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Abstract. RDF Schema (RDFS) has a non-standard metamodeling architecture,
which makes some elements in the model have dual roles in the RDFS specifi-
cation. As a result, this can be confusing and difficult to understand and, more
importantly, the specification of its semantics requires a non-standard model the-
ory. This leads to semantic problems when trying to layer conventional first order
languages, like DAML+OIL, on top of RDFS. In this paper we will first demon-
strate how this problem with RDFS can be solved in a sub-language of RDFS -
RDFS(FA), which introduces a Fixed layer metamodeling Architecture to RDFS,
based on a (relatively) standard model-theoretic semantics. Logical layer Seman-
tic Web languages such as DAML+OIL and OWL can, therefore, be built on
top of both the syntax and semantics of RDFS(FA). We will also compare this
approach with the existing RDF Model Theory and discuss the advantages and
disadvantages of the two approaches.

1 Introduction

The Semantic Web [1] is a vision of the next generation Web, in which the current ren-
dering markup, which specifies how to display Web resources for human consumption,
will be enhanced with semantic markups (often called annotations), which will specify
the meaning of Web resources so as to make them more accessible to automatic pro-
cesses. Ontologies [16] will play an important role in the Semantic Web as a source of
precisely defined important terms and properties in the domain, which can then be used
in annotations, for communication.

There is a functional architecture [1,12] of semantic Web languages. On the bottom,
XML (eXtensible Markup Language) [2] is used as syntax. On top of XML, RDF (Re-
source Description Framework) [10] is a simple metadata language, which provides a
simple and general model of semantic assertions of the Web. E.g., RDF can be used to
add annotations to Web resources. On top of RDF, RDF Schema (RDFS) [3] is a schema
language (as well as a very simple Web ontology language), which provides facilities
to define terms used in annotations. More powerful (logical layer) ontology languages,
e.g. OIL [6,7], DAML-ONT [9], DAML+OIL [18] and OWL [5], are expected to stand
on top of RDFS and supply a richer set of modelling primitives. Unfortunately, the rela-
tionships between adjacent layers are not specified, especially that between RDFS and
more powerful ontology languages, e.g. DAML+OIL and OWL.

Initially RDF and RDFS had no formal model theory, nor any formal meaning at
all. This made them unlikely foundations for the Semantic Web. As earlier works [11,4]



pointed out, RDFS has a non-standard and non-fixed layer metamodeling architecture,
which makes some elements in the model have dual roles in the RDFS specification.
In other words, multiple modelling primitives seems to be implicitly represented by a
single RDFS primitive (see Section 2 for more details). Therefore, it makes the RDFS
specification itself kind of confusing and difficult to understand for the modelers. One
of the consequences is that when DAML+OIL is layering on top of RDFS, it uses the
syntax of RDFS only, but defines its own semantics [17] for the ontological primitives
of RDFS.

In order to clear up any confusion, [12] proposed a sub-language of RDFS -
RDFS(FA)1, which provides a Fixed layer metamodeling Architecture for RDFS. The
implicitly represented modelling primitives in RDFS are explicitly stratified into dif-
ferent strata (layers) of RDFS(FA). In this way RDFS(FA) has clear semantics and
there are no dual roles in RDFS(FA). Subsequently RDF Model Theory (RDF MT) [8]
gave an official semantics for RDF and RDFS, justifying the dual roles by treating both
classes and properties as objects in the universe. So RDF MT is another approach to
clear up the kinds of confusion that can arise in RDFS.

In the remainder of this paper, we will first illustrate the kinds of confusion that can
arise in RDFS (Section 2). We will then present the design philosophy and stratification
of RDFS(FA), which were not covered by [12], and describe how RDFS(FA) clears up
any possible confusion of RDFS (Section 3). For the purpose of comparison, we will
also explain how RDF MT formalises RDFS (Section 4) and then compare the advan-
tages and disadvantages of these two approaches (Section 5). Finally we will discuss
what conclusions we can draw from the above comparison in Section 6.

