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Abstract. OWL DL corresponds to a Description Logic (DL) that is a fragment
of classical first-order predicate logic (FOL). Therefore, the standard methods of
automated reasoning for full FOL can potentially be used instead of dedicated
DL reasoners to solve OWL DL reasoning tasks. In this paper we report on some
experiments designed to explore the feasibility of using existing general-purpose
FOL provers to reason with OWL DL. We also extend our approach to SWRL, a
proposed rule language extension to OWL.

1 Introduction

It is well known that OWL DL corresponds to theSHOIND−
n Description Logic

(DL), and that, like most other DLs,SHOIND−
n is a fragment of classical first-order

predicate logic (FOL) [8, 17, 1]. This suggests the idea of using standard methods of
automated reasoning for full FOL as a mechanism for reasoning with OWL DL, not
necessarily with a view to replacing dedicated DL reasoners, but perhaps as a supple-
mentary mechanism that can be used in development, testing and to attempt problems
that are outside the expressive range of existing DL reasoners.

This might be done by trying to create from scratch new architectures for reasoning
in full FOL, which would be specialised for dealing efficiently with typical DL rea-
soning tasks. A much less expensive option is to use existing implementations of FOL
provers, with the possibility of making adjustments that exploit the structure of DL
reasoning tasks. In this paper we investigate, experimentally, the viability of the latter
approach. It should be noted that our current implementation is very simplistic, and is
only intended as a preliminary feasibility study.

Our main experiment is organised as follows. We use a DL reasoner,FaCT++,
to classify three reasonably realistic OWL ontologies (DL knowledge bases):Galen,
Tambis andWine. A large number of nontrivial class (concept) subsumption subtasks
are extracted, translated into FOL and submitted toVampire, a state-of-the-art general-
purpose resolution-based FOL prover. This allows us to compare the performance of
the two systems on the same problem set.

Although by no means suggesting that dedicated DL reasoners are redundant, the
results of our experiment are quite encouraging, and show thatVampire can cope with
the vast majority of problems derived from the classification of these ontologies. More-
over, our experiments show that some fairly simple pre-processing optimisations can
greatly improveVampire’s performance on ontology derived problems, and suggest



that there may be scope for further significant improvements. At the same time, a sig-
nificant number of tests were too hard for the FOL prover, which indicates that there
may be a place for DL reasoning oriented optimisations in theVampire architecture.
Finally, a valuable byproduct of this experiment is a large set of realistic FOL problems
which may be of interest to developers of other FOL systems.

In a second experiment, we use FOL translation andVampire to solve problems
from the OWL Test suite [25] designed to test reasoners for OWL DL. Although OWL
DL corresponds to an expressive description logic for which the consistency problem
is known to be decidable, there is as yet no effective decision procedure known for the
complete language,1 and consequently no implemented DL reasoners [18, 17]. Since no
tableaux procedure is known for this DL, it is interesting to check if a general-purpose
FO system can at least cope with some of the tasks in the OWL Test suite [25]. In fact
it turns out thatVampire can solve the vast majority of these problems.

Finally, we show how the simplicity and flexibility of our FOL translation ap-
proach allows it to be trivially extended to deal with the Semantic Web Rule Language
(SWRL), a proposed rule language extension to OWL [13].

2 Preliminaries

There have been earlier investigations of the use of FOL provers to reason with descrip-
tion logics. Paramasivam and Plaisted, for example, have investigated the use of FOL
reasoning for DL classification [26], while Ganzinger and de Nivelle have developed
decision procedures for the guarded fragment, a fragment of FOL that includes many
description logics [10]. The most widely known work in this area was by Hustadt and
Schmidt [20], who used the SPASS FOL prover to reason with propositional modal log-
ics, and, via well known correspondences [30], with description logics. Their technique
involved the use of a relatively complex functional translation which produces a subset
of FOL for which SPASS can be tuned so as to guarantee complete reasoning. The re-
sults of this experiment were quite encouraging, with performance of the SPASS based
system being comparable, in many cases, with that of state of the art DL reasoners.
The tests, however, mainly concentrated on checking the satisfiability of (large) single
modal logic formulae (equivalently, OWL class descriptions/DL concepts), rather than
the more interesting task (in an ontology reasoning context) of checking the satisfia-
bility of formulae w.r.t. a large theory (equivalently, an OWL ontology/DL knowledge
base).

