### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Summary

# Way below security

Dusko Pavlovic Kestrel Institute and OUCL

April 2009 MFPS XXV, Oxford Session honoring Mike Mislove

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◆○◆

# Outline

Security and domains?

Information systems, honesty, and guards

Domains for Bayesian inference and guessing

Summary

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Summary

(日)

# Outline

### Security and domains?

Information systems, honesty, and guards

Domains for Bayesian inference and guessing

Summary

### Way below

Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

Summary

### Crypto system

### Given the types

- *M* of *plaintexts*
- C of cyphertexts
- K of keys
- R of random seeds

### Way below

### Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

Summary

▲□▶▲□▶▲□▶▲□▶ □ のへで

### Crypto system

### Given the types

- *M* of *plaintexts*
- C of cyphertexts
- ► K of keys
- R of random seeds

### a crypto-system is a triple of algorithms:

- key generation  $\langle k, \overline{k} \rangle : \mathcal{R} \longrightarrow \mathcal{K} \times \mathcal{K}$ ,
- encryption  $E : \mathcal{R} \times \mathcal{K} \times \mathcal{M} \longrightarrow \mathcal{C}$ , and
- decryption  $D : \mathcal{K} \times \mathcal{C} \longrightarrow \mathcal{M}$ ,

### Way below

### Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

### Crypto system

- ... that together provide
  - unique decryption:

$$\mathsf{D}(\overline{k},\mathsf{E}(k,m)) = m$$

### Way below

### Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

Summary

# Crypto system

- ... that together provide
  - unique decryption:

$$\mathsf{D}(\overline{k},\mathsf{E}(k,m)) = m$$

secrecy (IND-CCA):

$$\operatorname{Prob}\left(\begin{array}{c}c_{0}\in\mathbb{A}_{0},\ m=\mathsf{D}(\overline{k},c_{0}),\\m_{0},m_{1}\in\mathbb{A}_{1}(c_{0},m),\ c\in\mathsf{E}(k,m_{b})\\c_{1}\in\mathbb{A}_{2}(c_{0},m,m_{0},m_{1},c^{\neq}),\ \widetilde{m}=\mathsf{D}(\overline{k},c_{1})\end{array}\right)$$
$$b\in\mathbb{A}_{3}(c_{0},m,m_{0},m_{1},c,c_{1},\widetilde{m})\right)\leq \frac{1}{2}$$

for any probabilistic algorithm  $\mathbb{A}=\langle \mathbb{A}_0, \mathbb{A}_1, \mathbb{A}_2, \mathbb{A}_3\rangle$ 

### Way below

### Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

Summary

・ロト・日本・日本・日本・日本・日本

Idea



### Way below

Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

Summary

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● ● ●

Idea



Does that mean that the key is way-below the secret?

Way below

Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

Summary

(日)

# Outline

### Security and domains?

Information systems, honesty, and guards Information system of a protocol Honesty system of a protocol

Domains for Bayesian inference and guessing

Summary

### Way below

Dusko Pavlovic

Security and domains?

Information and honesty

Info system Honesty system

Domains for guessing

Summary

# Information system of a protocol

## Algebraic model

- ▶ algebra T
  - equational presentation  $(\Sigma, E)$ , generators V
- ▶ principals W
  - $A \in W$  owns  $x \in V_A$ , a store, nonce or key
- fixed protocol run Q
  - $A \in W$  may send  $t \in \mathbb{T}$ , or receive into  $x \in V_A$

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

# Information system of a protocol

Derivability

$$\Gamma \vdash \Theta \iff \forall t \in \Theta \ \exists \varphi \in \Sigma^* \ \exists \vec{g} \subseteq \Gamma.$$

$$\varphi(\vec{g}) \stackrel{E}{=} t$$

**Consistent sets** 

$$\Gamma_{A}^{\mathcal{Q}} = A's \text{ environment in } \mathcal{Q} 
 \operatorname{Con}_{A}^{\mathcal{Q}} = \{ \Theta \in \wp_{fin} \mathbb{T} \mid \Gamma_{A}^{\mathcal{Q}} \vdash \Theta \} 
 \operatorname{Con}^{\mathcal{Q}} = \bigcup_{A \in \mathcal{W}} \operatorname{Con}_{A}^{\mathcal{Q}}$$

