A′ex) with T ′ex as in
Example 3 and A′ex = {|Order(o) : 3, placedBy(o, c) : 1, Customer(c) : 4 |}. Fol-
lowing the definition of closure on K′ex, we initialise L0(K′ex) to IA′ex and then,

for the next step we trivially have that OrderL
1(K′ex) = OrderIA′ex = {| o : 3 |} and

CustomerL
1(K′ex) = CustomerIA′ex = {| c : 4 |} since both Order and Customer do

not subsume any concept in T ′ex. Then, it can be easily seen that placedByL
1(K′ex)

includes only tuple (o, c) with a non-zero multiplicity expressed as the maxi-

mum of cclT ′ex [o,L0(K′ex)](∃placedBy) = 3 and placedByL
0(K′ex)(o, c) = 1; thus

placedByL
1(K′ex) = {| (o, c) : 3 |}. Since all axioms in K′ex are now satisfied, we

obtain that L2(K′ex) = L1(K′ex); thus L(K′ex) =
⋃dT ′ex+1

i=0 Li(K′ex) = L2(K′ex). /

We use the closure in the following definition of MR-canonical interpreta-
tions. Note the difference in handling functional and non-functional roles when
creating anonymous elements, which always produces a most general possible
interpretation in each case.
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Definition 10. The MR-canonical bag interpretation CMR(K) of a DL-LitebF
ontology K = (T ,A) is the union

⋃
i≥0 CiMR(K) such that C0MR(K) = L(K) and,

for each i ≥ 1, CiMR(K) is obtained from Ci−1MR(K) as follows:

– ∆C
i
MR(K) extends ∆C

i−1
MR (K) by

- a fresh anonymous element wu,R for each u ∈ ∆C
i−1
MR (K) and each role R

with (funct R) ∈ T , cclT [u, Ci−1MR(K)](∃R) > 0, and (∃R)C
i−1
MR (K)(u) = 0,

- fresh anonymous elements w1
u,R, . . . , w

δ
u,R for each u ∈ ∆C

i−1
MR (K) and each

role R with (funct R) 6∈ T and δ = cclT [u, Ci−1MR(K)](∃R)− (∃R)C
i−1
MR (K)(u);

– aC
i
MR(K) = a for all a ∈ I, and, for all A ∈ C, P ∈ R, and u, v in ∆C

i
MR(K),

AC
i
MR(K)(u) =

{
cclT [u, Ci−1MR(K)](A), if u ∈ ∆C

i−1
MR (K),

0, otherwise,

P C
i
MR(K)(u, v) =



P C
i−1
MR (K)(u, v), if u, v ∈ ∆C

i−1
MR (K),

cclT [u, Ci−1MR(K)](∃P ), if u ∈ ∆C
i−1
MR (K) and v = wu,P ,

cclT [v, Ci−1MR(K)](∃P−), if v ∈ ∆C
i−1
MR (K) and u = wv,P− ,

1, if v = wju,P or u = wjv,P− ,

0, otherwise.

MR-canonical bag interpretations are illustrated in the following example.

Example 6. Consider the functionally weakly acyclic ontology K′ex = (T ′ex,A′ex)
and its closure L(K′ex) specified in Example 5. Following Definition 10, the MR-
canonical interpretation CMR(K′ex) is constructed on the basis of L(K′ex) by first
setting C0MR(K′ex) = L(K′ex). Then, for the next step we set

OrderC
1
MR(K′ex) = OrderC

0
MR(K′ex) and CustomerC

1
MR(K′ex) = CustomerC

0
MR(K′ex)

as neither Order nor Customer subsumes any concept in T ′ex, and set

placedByC
1
MR(K′ex) = {| (o, c) : 3, (w1

c,∃placedBy− , c) : 1 |}. The latter follows by the

fact that o has already a placedBy-successor in C0MR(K) while at the same time the
multiplicity of c in the extension of ∃placedBy− under C1MR(K) must be increased
by 1 so that inclusion Customer v ∃placedBy− is satisfied; since (funct placedBy−)
is not in T ′ex, this must be done by introducing a fresh anonymous element
w1
c,∃placedBy− to the domain of C1MR(K) and making it a ∃placedBy−-successor of

c. All axioms are satisfied in C1MR(K′ex), and hence CMR(K′ex) = C1MR(K′ex). /

As the following theorem says, the MR-canonical bag interpretation is an
MR-universal model, as desired.