In all of the above techniques, the DL is translated into (the guarded fragment of)
FOL in such a way that the prover can be used as a decision procedure for the logic—
i.e., reasoning is sound, complete and terminating. Such techniques have, however, yet
to be extended to the more expressive DLs that underpin Web ontology languages such
as DAML+OIL and OWL DL [16], and it is not even clear if such an extension would
be possible.

An alternative approach, and the one we investigate here, is to use a simple “direct”
translation based on the standard first order semantics of DLs (see, e.g., [1]). Using this

1 Briefly, the interaction between inverse roles, nominals and number restrictions causes prob-
lems for existing algorithms.
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approach, an ontology/knowledge base (a set of DL axioms), is translated into a FO
theory (a set of FO axioms). A DL reasoning task w.r.t. the knowledge base (KB) is
then transformed into a FO task that uses the theory. Unlike methods such as Hustadt
and Schmidt’s functional translation, this does not result in a decision procedure for the
DL. The direct translation approach can, however, be used to provide reasoning services
(albeit without any guarantee of completeness) for the expressive DLs underlying Web
ontology languages, DLs for which no effective decision procedure is currently known.
Moreover, the translation approach can easily deal with language extensions such as
SWRL (see Section 5).

In recent years, a number of highly efficient FO provers have been implemented [23,
33, 29]. These provers compete annually on a set of tasks, and the results are pub-
lished [7]. One of the most successful general-purpose provers has beenVampire [29],
and we have chosen this prover to use in our comparison.

2.1 Translation issues

We will only discuss the translation from DL to FOL as the correspondence between
OWL DL andSHOIND−

n is well known [17]. The translationφ maps DL concept
C and role nameR into unary and binary predicatesφC(x) andφR(x, y) respectively.
Complex concepts and axioms are mapped into FO formulae and axioms in the stan-
dard way [6, 1]. For example, subsumption and equivalence axioms are translated into,
respectively, FO implication and equivalence (with the free variables universally quan-
tified).

As an example, let’s see a translation of a couple of concept and role axioms:

DL FOL
R v S ∀x∀y(φR(x, y) → φS(x, y))
C ≡ D u ∃R.(E t ∀x(φC(x) ≡ φD(x) ∧ ∃y(φR(x, y) ∧ (φE(y) ∨

∀S−.F ) ∀x(φS(x, y) ∧ φF (x)))))
A v > 3 R.B ∀x(φA(x) → ∃y1∃y2∃y3(φR(x, y1) ∧ φB(y1) ∧

φR(x, y2) ∧ φB(y2) ∧ φR(x, y3) ∧ φB(y3) ∧
(y1 6= y2) ∧ (y2 6= y3) ∧ (y1 6= y3))

Transitive(T ) ∀x∀y∀z(φT (x, y) ∧ φT (y, z) → φT (x, z))

Simple DLs (likeALC) can be translated into the FOL classL2 (the FOL fragment
with no function symbols and only 2 variables), which is known to be decidable [22].
The above translations of the role inclusion axiom and concept equality axiom are, for
example, inL2. When number restrictions are added to these DLs, they can be translated
into C2—equivalent toL2 with additional “counting quantifiers”—which is also known
to be decidable [12].

The FOL translation of more expressive description logics, e.g., with transitive roles
(SHIQ, OWL Lite and OWL DL) and/or complex role axioms (RIQ [19]), may lead
to the introduction of three or more variables.2 The above transitivity axiom for roleT
is an example of this case. FOL with three variables is known to be undecidable [6].

2 In some cases, the effects of transitive roles can be axiomatised inC2 [35].
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OWL DL also provides for XML schemadatatypes[5], equivalent to a very simple
form of concrete domains[18]. The minimum requirement for OWL DL reasoners is
that they supportxsd:integer andxsd:string datatypes, where support means
providing a theory of (in)equality for integer and string values [27].