2 RDFS Architecture

Fig. 1.An Example of Dual Roles in RDFS

The Resource Description Framework (RDF) [10] and its schema extension, RDF
Schema Specification (RDFS) [3] form the lowest two layers of the Semantic Web.
RDF is a foundation for processing metadata, which provides interoperability between
applications that exchange machine-readable information on the Semantic Web. RDFS
provides a standard mechanism for declaring classes and (global) properties as well as

1 http://DL-Web.man.ac.uk/rdfsfa/
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defining relationships between classes and properties, using RDF syntax. As a schema
layer language, RDFS is responsible to define a basic metamodeling architecture for
Web ontology languages.

RDFS, however, has a non-standard and non-fixed layer metamodeling architec-
ture, which makes some elements in the model appear to have multiple roles - multiple
modelling primitives seem to be implicitly represented by a single RDFS primitive.

Figure 1 shows an example of dual roles of some RDFS elements in a directed la-
belled graph. The top there ellipses represent three RDFS built-in modelling primitives
rdfs:Class, rdfs:Resource and rdfs:Property. The rest is a very simple ontology. There
are two classes in this ontology, where eg:Researcher is an rdfs:subClassOf eg:Person.
eg:workWith is a property, whose rdfs:domain and rdfs: range are both eg:researcher.
There are two instances of eg:Researcher, they are objects Ian and Jeff.

In this example, there seem to be more than one role for rdf:type and
rdfs:subClassOf. For instance, rdf:type is used between objects and ontology classes
(i.e. Jeff and eg:Researcher) and between ontology classes and built-in classes (i.e.
eg:Person and rdfs: Class) etc. Similarly, rdfs:subClassOf is used between two ontol-
ogy classes (i.e. eg:Researcher and eg:Person) and between two built-in classes (i.e.
rdfs:Class and rdfs:Resource) etc.

Furthermore, there is a strange situation for rdfs:Class and rdfs:Resource as dis-
cussed in [12]. On the one hand, rdfs:Resource is an instance of rdfs:Class. On the other
hand, rdfs:Class is a sub-class of rdfs:Resource. Thus rdfs:Resource is an instance of its
sub-class. It is kind of confusing, isn’t it?

While RDF is mainly used as standardsyntax, RDFS is expected to be the lowest
layer to providesemanticsfor the Semantic Web. However, the existence of dual roles
in RDFS makes it difficult to give clear semantics to RDFS. E.g. it is unclear whether
rdfs:Resource should be interpreted as an instance or a super-class of rdfs:Class. This
might partially explain why Brickley and Guha [3] didn’t define the semantics for
RDFS. Up to now, there are at least two ways to clear up any confusion and give a
clear semantics to the schema language: RDFS(FA) and RDF MT. We will present
them individually in the following two sections.

3 RDFS(FA)

In [12] we proposed a sub-language of RDFS - RDFS(FA), which provides a Fixed layer
metamodeling Architecture for RDFS. RDFS(FA) eliminates dual roles by defining the
modelling primitivesexplicitly, instead of implicitly.

We call the solutionstratification. The universe of discourse is divided up into dif-
ferent strata (layers). Built-in modelling primitives of RDFS are stratified into different
strata of RDFS(FA), so that certain modelling primitives belong to a certain stratum
(layer). Different prefixes, e.g. o-, l- or m-, are used to label which stratum modelling
primitives belong to. The semantics of modelling primitives depend on the stratum they
belong to. All these strata form the metamodeling architecture of RDFS(FA). Theoret-
ically there can be infinite number of strata, while in practice, four strata are usually
enough [12].
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Fig. 2.Metamodeling Architecture (Four Strata) of RDFS(FA)
Figure 2 shows the metamodeling architecture (four strata) of RDFS(FA). Here are

stratum 0,1,2 and 3. Some people like to call them layers, then they are called the
Instance Layer, the Ontology Layer, the Language Layer and the Meta-Language Layer
respectively.

Elements in the Instance Layer are objects, e.g. Ian and Jeff. Elements in the On-
tology Layer are ontology classes, e.g. Person and Researcher, and ontology properties,
e.g. workWith. Elements in the Language Layer are used to define and describe el-
ements in the Ontology Layer, e.g. fa:LClass and fa:LProperty, and elements in the
Meta-Language Layer are used to define and describe elements in the Language Layer.

