Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

Network as a computer: Ranking paths to find flows

Dusko Pavlovic

Oxford University and Kestrel Institute

CSR, Moscow June 2008

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Outline

Introduction

- 1. Paths and cost
- 2.1. Dynamics and ranking
- 2.2. Path ranking
- 3. Modules, concept networks

Summary

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

Outline

Introduction Networks Problem and objective Approach

Ranking paths

Dusko Pavlovic

Introduction
Networks
Problem and objective
Approach
1. Paths and cost
2.1. Ranking
2.2. Path ranking
3. Modules
Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction

Definition

A network is an annotated graph

$$\mathsf{A} = \left(\mathsf{R} \stackrel{\varphi}{\leftarrow} \mathsf{E} \stackrel{\delta}{\underset{\mathcal{Q}}{\Rightarrow}} \mathsf{N}\right)$$

where

- N is a finite set of nodes,
- E is a finite set of edges (or links),
- *R* is an ordered rig of *rates* (e.g. \mathbb{R}_+).

Ranking paths

Dusko Pavlovic

Introduction

Networks

Problem and objective Approach

- 1. Paths and cost
- 2.1. Ranking
- 2.2. Path ranking
- 3. Modules
- Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

Introduction

Definition

A network is an annotated graph

$$\mathsf{A} = \left(\mathsf{R} \stackrel{\varphi}{\leftarrow} \mathsf{E} \stackrel{\delta}{\underset{\mathcal{Q}}{\Rightarrow}} \mathsf{N}\right)$$

where

- N is a finite set of nodes,
- E is a finite set of edges (or links),
- *R* is an ordered rig of *rates* (e.g. \mathbb{R}_+).

Notation

▶
$$i \xrightarrow[v]{} j$$
 denotes $e \in E$ such that
 $\delta(e) = i, \ \varrho(e) = j \text{ and } \varphi(e) = v$

Ranking paths

Dusko Pavlovic

Introduction

Networks

Problem and objective Approach

- 1. Paths and cost
- 2.1. Ranking
- 2.2. Path ranking
- 3. Modules
- Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction

Ranking paths

Dusko Pavlovic

Introduction
Networks
Problem and objective Approach
1. Paths and cost
2.1. Ranking
2.2. Path ranking
3. Modules
Summary

- protein interactions, gene regulation, metabolism,
- food webs, populations,

Networks are used to model

traffic, distribution systems,

neural nets,

social groups

Web, Internet

probabilistic grammars (generative, phonological)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem and objective

Networks get large and complex.

Problem

Ranking paths

Dusko Pavlovic

Introduction
Networks
Problem and objective
Approach
1. Paths and cost
2.1. Ranking
2.2. Path ranking
3. Modules
Summary

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三三 - のへぐ

Problem and objective

Ranking paths

Dusko Pavlovic

Introduction
Networks
Problem and objective
Approach
1. Paths and cost
2.1. Ranking
2.2. Path ranking
3. Modules
Summary

Problem Networks get large and complex.

Objective Simplify them...

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

... by clustering similar nodes

Ranking paths

Dusko Pavlovic

Introduction

Networks

Problem and objective Approach

- 1. Paths and cost
- 2.1. Ranking
- 2.2. Path ranking
- 3. Modules
- Summary

... by extracting functional modules

Dusko Pavlovic

Introduction

Networks

Problem and objective Approach

- 1. Paths and cost
- 2.1. Ranking
- 2.2. Path ranking
- 3. Modules
- Summary

Problem and objective

Problem of the Web

Data structures and semantics vary from node to node.

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach 1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

ロ > < 母 > < 三 > < 三 > < 三 > < 回 > < < 回 > < < 回 >

Problem and objective

Problem of the Web

Data structures and semantics vary from node to node.