Our translation encodes the required datatype theory by mapping datatypes into
predicates and data values into new constants. Lexically equivalent data values are
mapped to the same constant, with integers first being canonicalised in the obvious
way, and axioms are added that assert inequality between all the string and integer data
constants introduced. If a data valueDV and a datatypeDT are mapped toDV and
DT respectively, andDV is of typeDT, then an axiomDT (DV ) is also added. As the
xsd:integer andxsd:string interpretation domains are disjoint, we add an ax-
iom to that effect. Finally, we add an axiom asserting the disjointness of the datatype
domain (the set of data values) and the abstract domain (the set of individuals).

In accordance with the OWL DL semantics, other “unsupported” data types are
treated opaquely, i.e., data values are mapped to the same constant if they are lexically
identical, but no other assumptions are made (we donotassume inequality if the lexical
forms are not identical) [27].

2.2 Key reasoning tasks.

Given a DLKnowledge BaseK (equivalently an OWL DLontology) consisting of a
set of axioms about concepts, roles, individuals and (possibly) datatypes, key reasoning
tasks w.r.t.K include: Knowledge Base (KB) consistency (do the axioms inK lead to
a contradiction); concept consistency (is it consistent for a concept to have at least one
instance); concept subsumption (are the instances of one concept necessarily instances
of another); instance checking (does a given class contain a given instance); instance re-
trieval (find all KB instances for a given class); classification (compute the subsumption
partial ordering of concept names inK); and entailment (doesK entail all of the axioms
in another KB). All of these tasks are reducible to KB consistency or, equivalently, con-
cept consistency w.r.t. a KB [17] (in fact they are reducible to concept consistency w.r.t.
an empty KB via internalisation [1]).

The tests presented here include several classification tasks, and a set of OWL DL
consistency and entailment tasks. Each classification task transforms into a (usually
quite large) set of concept subsumption/consistency tasks.

As a standard DL reasoner we will useFaCT++ version 0.85 beta. This system is a
next generation of the well-knownFaCT reasoner [15], being developed as part of the
EU WonderWeb project (seehttp://wonderweb.semanticweb.org/ ). This
implementation is based on the same tableaux algorithms as the originalFaCT, but has
a different architecture and is written in C++ instead of LISP. The goal of developing
FaCT++ was to create a modern reasoner for complex DLs (likeSHIQ and OWL
DL) with good performance, improved extensibility and internal data structures that are
better able to handle very large knowledge bases.

As an FOL prover we usedVampire v6 [29]. Vampire is a general-purpose FOL
prover developed by Andrei Voronkov and Alexandre Riazanov. Given a set of first-
order formulas in the full FOL syntax,Vampire transforms it into an equisatisfiable set
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of clauses, and then tries to demonstrate inconsistency of the clause set by saturating
it with ordered resolution and superposition (see [3, 24]). If the saturation process ter-
minates without finding a refutation of the input clause set, it indicates that the clause
set, and therefore the original formula set, is satisfiable, provided that the variant of the
calculus used is refutationally complete and that a fair strategy3 has been used for sat-
uration. The main input format ofVampire is the TPTP syntax [31], although a parser
for a subset of KIF [11] has been added recently.

Vampire is one of the most competitive general-purpose provers, which is demon-
strated by its performance in the last five CASC competitions [7]. However, we would
like to stress thatVampire uses no optimisations targeting specific needs of ontological
reasoning. Moreover, most of the strong features of the implementation are not very
useful in the experiments presented here. In particular,Vampire’s implementation is
highly optimised towards finding refutations, often at the cost of using incomplete pro-
cedures, whereas the majority of subsumption tests in our current experiment require
the detection of satisfiability. Also, the needs of light-weight reasoning, when one needs
to solve relatively easy problems very fast, have never been addressed. Most of the core
implementation features, such as a number of complex term indexing techniques, in-
troduce noticeable overhead during the first seconds of a run, which only pays off on
reasonably hard problems.