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

### Way below

Dusko Pavlovic

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

Summary

$$\Sigma = \{ \mathsf{E}, \mathsf{D} : \mathbb{T} \times \mathbb{T} \longrightarrow \mathbb{T} \}$$

$$E = \{ \mathsf{D}(x, \mathsf{E}(x, y)) = y \}$$

$$Q = \{ A \xrightarrow{\mathsf{E}(k, m)} B \}$$

$$k \in I_X \iff X \in \{A, B\}$$

$$\bullet \ m \in \Gamma_X \iff X = A$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

# Domain of a protocol

### Way below

Dusko Pavlovic

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

Summary

$$egin{array}{rcl} D^{\mathcal{Q}} &=& ig\{ m{a} \in \wp \mathbb{T} & \mid & orall \Theta \subseteq m{a}. & \Theta \in \mathsf{Con}^{\mathcal{Q}} \ & & \wedge \Theta dash \Gamma \Rightarrow \Gamma \subseteq m{a} ig\} \end{array}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

# Order ideals

1

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

Summary

$$egin{array}{rcl} \mathcal{J} D &=& iggl\{ egin{array}{rcl} J \in D & \mid & orall a \subseteq b \in J \Rightarrow a \in J \ & \wedge & orall a b \in J \ \exists c \in J. \ a, b \subseteq c iggr\} \end{array}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

# Continuity = left adjoint to



Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

Summary

$$Y(a) = \{x \sqsubseteq a\}$$
$$V(J) = \bigsqcup J$$
$$W(a) = \{x \ll a\}$$

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへで

# Continuity = left adjoint to []

### Intuition

- $W(a) = \{x \ll a\}$  are the *key elements* of *a* 
  - if  $\bigsqcup J \sqsupseteq a$  is a "computation" of a
  - then  $k \ll a$  means  $k \in J$  for every such computation.
- VW(a) = a means that a can be computed from its key elements.

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

•  $W(m) = \{m\}$ 

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing



### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

Summary

# • $W(m) = \{m\}$ :(

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

# • $W(m) = \{m\}$ :(

although m is never sent in the clear

and no principal knows it without k

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

Summary

# • $W(m) = \{m\}$ :(

- although m is never sent in the clear
- and no principal knows it without k
- Con<sup>Q</sup> contains some sets that never occur
  - they cover the honesty assumptions

### Way below

### Dusko Pavlovic

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

•  $W(m) = \{m\}$  :(

- although m is never sent in the clear
- and no principal knows it without k
- Con<sup>Q</sup> contains some sets that never occur
  - they cover the honesty assumptions
- ▶ culprit:  $\forall a \subseteq b \in J \Rightarrow a \in J$ 
  - every derivable term is derivable on its own

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Info system

Honesty system

Domains for guessing

# Honesty system of a protocol

Derivability

$$\begin{array}{rcl} \Gamma \vdash \Theta & \Longleftrightarrow & \forall t \in \Theta \ \exists \varphi \in \Sigma^* \ \exists \vec{g} \subseteq \Gamma. \\ & \varphi(g) \stackrel{E}{=} t \end{array}$$

Honest sets

$$\begin{split} \Gamma^{\mathcal{Q}}_{A} &= A \text{'s environment in } \mathcal{Q} \\ \mathsf{Hon}^{\mathcal{Q}}_{A} &= \{ \Theta \in \wp_{\textit{fin}} \mathbb{T} \mid \Gamma^{\mathcal{Q}}_{A} \subseteq \Theta \land \Gamma^{\mathcal{Q}}_{A} \vdash \Theta \} \\ \mathsf{Hon}^{\mathcal{Q}}_{A} &= \bigcup_{A \in \mathcal{W}} \mathsf{Hon}^{\mathcal{Q}}_{A} \end{split}$$

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

# Domain of a protocol

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

Summary

# $D^{\mathcal{Q}} = \left\{ a \in \wp \mathbb{T} \mid \forall \Xi \subseteq a \exists \Theta \in \mathsf{Hon}^{\mathcal{Q}} . \Xi \subseteq \Theta \\ \land \Xi \vdash \Gamma \Rightarrow \Gamma \subseteq a \right\}$