Theorem 4. The MR-canonical bag interpretation CMR(K) of an MR-satis-
fiable DL-LitebF ontology K = (T ,A) with T functionally weakly acyclic is an
MR-universal model for the class of rooted CQs.
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Example 7. Consider ontology K′ex and its MR-canonical interpretation
CMR(K′ex) as in Example 6. Consider also rooted CQs q1(x) = ∃y. placedBy(x, y)
and q2(x) = ∃y. placedBy(y, x). It is straightforward to verify that the MR-
bag certain answers to q1 and q2 over K′ex are respectively given by bags

q1
K′ex
MR = {| o : 3 |} and q2

K′ex
MR = {| c : 4 |}, and that these bags coincide with

the bag answers to q1 and q2 over CMR(K′ex), respectively. This supports our ex-
pectation that CMR(K′ex) is an MR-universal model of K′ex for the class of rooted
CQs. /

By adapting and extending the techniques in [31], we establish that rooted
CQs are MR-rewritable to BCALC over the restricted ontology language.

Theorem 5. Rooted CQs are MR-rewritable to BCALC over DL-LitebF with
functionally weakly acyclic TBoxes.

Hence, under the restrictions, query answering is indeed feasible in TC0.

Corollary 3. Problem BagCertMR[q, T ] is in TC0 for every rooted CQ q and
functionally weakly acyclic DL-LiteF TBox T .

5 Related Work

Jiang [19] was the first to propose a bag semantics for the DL ALC, which is
however incompatible with SQL and incomparable to the semantics developed in
this work. Motivated by the semantic differences arising between the set-based
theory and bag-based practice of OBDA and data exchange settings, Nikolaou
et al. [30, 31] as well as Hernich and Kolaitis [16] studied respectively the foun-
dations of OBDA and data exchange settings under a bag semantics compatible
with SQL. To the best of our knowledge, our work, which builds on [30, 31],
is the first one to study the interaction of functionality and inclusion axioms
under a bag semantics. A bag semantics for functional dependencies, which gen-
eralises our SQL semantics, has been studied before by Köhler and Link [22]
who, however, studied only schema design issues. Owing to the aforementioned
works and the work by Console et al. [13], there is now a better understand-
ing of CQ answering under bag semantics for frameworks managing incomplete
information. This latter problem is closely related to answering queries using
aggregate functions the semantics of which has been studied before in the con-
text of inconsistent databases [3], data exchange [2], and DL-Lite [11,23], where
the resulting frameworks do not treat bags as first-class citizens. Handling bags
through sets was also the approach followed in the 90’s by Mumick et al. [29] for
supporting bags in Datalog and recently by Bertossi et al. [5] for Datalog±.

6 Conclusions and Future Work

In this paper, we studied two bag semantics for functionality axioms: our first
SQL semantics follows the bag semantics of SQL for primary keys, while the
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second MR semantics is more general and gives more modelling freedom. Com-
bining the semantics with the bag semantics of DL-Litecore of [30,31], we studied
the problems of satisfiability, query answering, and rewritability for the resulting
logical language DL-LitebF . It is interesting to see how our work generalises to the
case of n-ary predicates. This case has been studied only recently in the context
of data exchange settings [16] and Datalog± [5], which, however, do not consider
functional dependencies. We also anticipate our work will be useful for laying
the foundations of aggregate queries in SPARQL under entailment regimes [21].
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