

Probabilistic Model Checking and Strategy Synthesis

Dave Parker

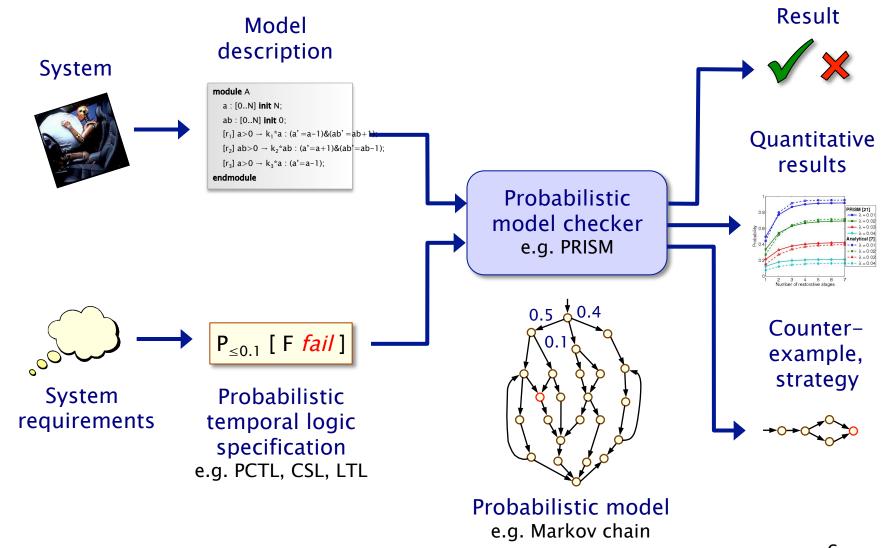
University of Birmingham

NASA Ames, October 2013

Probabilistic Model Checking and Strategy Synthesis

Dave Parker

University of Birmingham

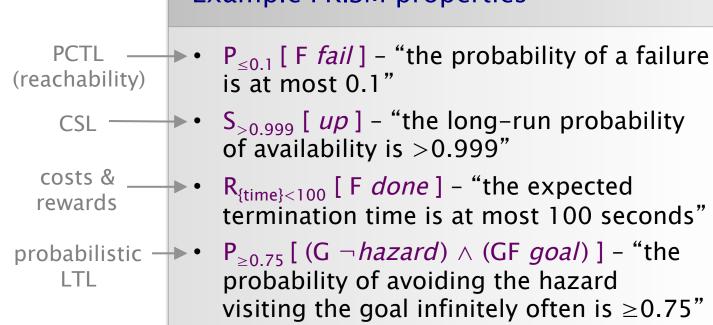

Joint work with: Marta Kwiatkowska, Vojtěch Forejt, Gethin Norman, Hongyang Qu, Aistis Simaitis, Taolue Chen, ...

Overview

- Probabilistic model checking & PRISM
 - example: Bluetooth
- Verification vs. strategy synthesis
 - Markov decision processes (MDPs)
 - example: robot controller
- Multi-objective probabilistic model checking
 - examples: team-formation/power management/...
- Model checking stochastic games
 - example: energy management

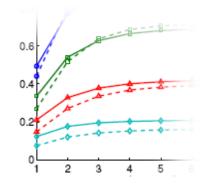
Motivation

- Verifying probabilistic systems...
 - unreliable or unpredictable behaviour
 - failures of physical components
 - message loss in wireless communication
 - unreliable sensors/actuators
 - randomisation in algorithms/protocols
 - random back-off in communication protocols
 - random routing to reduce flooding or provide anonymity
- We need to verify quantitative system properties
 - "the probability of the airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
 - not just correctness: reliability, timeliness, performance, ...

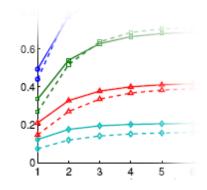

Various types of probabilistic models supported

PRISM models

- discrete-time Markov chains (DTMCs)
- continuous-time Markov chains (CTMCs)
- Markov decision processes (MDPs)
- probabilistic automata (PAs)
- probabilistic timed automata (PTAs)
- stochastic multi-player games (SMGs)

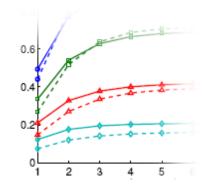

- Various types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logics (probabilities, timing, costs, rewards, ...)