(日)

# Honest ideals

(

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

Summary

$$\mathcal{H}D = \left\{ H \in D \mid \forall a \subseteq b \in H \\ (\exists \Theta \in \mathsf{Hon.} \ \Theta \subseteq a) \Rightarrow a \in H \\ \land \forall ab \in H \ \exists c \in H. \ a, b \subseteq c \right\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

# Guards = left multi-adjoint to



Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system Honesty system

Domains for

guessing

Summary

 $a \sqsubseteq V(H) \iff \exists G \in \mathcal{G}(a). \ G \sqsubseteq H$ 

(日)

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

Summary

# • $G(m) = \{\{k\}\}$ :)

# Example: Diffie-Hellman Key Agreement



Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

Summary

・ロ・・雪・・雪・・雪・・白・

# Example: Diffie-Hellman Key Agreement

### Way below

Dusko Pavlovic

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

Summary

• 
$$W(g^{xy}) = \{g^{xy}\}$$
 :(

• 
$$G(g^{xy}) = \{\{g^x, y\}, \{g^y, x\}\}$$
 :)

### Algebraic theory of secrecy (Meadows & DP)

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

Summary

 $\begin{array}{lll} \mathcal{G} \ \, \mathsf{guards}_{\Upsilon} \Theta & = & \forall t \in \Theta \ \forall \Xi \subseteq \Upsilon \ \exists \Gamma \in \mathcal{G}. \\ & \Xi \vdash t \Rightarrow \Xi \vdash \Gamma \end{array}$ 

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 = のへで

### Algebraic theory of secrecy (Meadows & DP)

$$\mathsf{Have}(\Theta; \mathbf{G}) = \forall X \in \mathbf{G}. \ \mathsf{\Gamma}_X \vdash \Theta$$

 $\mathsf{Only}(\Theta; \mathbf{G}) = \forall X \in \mathcal{W} \ \forall t \in \Theta. \ \mathsf{\Gamma}_X \vdash t \Rightarrow X \in \mathbf{G}$ 

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

### Algebraic theory of secrecy (Meadows & DP)

Have(
$$\Xi$$
;  $G$ )  $\Xi \vdash_G \Theta$ 

Have( $\Theta$ ; G)

$$\frac{\operatorname{Only}(\Xi_i; G_i) \big|_{i=1}^n \quad \{\Xi_i\}_{i=1}^n \text{ guards } \Theta}{\operatorname{Only}(\Theta; \bigcup_{i=1}^n G_i)}$$

$$\frac{\operatorname{Secr}(\Xi_i; G_i) \mid_{i=1}^n \quad \Xi_i \vdash_{G_i} \Theta \mid_{i=1}^n \quad \{\Xi_i\}_{i=1}^n \text{ guards } \Theta}{\operatorname{Secr}(\Theta; \bigcup_{i=1}^n G_i)}$$

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

Crypto system

unique decryption:

$$D(\overline{k}, E(k, m)) = m$$

secrecy (IND-CCA):

$$\operatorname{Prob}\left(\begin{array}{c}c_{0}\in\mathbb{A}_{0},\ m=\mathsf{D}(\overline{k},c_{0}),\\m_{0},m_{1}\in\mathbb{A}_{1}(c_{0},m),\ c\in\mathsf{E}(k,m_{b})\\c_{1}\in\mathbb{A}_{2}(c_{0},m,m_{0},m_{1},c^{\neq}),\ \widetilde{m}=\mathsf{D}(\overline{k},c_{1})\end{array}\right)$$
$$b\in\mathbb{A}_{3}(c_{0},m,m_{0},m_{1},c,c_{1},\widetilde{m})\right)\leq \frac{1}{2}$$

for any probabilistic algorithm  $\mathbb{A}=\langle \mathbb{A}_0, \mathbb{A}_1, \mathbb{A}_2, \mathbb{A}_3\rangle$ 

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty Info system

Honesty system

Domains for guessing

# Outline

Security and domains?