Solutions

- the Semantic Web
- search, latent semantics
 - extract structure from network
 - concepts = communities = modules

Ranking paths

Dusko Pavlovic

Introduction

Networks

Problem and objective Approach

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇ ◇ ◇

Approach

Notation

Given a network
$$A = \left(R \stackrel{\varphi}{\leftarrow} E \stackrel{\delta}{\xrightarrow{\varphi}} N\right)$$
, define

• total flow
$$A_{ij} = \sum_{i \to i} \varphi(e)$$

Ranking paths

Dusko Pavlovic

Introduction Networks

Problem and objective Approach

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

Approach

Notation

Given a network
$$A = \left(R \stackrel{\varphi}{\leftarrow} E \stackrel{\delta}{\underset{o}{\Rightarrow}} N \right)$$
, define

• total flow
$$A_{ij} = \sum_{i \to j} \varphi(e)$$

Ranking paths

Dusko Pavlovic

Introduction Networks

Problem and objective

Approach

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

(日)

Approach

Notation

Given a network
$$A = \left(R \stackrel{\varphi}{\leftarrow} E \stackrel{\delta}{\underset{o}{\Rightarrow}} N \right)$$
, define

- total flow $A_{ij} = \sum_{\substack{e \ i \to j}} \varphi(e)$
- Flow distribution Φ_{ij} = A_{ij}/A_i, where A_{••} = Σ_{ij} A_{ij}
- ► flow bias $\Upsilon_{ij} = \Phi_{ij} \Phi_{i\bullet} \Phi_{\bullet j}$ where $\Phi_{i\bullet} = \sum_k \Phi_{ik}$ and $\Phi_{\bullet j} = \sum_k \Phi_{kj}$.

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach 1. Paths and cost 2.1. Ranking 2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇ ◇ ◇

Cohesion and adhesion

Definition

Cohesion of $U \subseteq N$ is the total flow bias between its members

$$\operatorname{Coh}(U) = \sum_{i,i\in U} \Upsilon_{ij}$$

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

Cohesion and adhesion

Definition

Cohesion of $U \subseteq N$ is the total flow bias between its members

$$\mathsf{Coh}(U) = \sum_{i,j \in U} \Upsilon_{ij}$$

Adhesion of $U \subseteq N$ is the total flow bias of its members and nonmembers

$$\mathsf{Adh}(U) = \sum_{i \in U, j \notin U} \Upsilon_{ij} + \Upsilon_{ji}$$

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach 1. Paths and cost 2.1. Ranking 2.2. Path ranking 3. Modules Summary

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Modularity

Definition

Modularity of $U \subseteq N$ is the difference of its cohesion and its adhesion

Mdu(U) = Coh(U) - Adh(U)

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach 1. Paths and cost 2.1. Ranking 2.2. Path ranking 3. Modules

Summary

Modularity

Definition

Modularity of $U \subseteq N$ is the difference of its cohesion and its adhesion

$$\mathsf{Mdu}(U) = \mathsf{Coh}(U) - \mathsf{Adh}(U)$$

Idea Find modules by maximizing modularity.

Ranking paths

Dusko Pavlovic

Introduction
Networks
Problem and objective
Approach
1. Paths and cost
2.1. Ranking
2.2. Path ranking
3. Modules
Summary

Finding network modules boils down to evaluating

• modularity Mdu(U) = Coh(U) - Adh(U)

Ranking paths

Dusko Pavlovic

Introduction

Networks Problem and objective

Approach

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

(日)

Finding network modules boils down to evaluating

modularity Mdu(U) = Coh(U) – Adh(U)
 which is induced by

• flow bias
$$\Upsilon : N \times N \longrightarrow [-1, 1]$$

Ranking paths

Dusko Pavlovic

Introduction	
Networks	

Problem and objective Approach

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Finding network modules boils down to evaluating

- modularity Mdu(U) = Coh(U) Adh(U)
 which is induced by
- flow bias $\Upsilon : N \times N \longrightarrow [-1, 1]$

which is induced by

• flow distribution $\Phi : N \times N \longrightarrow [0, 1],$

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach 1. Paths and cost 2.1. Ranking

2.2. Path ranking

3. Modules

Summary

Finding network modules boils down to evaluating

- modularity Mdu(U) = Coh(U) Adh(U)
 which is induced by
- flow bias $\Upsilon : N \times N \longrightarrow [-1, 1]$

which is induced by

• flow distribution $\Phi : N \times N \longrightarrow [0, 1]$,

which is induced by

• flow $\varphi : E \longrightarrow R$

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ シ へ (?)