As seen in Figure 2, rdfs:Resource is stratified into three layers, i.e. fa:OResource
in the Ontology Layer, fa:LResource in the Language Layer and fa:MResource in the
Meta-Language Layer. The same thing happens to rdfs:Class and rdfs:Property. They
are stratified into the Language Layer and the Meta-Language Layer.

3.1 No Dual Roles in RDFS(FA)

There are no dual roles in RDFS(FA). Let’s visit the same example again, but this time
in RDFS(FA) (see Figure 3).

Fig. 3.No Dual Roles in RDFS(FA)

As we mentioned earlier, rdfs:Resource and rdfs:Class are stratified into different
layers in RDFS(FA), such that fa:OResource is an instance of fa:LClass, and fa:LClass
is a sub-class of fa:LResource, while fa:LResource is an instance of fa:MClass.
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As far as rdf:type and rdfs:subClassOf in RDFS(FA), rdf:type is stratified into fa:o-
type, fa:l-type and fa:m-type2 where

– fa:o-type is used between objects and ontology classes, e.g. Jeff and eg:Researcher;
– fa:l-type is used between elements in the Ontology Layer and elements in the

Language Layer, such as eg:Person and fa:LClass, as well as eg:workWith and
fa:LProperty;

– fa:m-type is used between elements in the Language Layer and elements in the
Meta-Language Layer, e.g. fa:LResource and fa:MClass.

Similarly, rdfs:subClassOf is stratified into fa:o-subClassOf, fa:l-subClassOf and fa:m-
subClassOf:

– fa:o-subClassOf is used between two ontology classes, such as eg:Researcher and
eg:Person;

– fa:l-subClassOf is used between two classes in the Language Layer, e.g. fa:LClass
and fa:LResource;

– fa:m-subClassOf is used between two classes in the Meta-Language Layer.

3.2 Design Philosophy

We discuss the design philosophy of RDFS(FA) in this section. The principle is to build
the fixed layer metamodeling architecture on the basis of semantics. There are two
groups of fundamental modelling primitives in RDFS(FA), which are classes primitives
and property primitives.

What is the semantics of a class primitives in RDFS(FA)? A Class primitive is
interpreted as a set of objects or a set of sets. E.g. in Figure 3, eg:Researcher is a class
in the Ontology Layer, since it is mapped to a set of objects (e.g. Ian and Jeff). For the
same reason, eg:person is also a class. In the Language Layer, fa:LClass is a class since
it is mapped to a set of sets (such as eg:Person and eg:Research). fa:Property is also
class primitive, since it is mapped to a set of sets (such as eg:workWth).

What is the semantics of a property primitives in RDFS(FA)? A property primitive is
interpreted as a set of binary relationships (or pairs) between two instance of class prim-
itive(s) in the same stratum. E.g. in Figure 3, eg:workWith is a property primitive, since
it is mapped to a set of binary relationships between two instances of eg:Researcher in
the same stratum (the Ontology Layer). fa:o-subClassOf is also a property primitive,
since it is mapped to a set of binary relationships between two instances of fa:LClass in
the same stratum (the Language Layer).

Once a property primitive is defined in a certain stratum, it can be used in the ad-
jacent lower stratum. E.g. in Figure 3, once eg:workWith is defined in stratum 1 (the
Ontology Layer), it can be used in stratum 0 (the Instance Layer), e.g. Jeff eg:workWith
Ian. Once fa:o-subClassOf is defined in stratum 2 (the Language Layer), it can be used
in stratum 1 (the Ontology Layer), such as eg:Researcher fa:o-subClassOf eg:Person.

2 In order to make it more readable, we change the syntax a bit and use fa:o-type, fa:l-type and
fa:m-type, instead of fa:otype, fa:ltype and fa:mtype in [12].
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The only exceptions are the type properties, because they are just the instance-of
relationships, and always cross adjacent strata (layers). Please note that the type proper-
ties are very special, because they are just thelinksbetween classes and properties (see
more details on the discussion of the type properties in Section 5).

3.3 Formal Description

Based on the design philosophy, we will give a formal description of the stratification
of RDFS(FA) in this section. To clarify the presentation, we will not consider datatypes
and values in this section; they will be discussed in Section 3.4.

Let V be a vocabulary, which is a set of urirefs.V is divided into disjoint sets
V0, V1, V2, . . ., the vocabularies used in strata 0,1,2. . . respectively.