Information systems, honesty, and guards

Domains for Bayesian inference and guessing Guessing Enriched dependencies Guessing and continuity

Summary

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for quessing

Guessing Enriched dependencies Guessing and continuity

Summary

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Idea

- assume that the algebra  $\mathbb{T}$  is given with
  - an implementation

$$\begin{array}{ccc} \llbracket - \rrbracket & : & \mathcal{T} \to \mathcal{L} \\ & \checkmark & : & \mathcal{L} \to \mathcal{T} \end{array}$$

such that  $\sqrt{[t]} = t$ 

- monoid of feasible maps  $\mathcal{F} \subseteq \mathcal{L}^{\mathcal{L}}$
- frequency distribution

$$Prob : \mathbb{T} \longrightarrow [0, 1]$$

Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for quessing

Guessing

Enriched dependencies Guessing and continuity

Summary

# Idea

- generalize
  - from algebraic derivability

$$\begin{array}{rrrrr} -\vdash - & : & \mathcal{D} \times \mathcal{D} & \longrightarrow & \{0,1\} \\ & & \Gamma, \Theta & \longmapsto & \Gamma \vdash \Theta \end{array}$$

to Bayesian inference

$$\begin{array}{cccc} \big(- \ \vdash \ - \ \big) & : & {\it D} \times {\it D} & \longrightarrow & [0,1] \\ & & \Gamma, \Theta & \longmapsto & {\it Prob} \, (\Gamma \vdash \Theta) \end{array}$$

and guessing (cryptanalysis)

$$\begin{bmatrix} - \vdash - \end{bmatrix} : D \times D \longrightarrow [0, 1]$$
$$\Gamma, \Theta \longmapsto \bigvee_{\mathbb{A} \in \mathcal{F}} \mathsf{Prob} \left( \Gamma \vdash \Theta \in \mathbb{A}(\Gamma) \right)$$

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for quessing

Guessing

Enriched dependencies Guessing and continuity

# Hope

### Develop

- a manageable formalization of guessing
- using information systems
- enriched over the ordered monoid  $([0,1], \cdot, 1, \leq)$
- ▶ treat  $(\Gamma \vdash \Theta)$  and  $[\Gamma \vdash \Theta]$  as hom-objects in [0, 1]
  - ► the states Γ, Θ... can now be viewed as sets of equations and inequalities

### Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for guessing

Guessing

Enriched dependencies Guessing and continuity

Problem

### The Bayesian inference and guessing are **not** transitive:

Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for quessing

Guessing

Enriched dependencies Guessing and continuity

Summary

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへ⊙

Problem

### The Bayesian inference and guessing are **not** transitive:

Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for quessing

Guessing

Enriched dependencies Guessing and continuity

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ◆○◆

e.g., for

► 
$$\Gamma = \emptyset$$
, thus  $(\Xi \land \Gamma) = (\Xi)$   
►  $(\Xi \vdash \Gamma) = \frac{(\Xi \land \Gamma)}{(\Xi)} = 1$   
►  $\Theta = \neg \Xi$   
►  $(\Gamma \vdash \Theta) = (\emptyset \vdash \neg \Xi) = 1 - (\Xi)$   
►  $(\Xi \vdash \Theta) = \frac{(\Xi \land \neg \Xi)}{(\Xi)} = 0$ 

Problem

... but they do satisfy

$$\begin{aligned} (\Xi \vdash \Gamma) \cdot (\Xi, \Gamma \vdash \Theta) &= (\Xi \vdash \Gamma, \Theta) \\ [\Xi \vdash \Gamma] \cdot [\Xi, \Gamma \vdash \Theta] &= [\Xi \vdash \Gamma, \Theta] \end{aligned}$$

because

$$\frac{(\Xi\Gamma)}{(\Xi)} \cdot \frac{(\Xi\Gamma\Theta)}{(\Xi\Gamma)} = \frac{(\Xi\Gamma\Theta)}{(\Xi)}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ □ □ ● のへで

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Guessing

Enriched dependencies Guessing and continuity

# **V**-categories

► (𝔍,⊗, /)