Problems

flows unknown

- network dynamics unknown
- modules disjoint and hard to compute

Ranking paths

Dusko Pavlovic

Introduction
Networks
Problem and objective
Approach
1. Paths and cost
2.1. Ranking
2.2. Path ranking
3. Modules
Summary

Problems

•	flows unknown
	Step 1: use cost and paths to estimate flows
	network dynamics unknown
	Step 2: use Markovian and ranking methods
•	modules disjoint and hard to compute

Step 3: parametrize modularity

Ranking paths

Dusko Pavlovic

Introduction Networks Problem and objective Approach 1. Paths and cost 2.1. Ranking

2.2. Path ranking

3. Modules

Outline

Introduction

1. Paths and cost Cost networks Path completion

2.1. Dynamics and ranking

2.2. Path ranking

3. Modules, concept networks

Summary

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost Cost networks Path completion 2.1. Ranking 2.2. Path ranking

3. Modules

Summary

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

Cost instead of flow

Modified definition

A network is a labelled graph

$$A = \left(R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\underset{\varrho}{\Rightarrow}} N \right)$$

where the **cost** γ determines the likely flow φ

$$arphi(e) = 2^{-\gamma(e)}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

Path completion

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Cost instead of flow

Modified definition

A network is a labelled graph

$$\mathsf{A} = \left(\mathsf{R} \stackrel{\gamma}{\leftarrow} \mathsf{E} \stackrel{\delta}{\underset{\varrho}{\Rightarrow}} \mathsf{N}\right)$$

where the **cost** γ determines the likely flow φ

$$arphi(e)~=~2^{-\gamma(e)}$$

The estimated total flow $i \rightarrow j$ in A is now thus

$$A_{ij} = \sum_{\substack{i = j \ i o j}} 2^{-\gamma(e)}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost Cost networks

Path completion

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

Definition

Given

• network
$$A = (R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\Rightarrow} N),$$

- cutoff value $v \in R$, and
- length penalty $d \in R$,

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost Cost networks

Path completion

- 2.1. Ranking
- 2.2. Path ranking

3. Modules

Summary

(ロ) (母) (主) (主) (三) の(()

Definition

Given

• network
$$A = (R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\Rightarrow} N),$$

- cutoff value $v \in R$, and
- length penalty $d \in R$,

we define the path completion of A as

• network
$$A^{*vd} = \left(R \stackrel{\gamma}{\leftarrow} E^{*vd} \stackrel{\delta}{\underset{\varrho}{\Rightarrow}} N \right)$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost Cost networks

Path completion

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Given

• network
$$A = (R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\Rightarrow} N),$$

- cutoff value $v \in R$, and
- length penalty $d \in R$,

we define the path completion of A as

• network
$$A^{*vd} = \left(R \stackrel{\gamma}{\leftarrow} E^{*vd} \stackrel{\delta}{\Rightarrow} N \right)$$
 with

► links
$$E^{*vd} = \{a \in E^+ \mid \gamma(a) \le v\}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost Cost networks

Path completion

2.1. Ranking

2.2. Path ranking

3. Modules

Definition

Given

• network
$$A = (R \stackrel{\gamma}{\leftarrow} E \stackrel{o}{\underset{\varrho}{\Rightarrow}} N),$$