Let Ri, Ci, Pi be the modelling primitives which are interpreted as the sets of
all elements, all classes and all properties respectively in stratumi. According to the
design philosophy, since theirinstancesare in stratumi, Ri, Ci, Pi are classes in stra-
tum i + 1. For example,R1, C1 andP1 are fa:LResource, fa:LClass and fa:LProperty
respectively; fa:LResource is mapped to thesetof all resources in stratum 1 (the Ontol-
ogy Layer), fa:LClass is mapped to thesetof all ontology classes (such as eg:Person)
in stratum 1, and fa:LProperty is mapped to theset of all ontology properties (such
as eg:workWith) in stratum 1; since their instances are in stratum 1, fa:LResource,
fa:LClass and fa:LProperty exist in stratum 2.

Let Di be the domain (a set) in stratum i andIE be an interpretation function.
We start from stratum 0. Every individual namex ∈ V0 is mapped to an object in

the domainD0:
IE(x) ∈ D0,

the set of all the elements in stratum 0 (the interpretation ofR0) is D0:

IE(R0) = D0.

In stratumi+1 (wherei = 0, 1, 2, . . .), the set of all elements is equal to the domain
of stratum i+1:

IE(Ri+1) = Di+1,

the domainDi+1 is equal to the union of the set of all classes and the set of all properties
in stratumi + 1:

IE(Ri+1) = IE(Ci+1) ∪ IE(Pi+1)

Each class primitiveci+1 ∈ Vi+1 is interpreted as a set of elements in stratumi:

IE(ci+1) ⊆ IE(Ri),

and each property primitivepi+1 ∈ Vi+1 is interpreted as a set of pairs of elements in
stratumi:

IE(pi+1) ⊆ IE(Ri) × IE(Ri).

VI



Fig. 4. Interpretation of RDFS(FA)

Thetypei+1 property is interpreted as a set of pairs, where the first element is in stratum
i, and the second element is a class in stratumi + 1:

IE(typei+1) ⊆ IE(Ri) × IE(Ci+1).

SinceIE(ci+1) ⊆ IE(Ri), we haveIE(ci+1) ∈ 2IE(Ri), i.e. IE(ci+1) ∈ 2Di .
According to the definition ofCi+1, we have

IE(Ci+1) = 2Di .

Similarly, sinceIE(pi+1) ⊆ IE(Ri)×IE(Ri), we haveIE(pi+1) ∈ 2IE(Ri)×IE(Ri),
i.e. IE(pi+1) ∈ 2Di×Di . According to the definition ofPi+1, we have

IE(Pi+1) = 2Di×Di .

SinceIE(Ri+1) = Di+1 = IE(Ci+1) ∪ IE(Pi+1),we have

Di+1 = 2Di ∪ 2Di×Di .

The pair〈IR, IE〉 is an interpretation for RDFS(FA), where

IR = D0 ∪D1 ∪D2 ∪ · · · .

Figure 4 illustrates the interpretation of RDFS(FA). Vocabularies in stratum 0 (the
Instance Layer), e.g. Ian and Jeff, are interpreted as objects (i.e., elements ofD0).
Vocabularies for ontology classes (inV1), such as eg:Researcher and eg:Person, are
interpreted as sets of objects. Vocabularies for ontology properties (inV1), such as
eg:workWith, are interpreted as sets of pairs of objects. In stratum 2 (the Language
Layer), fa:LClass is interpreted as a set of sets of objects (a set of ontology classes),
and fa:LProperty is interpreted as a set of sets of pairs of objects (a set of ontology
properties).

3.4 RDFS(FA) and DAML+OIL

DAML+OIL is consistent with the stratification of RDFS(FA). The DAML+OIL lan-
guage itself exists in stratum 2 (the Language Layer). Its semantics [17] covers stratum
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Fig. 5.DAML+OIL and the Stratification of RDFS(FA)

0 and 1. In Figure 5, DAML+OIL constructs, e.g. daml:Class and daml:UniqueProperty
are in stratum 2 (the Language Layer).

Since DAML+OIL supports datatypes, the domain in stratum 0 is divided into two
disjoint sets, the “object domain”OD and “datatype domain”DD3 such thatD0 =
OD ∪ DD.