3 Ontology reasoning comparison

3.1 Test ontologies

We used three ontologies (KBs) in the test: theTambis ontology4 has a small size and
very simple structure; theWine ontology5 has a similar size, but a much more complex
structure and 150 general concept inclusion axioms (GCIs)6 [1]; the Galen ontology7

has a very large size with quite a simple concept language (only conjunction and ex-
istential restrictions), but with transitive roles and more than 400 GCIs. Table 1 gives
the size of the ontologies along with the number of (positive and negative) subsumption
tests performed byFaCT++ during classification.

Table 1.Ontologies used for the comparison

OntologyConceptsRolesTotal subsPos subsNeg subs
Tambis 345 107 597 25 572
Wine 346 16 2221 465 1756
Galen 2749 207 25631 3561 22070

3 i.e., all generated clauses are eventually processed
4 A biochemistry ontology developed in theTambis project [4].
5 A wine and food ontology which forms part of the OWL test suite [25].
6 A GCI is an axiom of the formC v D, whereC may be an arbitrarily complex class descrip-

tion. The presence of GCIs can significantly decreases the performance of a tableaux reasoner.
7 A medical terminology ontology developed in the Galen project [28].
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3.2 Experimental methodology

We used the following comparison scheme. For a given ontology, the DL reasoner per-
formed the classification process. In the case where a subsumption test is necessary, a
task was also generated for the FO prover, and the result of the DL testing was noted
for future comparison. After finishing the classification process, the set of problems that
were solved had been generated. The FO prover was then run on this set of problems.
The results were recorded and then compared with the DL ones.

In the experiments withGalen, Wine and Tambis we used the default settings
of Vampire with the following two adjustments. Firstly, the default saturation pro-
cedure may apply an incomplete strategy, so we replaced it by a complete one (--
main alg otter ). Secondly, the literal selection function, which is one of the most
important resolution strategy parameters, was set to simulate positive hyperresolution
(--selection 2 ), as this strategy showed the best results on a training set of tasks
randomly selected from the given problems. All tests withVampire andFaCT++ were
made on Pentium III, 1000 Mhz running Linux. We ranVampire with a time limit of
300 seconds and a memory limit of 350Mb per task.

Note that the actual number of comparisons performed in order to classify an ontol-
ogy depends on the DL system’s classification algorithm. If the algorithm is optimised
(i.e., exploits concept structure, results of previous operations, etc.), then the number of
(logical) subsumption tests may be much smaller than the number required by a naive
(unoptimised) algorithm. In theFaCT++ classifier, for example, the number of actually
performed subsumption tests is typically only 0.5-2% of those that would be required in
a “brute force” implementation (see [2]). Moreover, relatively few of these tests give a
positive result (i.e., one in which a subsumption is proved), because most subsumptions
are “obvious”, and do not need to be computed using a logical subsumption test.

The comparisons were generated byFaCT++ running in its standard (optimised)
mode. This resulted in all of the general axioms in the test ontologies beingabsorbed[14],
i.e., axioms of the formC v D (whereC is a complex concept) were re-written as ax-
ioms of the formCN v D′ (whereCN is a primitive concept name). Absorbed axioms
can be more efficiently dealt with byFaCT++’s tableaux algorithm.

3.3 Basic translation tests

Results using the basic translation (see Section 2.1 for details) are presented in Table 2.
The number of (solved) tasks is given, along with the average time (in seconds) per
solved task. The results are broken down into positive tasks (ones where subsumption
is proved) and negative tasks (ones where non-subsumption is proved). Tasks that are
not solved don’t influence this parameter.

Vampire can solve every positive task forTambis, 93% for Wine and 99% for
Galen. It could not solve any negative subsumption task forWine, but it solved 78%
of negative tasks forGalen.