- cutoff value $v \in R$, and
- length penalty $d \in R$,

we define the path completion of A as

• network
$$A^{*vd} = \left(R \stackrel{\gamma}{\leftarrow} E^{*vd} \stackrel{\delta}{\underset{Q}{\Rightarrow}} N \right)$$
 with

► links
$$E^{*vd} = \{a \in E^+ \mid \gamma(a) \le v\}$$

E⁺ is the set of nonempty paths

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost Cost networks

Path completion

2.1. Ranking

2.2. Path ranking

3. Modules

Definition

Given

• network
$$A = (R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\underset{\varrho}{\Rightarrow}} N),$$

- cutoff value $v \in R$, and
- length penalty $d \in R$,

we define the path completion of A as

• network
$$A^{*vd} = \left(R \stackrel{\gamma}{\leftarrow} E^{*vd} \stackrel{\delta}{\Rightarrow}_{\varrho} N \right)$$
 with

► links
$$E^{*vd} = \{a \in E^+ \mid \gamma(a) \le v\}$$

E⁺ is the set of nonempty paths

• cost
$$\gamma(i_0 \xrightarrow{a_1} i_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} i_n) = (n-1)d + \gamma(a_1) + \cdots + \gamma(a_n).$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost Cost networks

Path completion

2.1. Ranking

2.2. Path ranking

3. Modules

Outline

Introduction

- 1. Paths and cost
- 2.1. Dynamics and ranking Simple network dynamics One-hop dynamics Expected unbiased flow

2.2. Path ranking

3. Modules, concept networks

Summary

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Simple network dynamics

forward: probability that traffic at *i* flows to *j*

$$A_{ij}^{\triangleright} = \frac{A_{ij}}{A_{i\bullet}}$$
 where

$$A_{i\bullet} = \sum_{k=1}^{N} A_{ik}$$

backward: probability that traffic at *j* flows from *i*

$$A_{ij}^{\triangleleft} = \frac{A_{ij}}{A_{\bullet j}}$$
 where
 $A_{\bullet j} = \sum_{k=1}^{N} A_{kj}$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めんぐ

Simple node ranking

pull rank (reputation): probability that the traffic arrives at j

$$r_j^{\triangleright} = \sum_{k=1}^N r_k^{\triangleright} A_{kj}^{\diamond}$$

push rank (promotion): probability that the traffic departs from i

$$r_i^{\triangleleft} = \sum_{k=1}^N A_{ik}^{\triangleleft} r_k^{\triangleleft}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules
Simple pull rank: Reputation

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics

One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

Simple push rank: Promotion

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics

One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

One-hop dynamics

forward out: probability that traffic at *i* flows to a hub *j*

$$A_{ij}^{\blacktriangleright} = A_{ij}^{\flat} \cdot \Phi_{j\bullet}$$
 where
 $\Phi_{i} = \sum_{k} A_{jk}$

$$\Phi_{j\bullet} = \frac{\sum_{k} A_{jk}}{\sum_{\ell k} A_{\ell k}}$$

backward in: probability that traffic at *j* flows from an authority *i*

$$A_{ij}^{\blacktriangleleft} = \Phi_{\bullet i} \cdot A_{ij}^{\triangleleft} \text{ where}$$
$$\Phi_{\bullet i} = \frac{\sum_{k} A_{ki}}{\sum_{k \ell} A_{k\ell}}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めんぐ

One-hop ranking

pull-out rank: probability that traffic arrives to a hub j

$$r_j^{\blacktriangleright} = \sum_{k=1}^N r_k^{\blacktriangleright} A_{kj}^{\blacktriangleright}$$

push-in rank: probability that traffic departs from an authority i

$$r_i^{\blacktriangleleft} = \sum_{k=1}^N A_{ik}^{\blacktriangle} r_k^{\bigstar}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ◆ ◇ ◇ ◇