In stratum 0, every individual namex ∈ V0 is interpreted as an object in the domain
OD:

IE(x) ∈ OD,

every literalt ∈ V0 is interpreted as a data value in the domainDD

IE(t) ∈ DD,

and the set of all the elements in stratum 0 (the interpretation ofR0) is D0

IE(R0) = D0 = OD ∪ DD.

In stratum 1, each class primitivec1 ∈ V1 is interpreted as a set of objects:

IE(c1) ⊆ OD,

each datatype named1 ∈ V1 is interpreted as a set of data values:

IE(d1) ⊆ DD,

each object propertypo
1 ∈ V1 is interpreted as a set of pairs of objects:

IE(po
1) ⊆ OD×OD,

each datatype propertypd
1 ∈ V1 is interpreted as a set of pairs, where the first element

is an object and the second element is a data value:

IE(pd
1) ⊆ OD×DD.

3 Note that datatype domain (a set) is in stratum 1, since it is a set of data values that are in
stratum o.
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Fig. 6.Resources in RDF MT
In general, DAML+OIL, and other first order logical layer Semantic Web languages,

can be built on top of both the syntax and semantics of RDFS(FA). Furthermore, the
stratification of RDFS(FA) can benefit such logical layer Semantic Web languages by
offering possibilities of extending them in stratum 3 (the Meta-Language Layer). It can
also help avoiding “layer mistakes” [12] in DAML+OIL.

4 RDF Model Theory

Another way to clear up the kinds of confusion of RDFS is RDF Model Theory (RDF
MT) [12], which gives a precise semantic theory for RDF and RDFS. It is a W3C
working draft when this paper is being written.

An interpretation in the RDF model theory is a triple〈IR, IEXT, IS〉, whereIR
is the domain (of resources);IS is a function that maps URI references to elements of
IR. andIEXT is an extension function fromIR to IR × IR. In RDF MT, meaning
is given to properties by first mapping the property URI references to an object of the
domain of discourse viaIS. The domain object is then mapped into a set of pairs via
IEXT .

In RDF MT, all resources (including all classes and properties) are objects (see
Figure 6).IS maps the URI references of resources to objects in the domainIR, e.g.
IS maps rdfs:subClassOf to object S, orIS(rdfs:subClassOf) , rdf:type to object T, or
IS(rdf:type), rdfs:Class to object C, orIS(rdfs:Class) etc.IP is a special sub-set of
IR. It is a set of all property objects.

Property objects are special in the sense that they can have non-empty extensions.
Extension functionIEXT maps property objects to their extensions. E.g. in Figure 7,
IEXT maps S toIEXT (S), which is a set of pairs{〈P,R〉, 〈C,R〉}. IEXT maps T to
IEXT (T), which is a set of pairs{〈P,C〉, 〈R,C〉}. Class primitives are not fundamental
primitives in RDF MT. Class extensionICEXT is defined through the extension of
IS(rdf:type):

ICEXT (x) = {y | 〈y, x〉 is in IEXT (IS(rdf:type))}

In Figure 7,IEXT (T)={〈P,C〉, 〈R,C〉}, so P and R are in ICEXT(C).

4.1 No Confusion in RDF MT

RDF MT justify dual roles in RDFS by treating classes and properties as objects. In
other words, class primitives in RDF MT are interpreted as objects that can have non-
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Fig. 7. Interpretation of RDF MT

empty class extensions; property primitives in RDF MT are interpreted as objects that
can have non-empty extensions. Even though it is a bit strange to some people, there is
no confusion in RDF MT.

Let’s revisit the same example in RDF MT. rdfs:Class and rdfs:Resource are
mapped to objects C and R in the domain of resource byIS, therefore rdfs:Class is
rdfs:subClassOf rdfs:Resource means the pair of R and C is in the extension of the
rdfs:subClassOf object S

〈C,R〉 ∈ IEXT (S)

while rdfs:Resource is instance of rdfs:Class means the pair of R and C is in the exten-
sion of the rdf:type object T

〈R,C〉 ∈ IEXT (T).

According to the definition ofICEXT , we have

R∈ ICEXT (C).

In this way, the situation between rdfs:Class and rdfs:Resource is considerably reason-
able.