Example PRISM properties



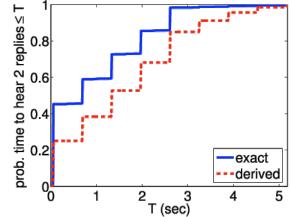
- Various types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logics (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
 - P_{≤0.1} [F fail] "the probability of a failure occurring is at most 0.1"

 P_{=?} [F fail] – "what is the probability of a failure occurring?"


- Various types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logics (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results
 - compared to, for example, simulation

- Various types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logics (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results
 - compared to, for example, simulation
- Combines numerical & exhaustive analysis
 - especially useful for nondeterministic models
 - P_{=?} [F *fail* {*trigger*}{max}]

- Various types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logics (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
 - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results
 - compared to, for example, simulation
- Combines numerical & exhaustive analysis


 especially useful for nondeterministic models

- Flexible, fully automated & widely applicable
 - network/communication protocols, security, robotics & planning, power management, nanotechnology, biology...

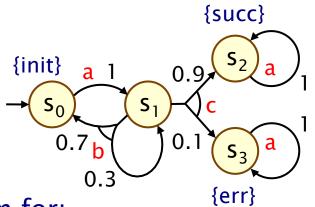
Case study: Bluetooth

- Device discovery between pair of Bluetooth devices.
 - performance essential for this phase
- Complex discovery process
 - two asynchronous 28-bit clocks
 - pseudo-random hopping between 32 frequencies
 - random waiting scheme to avoid collisions
 - 17,179,869,184 initial configurations (too many to sample effectively)
- Probabilistic model checking (PRISM)
 - e.g. "worst-case expected discovery time is at most 5.17s"
 - e.g. "probability discovery time exceeds 6s is always < 0.001"
 - shows weaknesses in simplistic analysis

freq = $[CLK_{16-12}+k+$

 $(CLK_{4-2,0}-CLK_{16-12})$

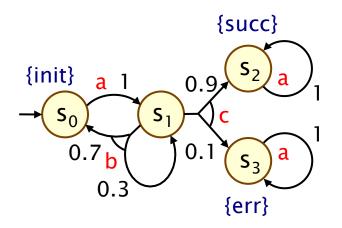
mod 16] mod 32


Overview

Probabilistic model checking & PRISM

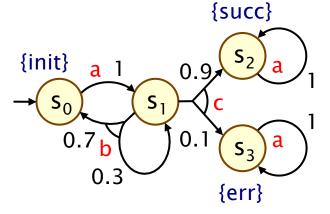
- example: Bluetooth
- Verification vs. strategy synthesis
 - Markov decision processes (MDPs)
 - example: robot controller
- Multi-objective probabilistic model checking
 - examples: team-formation/power management/...
- Model checking stochastic games
 - example: energy management

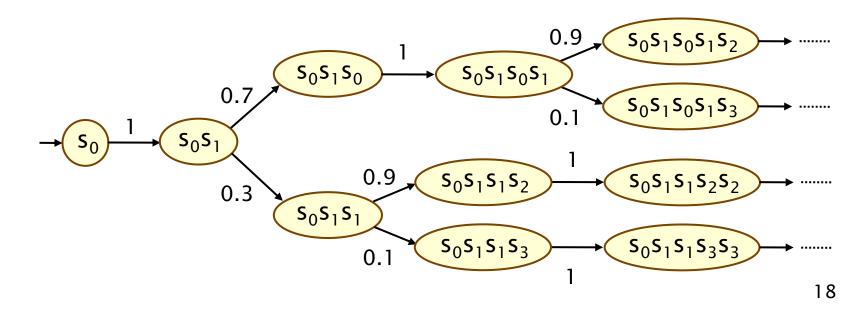
Markov decision processes (MDPs)