Pull-out rank

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

Simple dynamics

One-hop dynamics

Expected flow

2.2. Path ranking

3. Modules

Summary

Push-in rank

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics

One-hop dynamics

Expected flow

2.2. Path ranking

3. Modules

Summary

Unibased flow

If the traffic from *j* to *k* is only driven by

- ▶ *j*'s push r_i^{\triangleright} , and by
- ► k's pull r_k^{\blacktriangleleft} ,

which are assumed to be mutually independent

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

Unibased flow

If the traffic from *j* to *k* is only driven by

- ▶ *j*'s push r_i^{\triangleright} , and by
- ► k's pull r_k^{\blacktriangleleft} ,

which are assumed to be mutually independent, then

expected unbiased flow from j to k is

$$\begin{array}{rcl} \stackrel{\scriptstyle \blacktriangleright}{}_{jk} & = & r_{j}^{\scriptscriptstyle \bullet} r_{k}^{\scriptscriptstyle \bullet} \\ & = & \sum_{i\ell} A_{ij}^{\scriptscriptstyle \bullet} r_{i\ell}^{\scriptscriptstyle \bullet} A_{k\ell} \\ & = & \sum_{i\ell} \frac{A_{ij} A_{j\bullet} A_{\bullet k} A_{k\ell}}{A_{i\bullet} A_{\bullet \bullet}^{2} A_{\bullet \ell}} r_{i\ell}^{\scriptscriptstyle \bullet} \end{array}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

Idea: capture path dynamics

Ranking paths Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking Simple dynamics One-hop dynamics Expected flow

2.2. Path ranking

3. Modules

Summary

Outline

Introduction

1. Paths and cost

2.1. Dynamics and ranking

2.2. Path ranking

Path network Dynamics of path selection Attraction dynamics

3. Modules, concept networks

Summary

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking Path network Path dynamics Attraction dynamics

3. Modules

Summary

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Definition

Given

• path complete network $A = \left(R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\Rightarrow} N \right)$

we define

• path network
$$\widehat{A} = \left(R \stackrel{\widehat{\gamma}}{\leftarrow} \widehat{E} \stackrel{\widehat{\delta}}{\Rightarrow} \widehat{N} \right)$$
, with

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics Attraction dynamics

3. Modules

Summary

Definition

Given

▶ path complete network $A = \left(R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\Rightarrow} N \right)$

we define

• path network
$$\widehat{A} = \left(R \stackrel{\widehat{\gamma}}{\leftarrow} \widehat{E} \stackrel{\widehat{\delta}}{\Rightarrow} \widehat{N} \right)$$
, with

• nodes $\widehat{N} = E$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics Attraction dynamics

3. Modules

Summary

Definition

Given

▶ path complete network $A = \left(R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\Rightarrow} N \right)$

we define

▶ path network
$$\widehat{A} = \left(R \stackrel{\widehat{\gamma}}{\leftarrow} \widehat{E} \stackrel{\widehat{\delta}}{\Rightarrow}_{\widehat{\rho}} \widehat{N} \right)$$
, with

• nodes
$$\widehat{N} = E$$

► links
$$\widehat{E} = \sum_{a,b\in E} \widehat{E}_{ab}$$
, where $\widehat{E}_{ab} = \begin{cases} i & f_0 \\ a & f_1 \\ f_1 & f_2 \\ f_1 & f_1 \\ f_1 & f_2 \\ f_2 & f_1 \\ f_1 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 \\ f_1 & f_2 \\ f_2 & f_2 \\ f_1 & f_2 \\ f_2 & f_2 \\ f_3 & f_3 \\ f_4 & f_4 \\ f_5 & f_5 \\ f_5 & f_$

・

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path dynamics

Attraction dynamics

3. Modules

Summary

Definition

Given

• path complete network $A = \left(R \stackrel{\gamma}{\leftarrow} E \stackrel{\delta}{\Rightarrow} N \right)$

we define

• path network
$$\widehat{A} = \left(R \stackrel{\widehat{\gamma}}{\leftarrow} \widehat{E} \stackrel{\widehat{\delta}}{\underset{\widehat{\rho}}{\Rightarrow}} \widehat{N} \right)$$
, with