5 Comparing the Two Approaches

In Section 3 and 4, we described two known approaches to clear up any confusion of
RDFS. In this section, we will first compare these two approaches, and then discuss
their advantages and disadvantages.

5.1 Main Differences

On how to clear up confusion of RDFS, RDFS(FA) stratifies dual roles into different
strata and define modelling primitives explicitly; while RDF MT justifies dual roles by
treating classes and properties as objects, suggesting having dual roles is a feature of
the language, instead of a problem.
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Differences in Syntax RDFS(FA) adds restriction of stratification on the syntax of
RDFS, in order to avoid dual roles. Since elements of RDFS(FA) exists in different
strata of the domain of universe, (prefixes of) symbols of elements should indicates this
fact. E.g. fa:OResource is in stratum 1 (the Ontology Layer), fa:LProperty is in stratum
2 (the Language Layer), and fa:MClass is in stratum 3 (the Meta-Language Layer).4

Furthermore, valid RDFS(FA) statements should be consistent with the design phi-
losophy (see Section 3.2) of RDFS(FA). If one defines a class in stratumi + 1, then the
instances of that class should be in stratumi, e.g.

<fa:LClass rdf:about=‘‘#Person’’>

</fa:LClass>

Since fa:LClass is in stratum 2 (the Language Layer), the Class “Person” should be in
stratum 1 (the Ontology Layer), because “Person” is an instance of fa:LClass.

If one defines a property in stratumi + 1, then the classes as the domain and range
of the property should be in stratumi + 1 as well.

<fa:LProperty rdf:about=‘‘#hasFriend’’>

<fa:o-domain rdf:resource=‘‘#Person’’/>

<fa:o-range rdf:resource=‘‘#Person’’/>

</fa:LProperty>

Since fa:LProperty is in stratum 2 (the Language Layer), the property “hasFriend”
should be in stratum 1 (the Ontology Layer). Thus the class “Person”, as the fa:o-
domain and fa:o-range of “hasFriend”, should be in stratum 1 (the Ontology Layer).

Differences in SemanticsBesides differences in syntax, there are also differences in
semantics between RDFS(FA) and RDF MT.5

First of all, the domain in RDFS(FA) is smaller than the domain of RDF MT, in other
words, RDFS is more expressive than RDFS(FA). The reason for being less expressive
is that the stratification of RDFS(FA) disallows most cross-stratum binary relationships
(except the type properties). However, it could be argued that these kinds of relationship
are too confusing for most users.

Secondly, there are differentfundamentalprimitives in RDFS(FA) and RDF MT. In
RDFS(FA), both class and property primitives are fundamental primitives, i.e., both are
directly interpreted by the interpretation functionIE. As seen in Section 3.3, RDFS(FA)
class primitives in stratumi + 1 are interpreted as sets of elements in stratumi, while
property primitives in stratumi+1 are interpreted as sets of pairs of elements in stratum
i. The type properties arespecialproperties: their interpretations are just theinstance-of
relationships.

In RDF MT, although both class and property primitives are objects,only property
primitives are fundamental primitives, i.e., only property primitives can be given non
empty extensions byIEXT . The class extensionICEXT is simply derived from the

4 Note that properties, except the type properties, are always used one stratum lower than the
one where they are defined, e.g. fa:o-subClassOf is defined in stratum 2 (the Language Layer)
and used in stratum 1 (the Ontology Layer).

5 Readers are advised to refer to Figure 4 and 7 for better understanding of these differences.
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IEXT extension of the rdf:type object. Note, however that although the rdf:type prop-
erty is used to define membership of classes, in all other respects it is treated in the same
way as any other property.

Thirdly, RDFS(FA) and RDF MT interpret property (and class) primitives in differ-
ent ways. In RDFS(FA) (as well as conventional FOL), there is a mapping directly from
property (class) symbols to a set of pairs of elements (elements) in the domain. While
in RDF MT, on the other hand, meaning is given to property and class symbols by first
mapping them (viaIS) to objects in the domain. A property object is then mapped (via
IEXT ) to a set of pairs of objects in the domain.

Based on the differences between RDFS(FA) and RDF MT, we will discuss their
advantages and disadvantages in next section.