3.4 Relevant-only translation tests

One problem with the results presented in the previous section is thatVampire receives
all of the axioms that occur in the ontology when usually only a small fraction of them
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Table 2.Results for basic translation

OntologyTask Tasks Solved tasks Av. time (secs)
type FaCT++ Vampire FaCT++ Vampire

Tambis pos 25 25 25 < 0.01 0.31
neg 572 572 572 < 0.01 0.31

Wine pos 465 465 433 < 0.01 41.94
neg 1756 1756 0 0.037 —

Galen pos 3561 3561 3536 < 0.01 23.75
neg 22070 22070 17260 0.027 24.20

are actually relevant to a given subsumption problem. UnlikeFaCT++, Vampire is not
optimised to deal efficiently with large numbers of irrelevant axioms, and so is at a
significant disadvantage.

An obvious way to correct this situation is to remove all irrelevant information from
the FO task given toVampire. We call an axiomirrelevantto a subsumption testC v D
if we can easily show (i.e., via a syntactic analysis) that removing it from the ontology
would not affect the interpretation of eitherC or D; other axioms are calledrelevant.
Note that not every “relevant axiom” reallywill affect the computation of the testC v
D, but we cannot (easily) rule out the possibility that itmayaffect the computation. In
the rest of paper, we will say that an FO-translation isrelevant-onlyif it contains only
FO-translations of axioms relevant (in the above sense) to the given subsumption test.

A concept or role expressiondependson every concept or role that occurs in it, and
a concept or roleC depends on a concept or roleD if D occurs in the definition of
C. In addition, a conceptC depends on every GCI in the ontology.Relevanceis the
transitive closure of depends. An algorithm for computing relevant information is quite
straightforward and is described in detail in [36].

Table 3.Results for relevant-only translation

OntologyTask Tasks Solved tasks Av. time (secs)
type FaCT++ Vampire FaCT++ Vampire

Tambis pos 25 25 25 < 0.01 0.03
neg 572 572 572 < 0.01 0.03

Wine pos 465 465 461 < 0.01 3.44
neg 1756 1756 1243 0.037 14.32

Galen pos 3561 3561 3561 < 0.01 2.48
neg 22070 22070 17271 0.027 1.73

Results using the relevant-only translation are presented in Table 3. Note that here
only Vampire running times are changed (the additional overhead for creating relevant-
only tasks is negligible, and we did not include it in the comparison).

The removal of irrelevant information results in a big improvement forVampire.
For the large but quite simpleGalen ontology, the number of solved tests increased, and
the average time was significantly reduced. In particular,Vampire solved all positive
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tests. For the complexWine ontology, the majority of negative subsumption tests were
solved, whereas none were solved before.

3.5 Non-absorbed translation tests

In our test ontologies, all GCIs were successfully absorbed. In general, however, not ev-
ery GCI can be absorbed. It is well known that non-absorbed GCIs lead to a significant
degradation in the performance of DL reasoners [15], so we decided to compare the
effect of non-absorbed GCI’s onVampire andFaCT++ by switching off the absorption
optimisation inFaCT++. The results of this test are presented in Table 4.

Table 4.Results for non-absorbed translation

OntologyTask Tasks Solved tasks Av. time (secs)
type FaCT++ Vampire FaCT++ Vampire

Tambis pos 25 25 25 < 0.01 0.30
neg 572 572 572 < 0.01 0.31

Wine pos 465 465 465 0.035 4.85
neg 1756 1756 0 1.33 —

Galen pos 3561 0 3550 — 18.38
neg 22070 0 17263 — 17.95

In this testVampire can solve all positive tasks with the smaller ontologies and 99%
with the Galen one. It could not solve any negative subsumption tasks forWine, but
78% ofGalen’s negative tasks were solved.FaCT++ could not solve any subsumption
tests for theGalen ontology, and shows significantly (up to 2 orders) worse results for
theWine ontology. This test also demonstrates that a FO prover may be able to solve
some subsumption tests that are very hard for a tableaux based DL reasoner.

It is interesting to note that the results forVampire are similar to those for the
basic translation given in Table 2, with the average solution time for the positiveWine
problems actually being 9 times longer for the basic translation. This seems to be due to
the increased number of complex clauses generated by the absorption optimisation (as
we can see in Table 6, the fraction of non-horn clauses grows 4 times in the absorbed
case for theWine ontology), which makes the proving process harder forVampire.