• monoidal category, abbreviate  $k \otimes \ell$  to  $k\ell$ 

- $\blacktriangleright \mathbb{C} = \{A, B, \ldots\}$ 
  - class of objects
- ▶ (*A*, *B*) ∈ V
  - ▶ hom-objects, for every  $A, B \in \mathbb{C}$
- ▶ (ABC) :  $(A, B) \otimes (B, C) \longrightarrow (A, C)$ 
  - composition, for every  $A, B, C \in \mathbb{C}$
- $\blacktriangleright (A): I \longrightarrow (A, A)$ 
  - identities, for every  $A \in \mathbb{C}$

### Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for guessing

Guessing

Enriched dependencies

Guessing and continuity

# **V**-categories

... satisfying



### Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for guessing

Guessing

Enriched dependencies

Guessing and continuity

Summary

・ロト・日本・日本・日本・日本・日本

# $\mathbb{V}$ -categories

### **Examples**

•  $\mathbb{V} = (\{0, 1\}, \wedge, 1)$  — preorders

• 
$$\mathbb{V} = (Set, \times, 1)$$
 — categories

• 
$$\mathbb{V} = ([0,\infty],+,0)$$
 — metric spaces

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Guessing

Enriched dependencies

Guessing and continuity

Summary

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへぐ

# $\mathbb{V}\text{-dependencies}$

- ► (𝔍, ⊗, /)
  - monoidal category, abbreviate  $k \otimes \ell$  to  $k\ell$
- ► (ℂ, ·, ⊤)
  - abelian monoid of objects, abbreviate A·B to AB
- ▶ (*A*, *B*) ∈ V
  - ▶ hom-objects, for every  $A, B \in \mathbb{C}$
- $\blacktriangleright (ABC): (A, B) \otimes (AB, C) \longrightarrow (A, BC)$ 
  - composition, for every  $A, B, C \in \mathbb{C}$
- $\pi(AB) : I \longrightarrow (AB, B)$  and  $\delta(AB) : (A, B) \longrightarrow (A, BB)$ 
  - ▶ projections and diagonals, for every  $A, B \in \mathbb{C}$

### Way below

### Dusko Pavlovic

Security and domains?

Information and honesty

Domains for guessing

Guessina

Enriched dependencies

Guessing and continuity

# **V**-dependencies

... satisfying



Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Guessing

Enriched dependencies

Guessing and continuity

# **V**-dependencies

### **Examples**

▶  $\mathbb{V} = (\{0, 1\}, \land, 1)$  — semilattices honesty Domains for quessing  $a < b \land ab < c \iff a < bc$ Guessina  $\blacktriangleright$   $\mathbb{V} = (Set, \times, 1)$  — dependent types (RCCCs) Summarv  $(x: A \triangleright f(x): B(x))$  $\times$  (x: A, y: B(x)  $\triangleright$  g(x, y): C(x, y))  $\longrightarrow$   $(x: A \triangleright \langle f(x), g(x, f(x)) \rangle : B(x) \times C(x, f(x)))$  $\blacktriangleright$   $\mathbb{V} = ([0,1],\cdot,1)$  — Bayesian nets

$$(A \vdash B) \cdot (AB \vdash C) = (A \vdash BC)$$

### Way below

Dusko Pavlovic

Security and domains?

Information and

Enriched dependencies

Guessing and continuity

# Domain theory of Bayesian inference

### Definition

Let  $\mathbb{D}$  be a [0, 1]-dependency. A *Bayesian ideal* is a map  $\varphi : \mathbb{D} \longrightarrow [0, 1]$  such that

$$ig(\Xidash \Thetaig){\cdot}arphi(\Xi\Thetaig) \ \leq \ arphi(\Xiig)$$

We denote by  $\mathcal{J}\mathbb{D}$  the dependency of Bayesian ideals, with the monoid and hom-object structure

$$\begin{aligned} \varphi \cdot \psi(\Theta) &= \varphi(\Theta) \cdot \psi(\Theta) \\ (\varphi \vdash \psi) &= \bigwedge_{\Theta \in \mathbb{D}} \left( \frac{\varphi(\Theta)}{\psi(\Theta)} \wedge \frac{\psi(\Theta)}{\varphi(\Theta)} \right) \end{aligned}$$

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing Guessing Enriched dependencies Guessing and continuity