• nodes
$$\widehat{N} = E$$

► links
$$\widehat{E} = \sum_{a,b\in E} \widehat{E}_{ab}$$
, where $\widehat{E}_{ab} = \begin{cases} 1 & j \\ j & k \\ \ell & f_1 \\ \ell & f_1 \end{cases}$
► cost $\widehat{\gamma}(f) = \gamma(f_0) + \gamma(b) + \gamma(f_1) - \gamma(a) + 2d \le v$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics Attraction dynamics

3. Modules

Summary

i

Dynamics of path selection

attraction: probability that traffic through a will traverse b

repulsion: probability that traffic through *b* is diverted away from *a*

$$\widehat{A}_{ab}^{\triangleleft} = \frac{\widehat{A}_{ab}}{\widehat{A}_{\bullet b}} \text{ where}$$
$$\widehat{A}_{\bullet b} = \sum_{x} A_{xb}$$

$$\widehat{A}_{ab}^{\flat} = \frac{\widehat{A}_{ab}}{\widehat{A}_{aullet}}$$
 where

$$\widehat{A}_{a\bullet} = \sum_{x} A_{ax}$$

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics Attraction dynamics

3. Modules

Summary

Path ranking

path pull: probability that traffic traverses b

$$\widehat{r}_{b}^{\diamond} = \sum_{a} \widehat{r}_{a}^{\diamond} \widehat{A}_{ab}^{\diamond}$$

path push: probability that traffic is diverted from a

$$\widehat{r}_{a}^{\triangleleft} = \sum_{b \in \widehat{N}} \widehat{A}_{ab}^{\triangleleft} \widehat{r}_{b}^{\triangleleft}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Path pull rank

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics Attraction dynamics

3. Modules

Summary

Path push rank

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics Attraction dynamics

3. Modules

Summary

Definition

The *node attraction* between j and k is the total attraction of all paths between them:

$$\widehat{r}_{jk} = \sum_{\substack{j \to k \\ b}} \widehat{r}_b$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

Definition

The *node attraction* between j and k is the total attraction of all paths between them:

$$\widehat{r}_{jk} = \sum_{\substack{j \to k \\ b}} \widehat{r}_b$$

Idea

Estimate the traffic bias as the difference between the node attraction and the unbiased flow

$$\Upsilon_{jk} = \widehat{r_{jk}} - r_{jk}^{\bigstar}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

Definition

The attraction dynamics of a network A is the Markov chain $\widehat{A} = (\widehat{A}_{(ij)(k\ell)})_{N^2 \times N^2}$, with the entries

$$\widehat{A}_{(ij)(k\ell)} = \frac{A_{ij}A_{jk}A_{k\ell}}{A_{j\bullet}A_{\bullet\bullet}A_{\bullet\ell}}$$

where
$$A_{i\bullet}A_{\bullet\bullet}A_{\bullet\ell} = \sum_{m,n\in N} A_{im}A_{mn}A_{n\ell}$$
.

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

ロ > < 母 > < 三 > < 三 > < 三 > < 回 > < < 回 > < < 回 >

Definition

The attraction dynamics of a network A is the Markov chain $\widehat{A} = (\widehat{A}_{(ij)(k\ell)})_{N^2 \times N^2}$, with the entries

$$\widehat{A}_{(ij)(k\ell)} = \frac{A_{ij}A_{jk}A_{k\ell}}{A_{i\bullet}A_{\bullet\bullet}A_{\bullet\ell}}$$

where
$$A_{i\bullet}A_{\bullet\bullet}A_{\bullet\ell} = \sum_{m,n\in N} A_{im}A_{mn}A_{n\ell}$$
.