An example illustrating how absorption can increase the number of non-horn clauses
is given in Table 5. HereC,D,E andF are concept names. The GCIC v F is ab-
sorbed into the axiomD v F t E, and the corresponding formula becomes non-horn.

3.6 Translation result profiles

To give the reader an idea of the syntactic complexity of the first-order proof tasks
which Vampire has to deal with in our experiments, we present in Table 6 the integral
syntactic characteristics of the clause sets obtained by clausifying the input provided
by FaCT++. In addition to some standard parameters (i.e. number of non-horn clauses
and number of clauses with positive equalities), we count the number of so-calledchain
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Table 5.Explanation of non-horn clause introduction

Ontology DL axiom FO axiom Clause
type

Non absorbedC ≡ D u ¬E ∀x(φC(x) ≡ (φD(x) ∧ ¬φE(x)))
C v F ∀x(φC(x) → φF (x)) horn

Absorbed C ≡ D u ¬E ∀x(φC(x) ≡ (φD(x) ∧ ¬φE(x)))
D v F t E ∀x(φD(x) → (φF (x) ∨ φE(x))) non-horn

clauses, i.e., clauses of the form±p(x1, . . . , xn) ∨ ±q(x1, . . . , xn), wherep andq are
different predicates. This is not directly related to our current experiments, but the high
proportion of chain clauses in our tests supports the thesis of applicability ofchain res-
olution [34] to terminological reasoning, and may be a valuable observation for future
work.

Table 6.Syntactic profiles of the test suites

Tambis Galen Wine
translation type Bas. Rel. N.A. Bas. Rel. N.A. Bas. Rel. N.A.
num. of clauses 576 42 576 611117156146335412233123
% nonhorn 0 0 0 0 0 0 12 32 3
% chain 24 29 24 60 72 61 64 71 61
% with pos. eq. 5 4 5 2 3 2 7 8 8

lit. per clause 2.052.03 2.05 2.71 3.88 2.59 2.58 3.65 2.12
symbols per lit. 2.4 2.35 2.4 2.52 2.57 2.51 2.54 2.68 2.42

4 OWL tests comparison

The W3C WebOnt working group8 have been responsible for the definition of the OWL
Web Ontology Language. A key facet of the WebOnt activity has been to define a suite
of OWL Tests [25]. These consist of a number of tasks categorised according to their
type (consistency, entailment, etc.) and the expected result (positive or negative). In the
main, the problems are trivial in terms of reasoning, and are intended primarily to il-
lustrate the features of the language. A number of tests have, however, been translated
from other test collections (notable the DL98 tests [9]), and these provide more chal-
lenging problems for reasoners, testing both correctness (e.g., termination on problems
with no finite interpretation) and efficiency (e.g., of searching large spaces of possible
interpretations).

Because no existing DL reasoner can deal with the complete OWL language, we
decided to useVampire to try to prove (or disprove) the correctness of (some of) the
OWL tests. Not all of the OWL tests were attempted as some are, e.g., designed to
test parsers or OWL Full reasoners, and some use unsupported datatypes. The tests

8 http://www.w3.org/2001/sw/WebOnt
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we attempted here are the consistency tests (both positive and negative) for OWL DL
ontologies that use no datatypes other thanxsd:string or xsd:integer .

In order to useVampire with these tests, the OWL DL ontologies were translated
into FO axioms as described in Section 2.1; we then tried to prove the inconsistency
(consistency) of the resulting FO theory. In principle it would also be possible to use
Vampire with the positive entailment tests by trying to prove the inconsistency of the
premise theory augmented with the negated conclusion theory, but this would require a
more sophisticated translation in order to deal correctly with anonymous individuals in
the negated conclusion theory [17].

The current conversion strategy ignores OWL annotations, i.e., comments that are
intended to have no formal semantics. This has no impact on the Consistency and In-
consistency tests. For entailment tests, however, further investigation would be needed
as annotations do have an impact on entailment (in particular negative entailment) [27].