- Markov decision processes (MDPs)
 - model nondeterministic as well as probabilistic behaviour
 - widely used also in planning, optimal control, ...
 - nondeterministic choice between probability distributions

- Nondeterminism for:
 - concurrency/scheduling: interleavings of parallel components
 - abstraction, or under-specification, of unknown behaviour
 - adversarial behaviour of the environment, or control

Strategies


- A strategy (or "policy" or "adversary")
 - is a resolution of nondeterminism, based on history
 - is (formally) a mapping σ from finite paths to distributions
 - induces an (infinite-state) discrete-time Markov chain


- Classes of strategies:
 - randomisation: deterministic or randomised
 - memory: memoryless, finite-memory, or infinite-memory

Example strategy

- Strategy σ which picks b then c in s_1
 - o is finite-memory and deterministic

• Fragment of induced Markov chain:

Verification vs. Strategy synthesis

• 1. Verification

- quantify over all possible strategies (i.e. best/worst-case)
- $P_{\leq 0.01}$ [F *err*]: "the probability of an error occurring is ≤ 0.01 for all strategies"
- applications: randomised communication protocols, randomised distributed algorithms, security, ...

2. Strategy synthesis

- generation of "correct-by-construction" controllers
- $P_{\leq 0.01}$ [F *err*]: "does there exist a strategy for which the probability of an error occurring is ≤ 0.01 ?"
- applications: robotics, power management, security, ...
- Two dual problems; same underlying computation:
 - compute optimal (minimum or maximum) values