# Domain theory of guessing

### Definition

Let  $\mathbb{D}$  be a [0, 1]-dependency. A *guessing ideal* is an algorithm  $\Phi : \mathbb{D} \longrightarrow [0, 1]$  such that

$$\left[\Xi \vdash \Theta\right] \cdot \Phi(\Xi \Theta) \leq \Phi(\Xi)$$

We denote by  $\mathcal{H}\mathbb{D}$  the dependency of guessing ideals, with the monoid and hom-object structure

$$\begin{array}{lll} \Phi \cdot \Psi(\Theta) & = & \Phi(\Theta) \cdot \Psi(\Theta) \\ \left[ \Phi \vdash \Psi \right] & = & \bigwedge_{\Theta \in \mathbb{D}} \left( \frac{\Phi(\Theta)}{\Psi(\Theta)} \wedge \frac{\Psi(\Theta)}{\Phi(\Theta)} \right) \end{array}$$

### Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for guessing Guessing Enriched dependencies Guessing and continuity

# Ideals are Cauchy sequences

### Theorem

Bayesian (resp. guessing) ideals over a [0, 1]-dependency  $\mathbb{D}$  correspond to the sequences of events (resp. guesses)  $\langle \Theta_i \rangle_{i=1}^{\infty}$  such that

$$\forall k \in \mathbb{N} \exists N \in \mathbb{N} \forall n > N \forall m \in \mathbb{N}.$$
  
 
$$(\Theta_1, \Theta_2, \dots, \Theta_n \vdash \Theta_{n+m}) \geq e^{-\frac{1}{k}}$$

 $\exists N \in \mathcal{F} \ \forall k \in \mathbb{N} \ \forall n > N(k) \ \forall m \in \mathbb{N}. \\ \left[\Theta_1, \Theta_2, \dots, \Theta_n \vdash \Theta_{n+m}\right] \geq e^{-\frac{1}{k}}$ 

### Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for guessing

Guessing Enriched dependencies

Guessing and continuity

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへで

# Guessing by adjoints

Fact.

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Enriched dependencies Guessing and continuity

Summary



 $\mathsf{Y}(\Theta) \quad = \quad \big[ - \vdash \Theta \big]$ 

# Guessing by adjoints

### Proposition

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing Guessing

Enriched dependencies Guessing and continuity

Summary



 $Y(\Theta) = [-\vdash \Theta]$  $V(\Theta_i) = \lim_{i \to \infty} \Theta_i$ 

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□

# Guessing by adjoints

### Proposition



Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing Guessing Enriched dependencies

Guessing and continuity

Summary



・ロト・日本・日本・日本・日本・日本

# Way below IND-CCA

# $\begin{bmatrix} c_0 \end{bmatrix} \\ \cdot \begin{bmatrix} c_0, m = \mathsf{D}(\overline{k}, c_0) & \vdash & m_0, m_1 \end{bmatrix} \\ \cdot \begin{bmatrix} c_0, m = \mathsf{D}(\overline{k}, c_0), m_0, m_1, c \in \mathsf{E}(k, m_b) & \vdash & c_1 \neq c \end{bmatrix} \\ \cdot \begin{bmatrix} c_0, m = \mathsf{D}(\overline{k}, c_0), m_0, m_1, c \in \mathsf{E}(k, m_b), \\ c_1 \neq c, \widetilde{m} = \mathsf{D}(\overline{k}, c_1) & \vdash & b \end{bmatrix} \leq$

### Way below

### **Dusko Pavlovic**

Security and domains?

Information and honesty

Domains for guessing Guessing Enriched dependencies

Guessing and continuity

Summary

|b|

▲□▶▲□▶▲□▶▲□▶ □ のQ@

# Outline

Security and domains?

Information systems, honesty, and guards

Domains for Bayesian inference and guessing

Summary

Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Summary

# Summary

### Way below

**Dusko Pavlovic** 

Security and domains?

Information and honesty

Domains for guessing

Summary

- an algebraic theory of guessing can be presented as an algebraic theory of approximation
- a probabilistic theory of guessing can be presented by extending {0,1}-domains to [0,1]-domains

・ロト・西ト・モン・ビー もくら