Recall

$$A_{(ij)(k\ell)}^{\bigstar} = \frac{A_{ij}A_{j\bullet}A_{\bullet k}A_{k\ell}}{A_{i\bullet}A_{\bullet\bullet}A_{\bullet\bullet}A_{\bullet\ell}}$$
$$r_{jk}^{\bigstar} = \sum_{i,\ell\in\mathbb{N}}A_{(ij)(k\ell)}^{\bigstar}r_{i\ell}^{\bigstar}$$

and

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

Proposition

Let a network A be path complete for a sufficiently large cutoff value v.

Then the node attraction \hat{r} is the stationary distribution of the attraction dynamics:

$$\widehat{r}_{jk} = \sum_{i,\ell \in N} \widehat{A}_{(ij)(k\ell)} \widehat{r}_{i\ell}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

・ロト・西ト・山田・山田・山下

Corollary

The directed reputation and promotion ranks are the marginals of the node attraction

$$\sum_{k\in N} \widehat{r}_{jk} = r_j^{\bullet}$$
$$\sum_{j\in N} \widehat{r}_{jk} = r_k^{\bullet}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Interpretation

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

$$r_{j}^{\bullet} = \operatorname{Prob}\left(\bullet \xrightarrow{\xi} j \mid \xi \in \widehat{A}\right)$$
$$r_{k}^{\bullet} = \operatorname{Prob}\left(k \xrightarrow{\xi} \bullet \mid \xi \in \widehat{A}\right)$$
$$\widehat{r}_{jk} = \operatorname{Prob}\left(j \xrightarrow{\xi} k \mid \xi \in \widehat{A}\right)$$

Interpretation

The mutual information

$$I(r^{\blacktriangleright}; r^{\blacktriangleleft}) = D(\widehat{r} \parallel r^{\blacktriangleright}) = \sum_{j=1}^{N} \sum_{k=1}^{N} \widehat{r}_{jk} \log \frac{\widehat{r}_{jk}}{r_{j}^{\blacktriangleright} r_{k}^{\blacktriangleleft}}$$

quantifies the non-local information processing in A.

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics Attraction dynamics

Attraction dynamica

3. Modules

Summary

(ロ) (母) (主) (主) (三) の(()

Interpretation

The mutual information

$$I(r^{\blacktriangleright}; r^{\blacktriangleleft}) = D(\widehat{r} \parallel r^{\blacktriangleright}) = \sum_{j=1}^{N} \sum_{k=1}^{N} \widehat{r}_{jk} \log \frac{\widehat{r}_{jk}}{r_{j}^{\blacktriangleright} r_{k}^{\blacktriangleleft}}$$

quantifies the non-local information processing in A.

E.g, in the extremal cases,

- if *l*(*r*[►]; *r*[◀]) = 0, i.e. *r*[►] and *r*[◀] are independent, all information is generated by the nodes,
- if *I*(*r*[▶]; *r*[◄]) = *H*(*r*) for *r* = *r*[▶] = *r*[◄], all information is generated by the network.

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

Path network

Path dynamics

Attraction dynamics

3. Modules

Summary

Outline

Introduction

1. Paths and cost

2.1. Dynamics and ranking

2.2. Path ranking

3. Modules, concept networks Communities, concepts Associations

Summary

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts Associations

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

 Attraction bias is the difference between total attraction and the expected flow

$$\Upsilon_{jk} = \widehat{r}_{jk} - r_{jk}^{\mathbf{M}}$$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

・ロト 4回 ト 4回 ト 4回 ト 4日 - 900

 Attraction bias is the difference between total attraction and the expected flow

$$\Upsilon_{jk} = \widehat{r}_{jk} - r_{jk}^{\mu}$$

Coherence of U ⊆ N is the minimal attraction bias of its members, in either direction

$$\Upsilon(U) = \bigwedge_{i,i\in U} (\Upsilon_{ij} \vee \Upsilon_{ji})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