{succ}

Sz

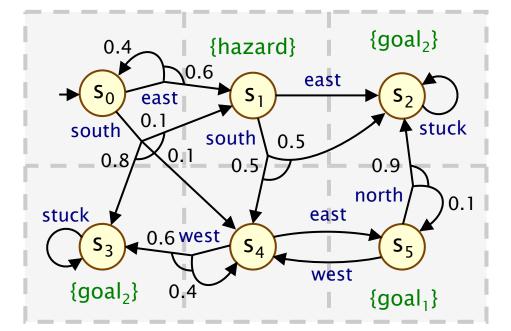
{err}

0 0

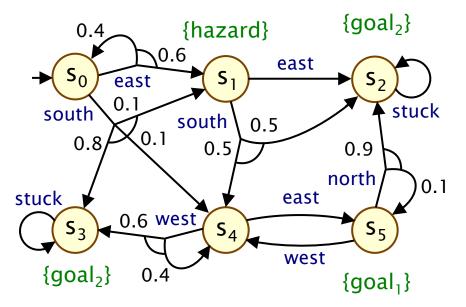
0.1

S₁

{init}

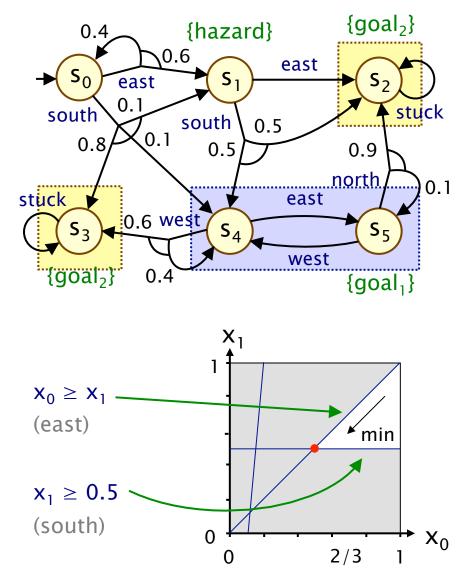

a 1

0.7_b


Running example

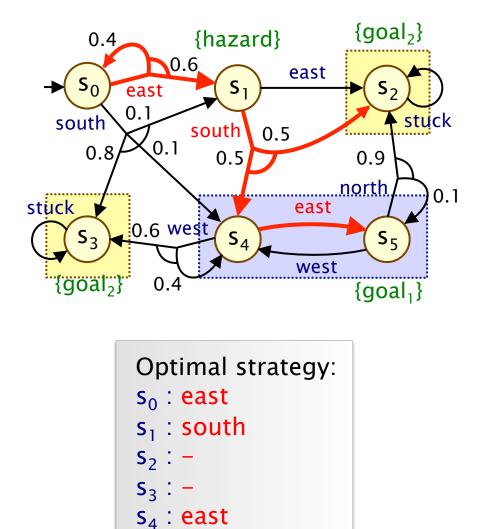
• Example MDP

- robot moving through terrain divided in to 3 x 2 grid


Example – Reachability

Verify: $P_{\leq 0.6}$ [F goal₁] or Synthesise for: $P_{\geq 0.4}$ [F goal₁] ψ Compute: $P_{max=?}$ [F goal₁]

Optimal strategies: memoryless and deterministic

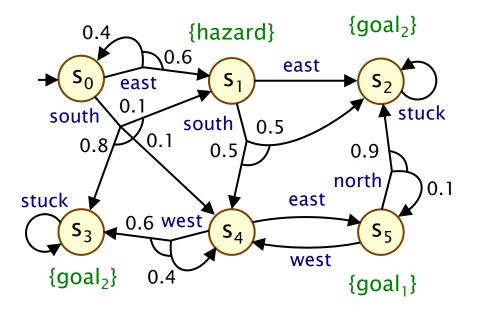

Example – Reachability

Verify: $P_{\leq 0.6}$ [F goal₁] or Synthesise for: $P_{\geq 0.4}$ [F goal₁] ψ Compute: $P_{max=?}$ [F goal₁] = 0.5

Optimal strategies: memoryless and deterministic

Example – Reachability

 S_{5} : -

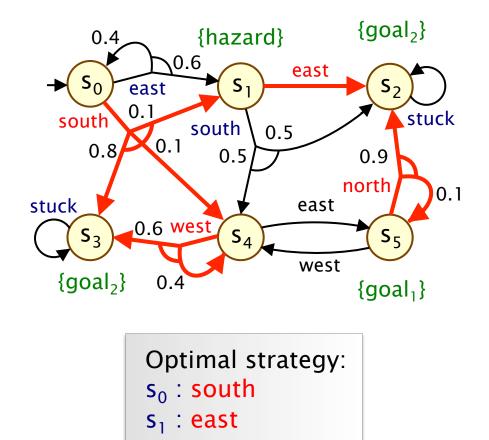

Verify: P_{≤0.6} [F goal₁] or

Synthesise for: $P_{\geq 0.4}$ [F goal₁]

Compute: $P_{max=?}$ [F goal₁] = 0.5

Optimal strategies: memoryless and deterministic

Example – Costs/rewards



 $R_{min=?}$ [F goal₂]

"what is the minimum expected number of moves needed to reach goal₂?"

Optimal strategies: memoryless and deterministic

Example – Costs/rewards

 $S_2 : -$

 $S_3 : -$

s₄ : west

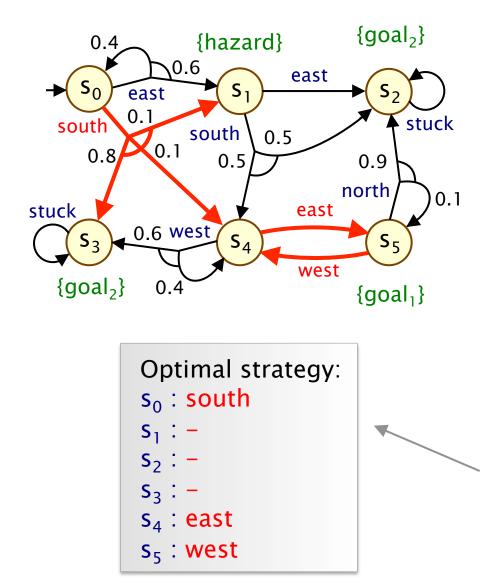
s₅ : north

 $R_{min=?}$ [F goal₂] = 19/15

"what is the minimum expected number of moves needed to reach goal₂?"