5.2 Advantages of RDF MT

Since there is no restriction of stratification, RDF MT (RDFS) is more expressive than
RDFS(FA). This advantage of RDF MT is believed to be consistent with the following
philosophy: anyone can say anything about anything. In RDF MT, this means

– properties can be defined between any two resources;
– any resource can be an instance of any resource (including itself).

However, this“unlimited” expressive power can lead to problems, as we will see in
the following section.

5.3 Disadvantages of RDF MT

The syntax rules in RDFS are very weak, and there are not many restrictions on writing
RDFS triples. As a result, this can be confusing and difficult to understand and, more
importantly, the specification of its semantics requires a non-standard model theory, i.e.
RDF MT.

This leads to semantic problems when trying to layer6 conventional FOL, like
DAML+OIL and OWL. E.g., as DAML+OIL is more expressive than RDFS, a large
and more complex set of semantic conditions7 is required to capture the meaning and
characteristic of its additional constructs. It is very difficult to get such semantic condi-
tions correct, not to mention that one should also prove that they are right.

There are at least three known problems if we extend RDFS with more expressive
FOL constructs, e.g. conjunctions and qualified number restrictions, and extend RDF
MT to so called “RDF+ MT” to give meaning to this extended language. These known
problems are: (i) too few entailments; (ii) contradiction classes; (iii) size of the universe.

6 RDFS, in some sense, is a very limited language, and serves as the bottom semantic layer
of Semantic Web languages. So it is both necessary and desirable to layer more expressive
ontology languages on top of it.

7 Since the constructs of RDFS are simple, the set of semantic conditions for RDFS is relatively
small.
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Too Few Entailments Entailment is the key idea which connects model-theoretic se-
mantics to real-world applications. What is entailment? In RDF MT, entailment means
“If A entails B, then any interpretation that makes A true also makes B true,” so that an
assertion of A already contains the same ”meaning” as an assertion of B [12].

[13] first addressed the problem of too few entailments and gave the following ex-
ample: if John is an instance of the classStudent ∩Employee∩European, is John an
instance of the classEmployee ∩Student?

In RDFS(FA) and FOL, the answer is simply “yes”, sinceStudent∩Employee∩
European is a sub-class ofEmployee ∩Student, so every instance of the former class
is also an instance of the later one.

However, in “RDF+ MT”, since every concept is also an object, “John is an instance
of the conceptStudent∩Employee ∩European” can’t guarantee there exists an object
for Employee ∩Student in all the interpretations that make “John is an instance of the
conceptStudent∩ Employee∩European” true. So the answer in RDF+ MT is “no”.

In this case, the “RDF+ MT” semantics seems to be broken, because the semantics
of an ontology language should give meaning to any possible class expressions. In order
to fix the problem, one can/should introduce comprehension axioms to add all possible
missing objects into the domain, e.g. theEmployee ∩Student in this example. But that
is surely a very difficult task. Theoretically, it is yet to be proved that proper objects are
all added into the universe, no more and no less. Practically, there will be infinite num-
bers of possible class expressions.8 It is still unknown whether there exists a practical
approach to solve the problem.

Contradiction Classes [13,14] also addressed the problem of contradiction classes. In
RDFS, resources can be defined as instances of themselves, and rdf:type is treated as
any other property. So, if the extended language supports qualified number restrictions,
one can define a class eg:C as an instance of itself, and add a cardinality constraint “=0”
on the rdf:type property (see Figure 8).

Fig. 8.Contradiction Classes

It is impossible for one to determine the membership of this class. If an object is an
instance of this class, then it isn’t, because instances should have no rdf:type property
pointing to itself. But if it isn’t then it is. This is a contradiction class.

One might argue that we can simply avoid defining such classes. However, with the
comprehension axioms (see Section 5.3.1), we must add all possible class objects into
the domain, and the above contradiction class is one of them. In this way, all the inter-
pretations will have such contradiction classes, and thus have ill-defined class member-

8 Think about all the possible conjunctions, disjunctions, exist restrictions, value restrictions and
qualified number restrictions ...
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ships. Again, the “RDF+ MT” semantics seems to be broken9. RDFS(FA) does’t have
this problem, because the type properties are not treated as ordinary properties.