 Attraction bias is the difference between total attraction and the expected flow

$$\Upsilon_{jk} = \widehat{r}_{jk} - r_{jk}^{\mu}$$

Coherence of U ⊆ N is the minimal attraction bias of its members, in either direction

$$\Upsilon(U) = \bigwedge_{i,j\in U} (\Upsilon_{ij} \vee \Upsilon_{ji})$$

Communities are coherent sets of nodes

$$\mathscr{O}_{\epsilon}A = \{U \subseteq N \mid \Upsilon(U) \ge \epsilon\}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

• Each $\mathcal{O}_{\epsilon}A$, ordered by

 $U \sqsubseteq V \iff U \subseteq V \land \Upsilon(U) \leq \Upsilon(V)$

is a directed complete partial order (dcpo).

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

• Each $\mathcal{O}_{\epsilon}A$, ordered by

 $U \sqsubseteq V \iff U \subseteq V \land \Upsilon(U) \leq \Upsilon(V)$

is a directed complete partial order (dcpo).

• An ϵ -concept is a maximal element of $\mathcal{O}_{\epsilon}(A)$.

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

• Each $\mathscr{D}_{\epsilon}A$, ordered by

 $U \sqsubseteq V \iff U \subseteq V \land \Upsilon(U) \le \Upsilon(V)$

is a directed complete partial order (dcpo).

- An ϵ -concept is a maximal element of $\mathcal{D}_{\epsilon}(A)$.
- $\epsilon_1 \leq \epsilon_2$ implies $\mathscr{D}_{\epsilon_1} A \supseteq \mathscr{D}_{\epsilon_2} A$
 - \mathcal{O}_{ϵ} is easy for large and small ϵ

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Concept modules

Definition

$U \subseteq N$ is an ϵ -concept module if

- ► $\forall i, j \in U$. $\Upsilon(\{i, j\}) \ge \epsilon$, but
- ► $\forall k \in N \setminus U \exists j \in U. \Upsilon(\{k, j\}) < \epsilon.$

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

Concept modules

Definition

 $U \subseteq N$ is an ϵ -concept module if

- ► $\forall i, j \in U$. $\Upsilon(\{i, j\}) \ge \epsilon$, but
- ► $\forall k \in N \setminus U \exists j \in U. \Upsilon(\{k, j\}) < \epsilon.$

Let \mathcal{N}^{ϵ} denote the set of ϵ -concept modules in a network A.

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

ロ > < 母 > < 三 > < 三 > < 三 > < 回 > < < 回 > < < 回 >
Association networks

Given a path complete network *A*, the induced concept network

$$\mathcal{A}^{\epsilon} = \left(\mathsf{R} \stackrel{\gamma}{\leftarrow} \mathcal{E}^{\epsilon} \stackrel{\delta}{\underset{\varrho}{\Rightarrow}} \mathcal{N}^{\epsilon}
ight)$$

consists of

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Communities, concepts

Associations

Summary

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ● ●

Outline

Introduction

- 1. Paths and cost
- 2.1. Dynamics and ranking
- 2.2. Path ranking
- 3. Modules, concept networks

Summary

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

(ロ) (母) (主) (主) (三) の(()

Summary

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

- extended the ranking methods to paths
 - path rank is a measure of nonlocal information
 - allows estimating the flow bias to extract modules

Summary

- extended the ranking methods to paths
 - path rank is a measure of nonlocal information
 - allows estimating the flow bias to extract modules
- extracted modules (= communities = concepts)
 - parametric, richer structure for simpler algorithmics
 - concept networks for latent semantics

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

Current work

Is this method "real"?

- experimental validation
 - PL networks
 - IMDB
- relate with spectral methods
- algorithmics, convergence...

Ranking paths

Dusko Pavlovic

Introduction

1. Paths and cost

2.1. Ranking

2.2. Path ranking

3. Modules

Summary

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