Optimal strategies: memoryless and deterministic

Example – LTL


 $P_{max=?}[(G\neg hazard) \land (GF goal_1)]$

"what is the maximum probability of avoiding hazard and visiting goal₁ infinitely often?"

Optimal strategies: finite-memory and deterministic

Computation: construct product of MDP and a deterministic ω-automaton; then probabilistic reachability

Example – LTL

 $P_{max=?}[(G\neg hazard) \land (GF goal_1)]$

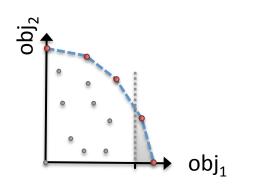
"what is the maximum probability of avoiding hazard and visiting goal₁ infinitely often?" = 0.1

Optimal strategies: finite-memory and deterministic

Computation: construct product of MDP and a deterministic ω-automaton; then probabilistic reachability

In this instance, memoryless (not usually)

Overview


- Probabilistic model checking & PRISM
 - example: Bluetooth
- Verification vs. strategy synthesis
 - Markov decision processes (MDPs)
 - example: robot controller
- Multi-objective probabilistic model checking
 - examples: team-formation/power management/...
- Model checking stochastic games
 - example: energy management

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P_{max=?} [F send], R^{time}_{>10} [C])
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"

Pareto queries:

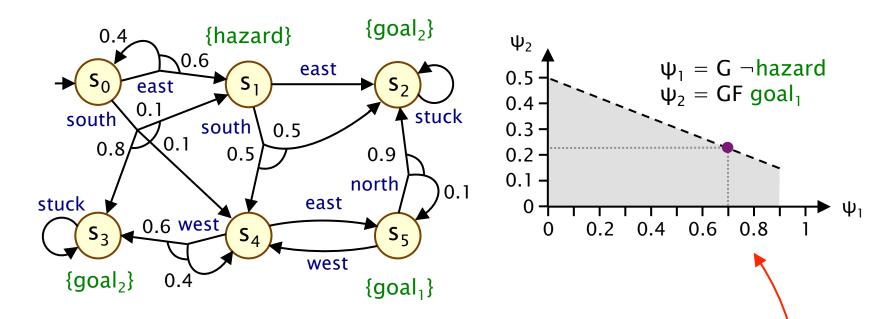
- multi(P_{max=?}[F send], R^{time}max=?[C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

30

Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, piectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{>0.95} [F send], R^{time}_{>10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P^e_{max=?} [F *sind*], R^{time}_{>10} [C])
 - e.g. "maximum probability of mess e transmission, assuming expected battery life-times > 10 hrs?"

• Pareto queries:

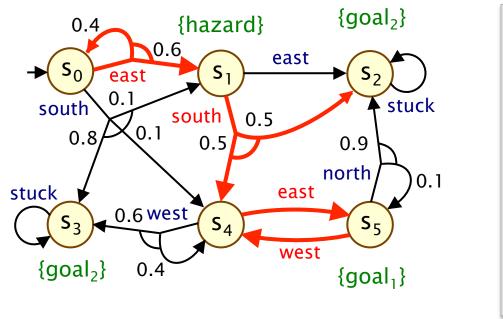

- multi(P_{max=?} [F **Send**], R^{time}max=? [C])
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

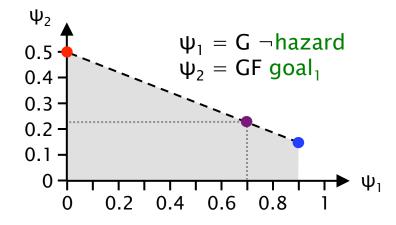
obj₁

Multi-objective model checking

- Optimal strategies for multiple objectives
 - may be randomised
 - and finite-memory (when using LTL formulae)
- Multi-objective probabilistic model checking
 - reduces to linear programming,
 on an MDP-automata product [TACAS'07,TACAS'11]
 - can be approximated using iterative numerical methods, via approximation of the Pareto curve [ATVA'12]
- Extensions [ATVA'12]
 - arbitrary Boolean combinations of objectives
 - · e.g. $\psi_1 \Rightarrow \psi_2$ (all strategies satisfying ψ_1 also satisfy ψ_2)
 - time-bounded (finite-horizon) properties