Size of the Universe Like RDF MT, in “RDF+ MT” there is a pre-defined vocabu-
lary (e.g. rdf:type, rdfs:Property etc), terms from which are mapped to elements of the
universe. Thus these elementsmustexist in all the possible interpretations. A problem
arises if we set constraints on the size of the universe. Even if we don’t consider such
pre-defined vocabulary, this problem still exists. Here is an example.

Let us consider the following question: is it possible to have an interpretation such
that John is a member of Person, but not a member of Car, and there is only one object
in the universe?

In RDFS(FA) and FOL, the answer is simply “yes”. There is only one object in the
universe, and John is interpreted as that object. The Person class thus has one instance,
i.e. the interpretation of John. The Car class has no instances. So it is possible to have
such an interpretation.

Fig. 9.Size of the Universe

But it is impossible to have only one object in the “RDF+ MT” universe in this
example. Since classes are also objects, John, Person and Car should all be mapped
to the only one object in the universe (see Figure 9). However, since the interpretation
of John is a member of Person, but not a member of Car, Person and Car should be
different. Thus there should at least two objects in the universe. In other words, the
required interpretation is impossible in “RDF+ MT”, and the answer to our question is
“no”.

This example shows that the interpretation of RDF MT has different features than
the interpretation of standard FOL model theoretic semantics. This raises the question as
to whether it is possible to layer FOL languages on top of both the syntax and semantics
of RDFS.

6 Discussion

As we have seen, RDFS has a non-standard and non-fixed layer metamodeling archi-
tecture, which makes some elements in the model have dual roles in the RDFS spec-
ification. This can be confusing and difficult to understand for modelers. One of the
consequences is that when DAML+OIL is layering on top of RDFS, it uses the syntax
of RDFS only, and defines its own semantics for the ontological primitives of RDFS.

9 One might solve the problem by making the comprehension axioms more complex. It is yet to
be proved that we keep the objects of all possible contradiction classes outside the universe.

XIV



Up to now, there are at least two approaches to clear up the kinds of confusion
that can arise w.r.t. RDFS: RDFS(FA) and RDF MT. RDFS(FA), as a sub-language of
RDFS, clears up any confusions via stratification, while RDF MT justifies dual roles by
treating classes and properties as objects.

The advantage of RDF MT is that it is more expressive than RDFS(FA), because
it doesn’t have the restriction of stratification. The philosophy is that anyone can say
anything about anything. Properties can be defined between any two resources, and a
resource can be an instance of any resource (including itself). Some people, however,
worry about this “unlimited” expressive power, in particular when layering more ex-
pressive languages on top of RDFS.

The advantage of RDFS(FA) is that FOLs, e.g. DAML+OIL, can be built on top
of both the syntax and semantics of RDFS(FA). Furthermore, the stratification of
RDFS(FA) can benefit such logical layer Semantic Web languages by offering pos-
sibilities of extending them in stratum 3 (the Meta-Language Layer).

The disadvantage of RDF MT is that there are at least three known problems if
we extend RDFS with more expressive FOL constructs, and extend RDF MT to the
so called “RDF+ MT” to give meaning to this extended language (see Section 5.3).
Moreover, layering FOL on top of RDFS doesn’t lead directly to any “computational
pathway”, i.e. it is not clear whether/how applications would be able to reason with
languages layered on top of RDFS.

Generally speaking, on the one hand, RDF MT allows for a larger number of models
of the universe, and can represent more heterogeneous states of affairs. On the other
hand, RDFS(FA) allows more expressive ontology languages, e.g. DAML+OIL, to be
layered on top of it, so that people can say more things about a smaller number of (more
homogeneous) models of the universe.

It has yet to be proved that RDF MT can be extended to give a coherent meaning to
more expressive ontology languages10. Moreover, it is not clear if the more heteroge-
neous models supported by RDF MT would be needed in many realistic applications.
Given that the set of RDFS(FA) statements is a subset of the set of RDFS statements,
one possible solution would be to support both semantics, with users able to choose
if they are willing to constrain the kinds of model that can be represented in order to
facilitate the extension of the language with more expressive modelling primitives. This
solution could also provide a good guideline for more expressive logical ontology lan-
guages designed on top of RDFS.
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10 Note that in OWL the RDFS-compatible model-theoretic semantics has the same consequence
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