4.1 Test Results

We categorise the test results as follows.Pass—the prover returned a definitive result
which is as expected.Fail—the prover returned a definitive result which is not as ex-
pected.Unknown—the prover failed as a result of technical problems with the trans-
lation or with Vampire. Timeout—the prover ran out of time (the prover is currently
allowed up to 300 seconds to find a proof).

Strictly speaking, any result other than pass should be taken as a failure. A wrong
answer is, however, clearly a much more serious failure than an inability to find a proof
(timeout) or an inability to deal with the problem (unknown).

Table 7.OWL test results

Type AttemptedPassFail UnknownTimeoutPass (%)
Inconsistent66 64 0 1 1 97%
Consistent 46 43 0 1 2 93%

Total 112 107 0 2 3 96%

A summary of the current results is shown in Table 7. As can be seen,Vampire was
able to pass over 95% of the tests. Moreover, of the 2 tests returning Unknown, one was
due to the presence of large cardinality constraints (with values>500) in the original
problem. The number of variables introduced in the translation results in a very large
source file for the problem, causing technical difficulties in parsing and converting the
test.

5 Extension to SWRL

An attractive feature of the use of a first order prover is its extensibility. The proposed
“Semantic Web Stack” includes further layers that build on the Ontology or Logical
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layer provided by OWL (or similar languages). These layers are likely to add expres-
sivity that moves us out of the fragments of FOL supported by Description Logic rea-
soners, so alternative techniques will be required to handle these extensions.

One such proposed extension to OWL is the Semantic Web Rule Language (SWRL)
[13], which extends OWL with Horn-like rules. Note that SWRL is different from lan-
guages such as CARIN [21], where the combination of a relatively inexpressive DL
(ALCNR), and rather severe syntactic restrictions on rules, are used to ensure the de-
cidability of the combined language. In contrast, SWRL’s underlying logic is much
more expressive, and the form of rules is much less restrictive, with the result that the
combined language is no longer decidable. Using the translation approach, however,
we can easily extend our first-order translation to incorporate these rules and provide a
simple implementation of a SWRL reasoner.

5.1 Translating SWRL Rules

Rules in SWRL are of the form:

B1, . . . , Bm → H1, . . . ,Hn

where each of theBi or Hj are ruleatoms. Possible rule atoms are shown in Table 8.
HereC is an OWL class description,R an OWL property andi andj are either OWL
individual names or SWRL variables. We consider a simplification of the proposal in

Table 8.Rule Atoms

Atom Type
C(i) Class Atom
R(i,j) Property Atom
i==j Equality Atom
i!=j Inequality Atom

[13], whereC must be a class name (rather than arbitrary class descriptions), andR
must be an object property. The first of these restrictions does not affect the expressivity
of the language, as new class names can be introduced into the ontology to represent any
complex descriptions required in rules. The restriction to object properties simplifies
our implementation, but the translation we describe could easily be extended to handle
data valued properties.

The translation of rules exactly follows the semantics of the rules as given in [13].
Each rule is translated as an implication, and any free variables in the rule are assumed
to be universally quantified. Thus a rule:

B1, . . . , Bm → H1, . . . ,Hn

is translated to an axiom:

∀x1, x2, . . . , xk.T (B1) ∧ . . . ∧ T (Bm) → T (H1) ∧ . . . ∧ T (Hn)
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Table 9.Rule Atom Translation

Atom Translation
C(i) C(i)

R(i,j) R(i, j)

i==j i=j

i!=j i 6= j

wherex1, x2, . . . , xk are all the variables occurring in theBi andHj .
Translation of atoms is trivial and is shown in Table 9. Combining this translation

with the translation from OWL to FOL described in Section 2 provides us with a proto-
type implementation of a SWRL reasoner. Given an ontology and a collection of rules
relating to that ontology, we translate the ontology to FOL, and then add the FOL ax-
ioms generated by translating the rules. The resulting theory is passed to a FO prover,
where it can be used for reasoning tasks such as satisfiability checking and instance
checking. Of course the effectiveness of such a naive approach is open to question,
but this does at least provide us with a reasonerfor the complete language(rather than
for some fragment that can be handled by a rule or DL reasoner) that can be used for
illustrative and test purposes.