Example - Multi-objective

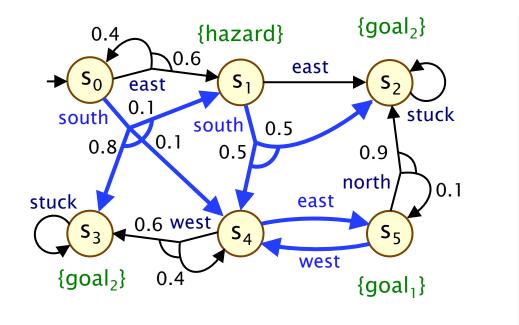


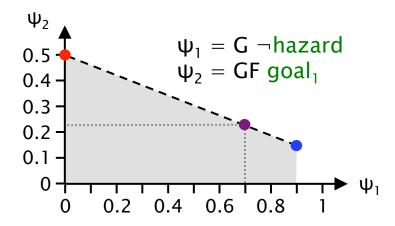

- Achievability query
 - $P_{\geq 0.7} [G \neg hazard] \land P_{\geq 0.2} [GF goal_1]? True (achievable)$
- Numerical query

- $P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G ¬hazard]? ~0.2278

- Pareto query
 - for $P_{max=?}$ [G ¬hazard] \land $P_{max=?}$ [GF goal₁]?

Example - Multi-objective

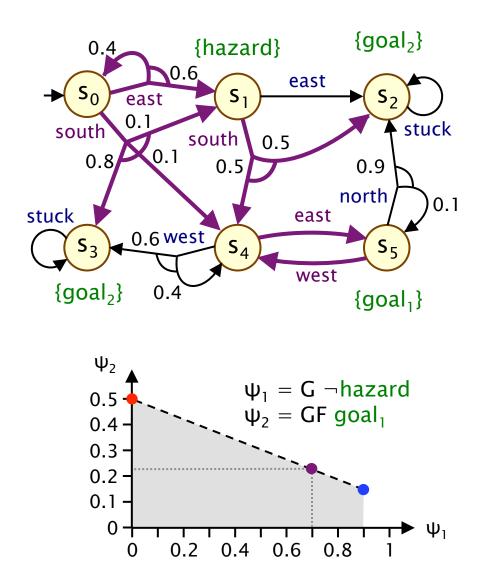




Strategy 1 (deterministic) s_0 : east s_1 : south s_2 : s_3 : s_4 : east s_5 : west

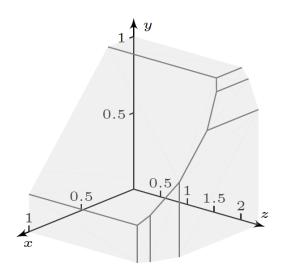
34

Example – Multi–objective



Strategy 2 (deterministic) s_0 : south s_1 : south s_2 : s_3 : s_4 : east s_5 : west

35


Example – Multi–objective

Optimal strategy: (randomised) $s_0 : 0.3226 : east$ 0.6774 : south $s_1 : 1.0 : south$ $s_2 :$ $s_3 :$ $s_4 : 1.0 : east$ $s_5 : 1.0 : west$

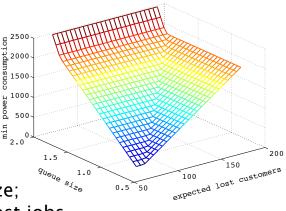
Multi-objective: Applications

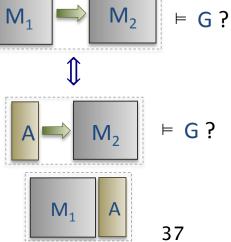
Synthesis of team formation strategies [CLIMA'11, ATVA'12]

Pareto curve:

x="probability of completing task 1"; y="probability of completing task 2"; z="expected size of successful team"

Synthesis of dynamic power management controllers [TACAS'11]

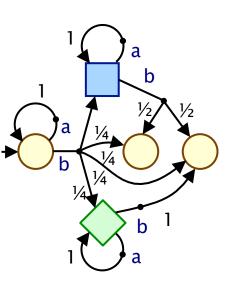

"minimise energy consumption, subject to constraints on: (i) expected job queue size; (ii) expected number of lost jobs



Assume-guarantee query:

"does component M₂ satisfy guarantee G, provided that assumption A always holds?" reduces to...

"is there an adversary (strategy) of M_2 satisfying A but not G?"

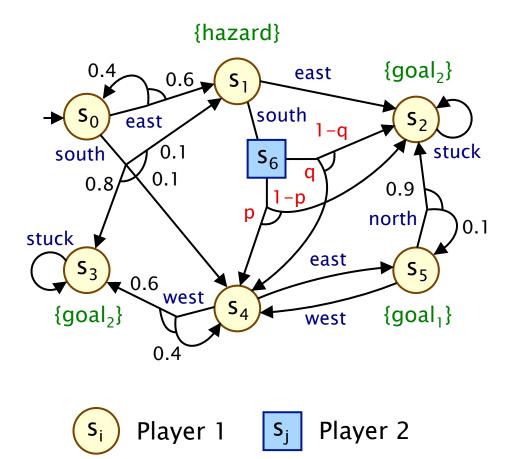


Overview

- Probabilistic model checking & PRISM
 - example: Bluetooth
- Verification vs. strategy synthesis
 - Markov decision processes (MDPs)
 - example: robot controller
- Multi-objective probabilistic model checking
 - examples: team-formation/power management/...
- Model checking stochastic games
 - example: energy management

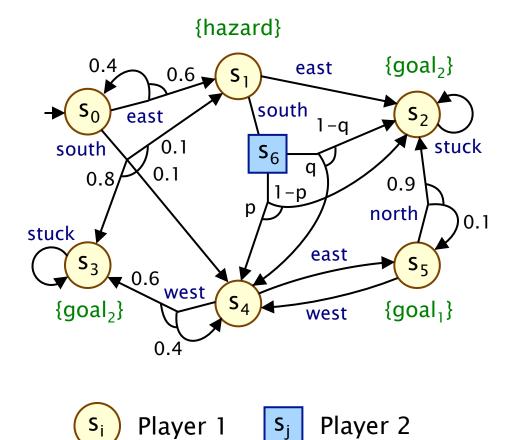
Stochastic multi-player games (SMGs)

- Stochastic multi-player games
 - players control states; choose actions
 - models competitive/collaborative behaviour
 - applications: security (system vs. attacker), controller synthesis (controller vs. environment), distributed algorithms/protocols, ...



Property specifications: rPATL

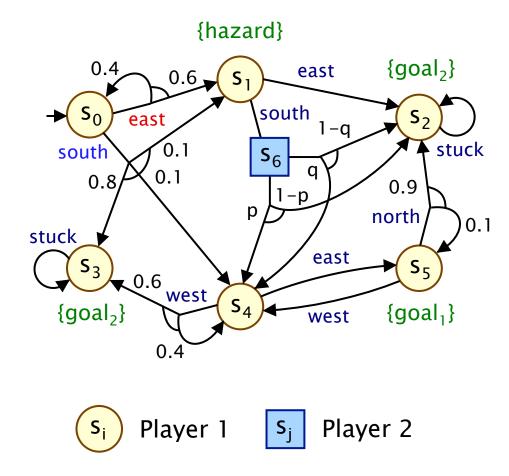
- $\langle\langle\{1,2\}\rangle\rangle P_{\geq 0.95}$ [$F^{\leq 45}$ *done*] : "can nodes 1,2 collaborate so that the probability of the protocol terminating within 45 seconds is at least 0.95, whatever nodes 3,4 do?"
- formally: $\langle\langle C \rangle\rangle \psi$: do there exist strategies for players in C such that, for all strategies of other players, property ψ holds?
- Model checking [TACAS'12,FMSD'13]
 - zero sum properties: analysis reduces to 2-player games
 - PRISM-games: <u>www.prismmodelchecker.org/games</u>