5.2 Examples

The proposed rule language extends the expressivity of OWL, in particular allowing
us to provide extra information about properties. A standard example of this is the
following definition of “uncle”, which cannot be expressed in OWL alone:

hasParent(?x,?y), hasSibling(?y, ?z), Male(?z)
⇒ hasUncle(?x,?z)

If our ontology additionally includes the axiom and facts (expressed here using standard
DL syntax):

Uncle ≡ ∃hasUncle −.>
〈Robert , Paul 〉 : hasParent
〈Paul , Ian 〉 : hasSibling

then the reasoner can infer not onlyhasUncle (Robert , Ian ), but also thatIan is
an instance of theUncle class.

Another interesting aspect of the language is illustrated by the following rule:

Beer(?x) ⇒ Happy(Sean)

This expresses the fact that for any instances of the classBeer , Sean must be an
instance ofHappy . This effectively allows us to express an existential quantification
over the classBeer : if we can prove the existence of an instance of this class, then
Sean will be Happy . Note that we do not actually have to provide a name for such an
instance. For example, if our ontology includes the fact:
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Sean : ∃drinks .Beer

then the reasoner can infer thatSean must beHappy as we now know that there exists
someinstance ofBeer —even though this instance is unnamed.

6 Discussion

As can be seen from the results, the performance ofVampire is much worse than that of
FaCT++ when tested with reasoning tasks derived from a naive translation of subsump-
tion tests (w.r.t. an ontology). When a suitably optimised translation is used, however,
the performance ofVampire improves dramatically: for the small ontology it is compa-
rable with that ofFaCT++, although for the more complexGalen andWine ontologies
it is still in the order of 100 times slower (and this does not take into consideration the
tests whichVampire is unable to solve within the 300s time limit).

Vampire is able to solve the vast majority of tasks within the time limit, but for
the complex ontologies it still fails on a significant number of negative tests (non-
subsumption). Unfortunately, the vast majority of tests performed during ontology clas-
sification are negative tests. It should also be pointed out that performing each subsump-
tion test in isolation putsVampire at a considerable disadvantage, as fixed startup costs
are incurred in every test, and information from previous tests cannot be reused.

The performance ofVampire is sufficiently encouraging to suggest that further in-
vestigations of FO theorem proving techniques for OWL ontology derived tasks would
be worthwhile. The FO tasks generated in the tests are in the TPTP format [32], which
is a de-facto standard for the theorem proving community, making it easy to use other
FO provers in a similar comparison. Given that the performance of FO provers can vary
greatly depending on the type of problem, it may be that another FO prover would give
better performance on DL subsumption reasoning tasks. On the other hand, the perfor-
mance gap with respect toFaCT++ is sufficiently large that the designers of FO provers
might be encouraged to consider adding some DL reasoning oriented optimisations to
their systems.

Although the results presented here do not suggest that FO provers might be used
to replace dedicated DL reasoners, they do illustrate that a FO prover can be a useful
tool for ontology reasoning. A FO prover might, for example, be used as part of the
infrastructure for developing new algorithms and reasoners for various languages, in
particular for debugging, prototyping, and for checking the status of newly developed
test problems (such as those in the OWL test suite).

It might also be useful to use a FO prover in a hybrid tool for dealing with very
expressive languages, e.g., for OWL DL, where reasoning with the complete language is
beyond the scope of existing DL algorithms, or for SWRL, where the complete language
no longer corresponds to a DL (or to any other decidable fragment of FOL). In these
cases, it would be possible to use a FO prover to compute some or all of the relevant
inferences. Although there would inevitably be problems with the speed of response,
and with incompleteness, there would still be an improvement in performance given
that existing DL reasoners currently can’t deal with these situationsat all.
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