Example – Stochastic games

- Two players: 1 (robot controller), 2 (environment)
 - − probability of s_1 -south→ s_4 is in [p,q] = [0.5-Δ, 0.5+Δ]

Example – Stochastic games

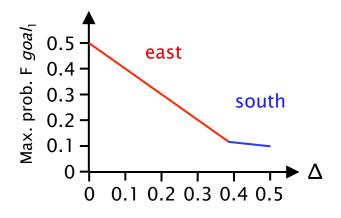
- Two players: 1 (robot controller), 2 (environment)
 - probability of s_1 -south $\rightarrow s_4$ is in [p,q] = [0.5- Δ , 0.5+ Δ]


rPATL: $\langle\langle \{1\}\rangle\rangle P_{max=?} [Fgoal_1]$

Optimal strategies: memoryless and deterministic

Computation: graph analysis & numerical approximation

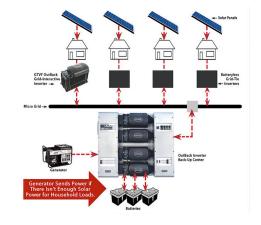
Example – Stochastic games

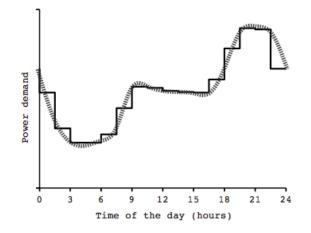

- Two players: 1 (robot controller), 2 (environment)
 - probability of s_1 -south $\rightarrow s_4$ is in [p,q] = [0.5- Δ , 0.5+ Δ]

rPATL: $\langle\langle \{1\}\rangle\rangle P_{max=?}[Fgoal_1]$

Optimal strategies: memoryless and deterministic

Computation: graph analysis & numerical approximation

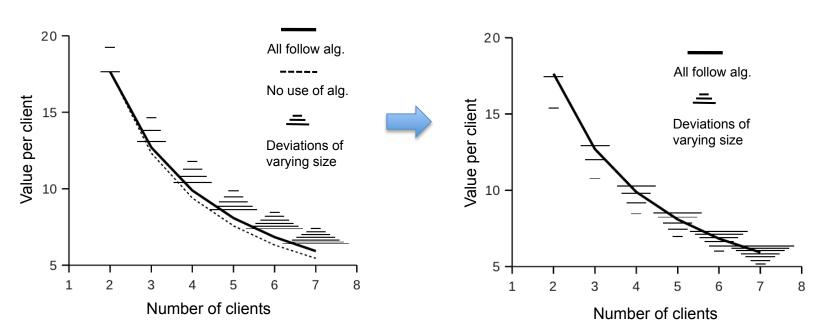



Example: Energy management

- Energy management protocol for Microgrid
 - Microgrid: local energy management
 - randomised demand management protocol
 - random back-off when demand is high
- Original analysis [Hildmann/Saffre'11]
 - protocol increases "value" for clients
 - simulation-based, clients are honest

Our analysis

- stochastic multi-player game model
- clients can cheat (and cooperate)
- model checking: PRISM-games



Example: Energy management

Exposes protocol weakness

 incentive for clients to act selfishly

- We propose a simple fix (and verify it)
 - clients can be punished

Value per client

Value per client, with fix

Conclusion

- Probabilistic model checking & PRISM
 - Markov decision processes (MDPs)
 - PCTL, probabilistic LTL, expected costs/rewards
 - verification vs. controller synthesis
- Multi-objective probabilistic model checking
 - trade-offs between conflicting objectives
 - achievability queries, numerical queries, Pareto curves
- Model checking for stochastic multi-player games
 - competitive/collaborative behaviour
 - rPATL model checking

Challenges

- stochastic games: multiple objectives, richer temporal logics
- partial information/observability