

Automated Verification of
 Probabilistic Real-time Systems

Dave Parker
University of Birmingham

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www.prismmodelchecker.org/lectures/movep14/
- slides, tutorial papers, reference list, ...

Probabilistic model checking

Reminder: Why probability?

- Many real-world systems are inherently probabilistic...
- Unreliable or unpredictable behaviour
- failures of physical components
- message loss in wireless communication
- Use of randomisation (e.g. to break symmetry)
- random back-off in communication protocols
- in gossip routing to reduce flooding
- in security protocols, e.g. for anonymity
(923 9
- And many others...
- biological processes, e.g. DNA computation
- quantum computing algorithms

Probabilistic real-time systems

- Systems with probability, nondeterminism and real-time
- e.g. wireless communication protocols
- e.g. randomised security protocols
- Randomised back-off schemes
- Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
- Bluetooth device discovery phase
- Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
- IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
- Crowds anonymity, gossip-based routing

Probabilistic models

	Fully probabilistic	Nondeterministic
$\begin{array}{c}\text { Discrete } \\ \text { time }\end{array}$	$\begin{array}{c}\text { Discrete-time } \\ \text { Markov chains } \\ \text { (DTMCs) }\end{array}$	$\begin{array}{c}\text { Markov decision } \\ \text { processes (MDPs) }\end{array}$
$\begin{array}{c}\text { Continuous } \\ \text { time }\end{array}$	$\begin{array}{c}\text { Continuous-time } \\ \text { Markov chains } \\ \text { (CTMCs) }\end{array}$	$\begin{array}{c}\text { Probabilistic } \\ \text { automata (PAs) }\end{array}$
automata (PTAs)		

Verifying probabilistic systems

- Quantitative notions of correctness
- "the probability of an airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001 "
- in temporal logic: $\mathrm{P}_{\leq 0.001}$ [$\mathrm{G}^{\leq 0.02 \text { !"deploy"] }}$
- Not just correctness
- reliability, dependability, performance, resource usage (e.g. battery life), security, privacy, trust, anonymity, ...
- Usually focus on numerical properties:
- e.g.: $P_{=?}$ [$G^{\leq 0.02 \text { !"deploy"] }] ~}$
- or $\mathrm{P}_{=?}$ [$\mathrm{G} \leq \mathrm{T}$!"deploy"] for varying T
- Combine numerical + exhaustive aspects
- i.e. worst-case (or best-case) probabilities

- e.g.: $\mathrm{P}_{\max =\text { ? }}$ [$\mathrm{G}^{\leq 0.02 \text { !"deploy"] }}$

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www.prismmodelchecker.org/lectures/movep 14 /
- slides, tutorial papers, reference list,

Case study: FireWire protocol

- FireWire (IEEE 1394)
- high-performance serial bus for networking multimedia devices; originally by Apple
- "hot-pluggable" - add/remove
 devices at any time
- no requirement for a single PC (but need acyclic topology)
- Root contention protocol
- leader election algorithm, when nodes join/leave
- symmetric, distributed protocol
- uses randomisation (electronic coin tossing) and timing delays
- nodes send messages: "be my parent"
- root contention: when nodes contend leadership
- random choice: "fast"/"slow" delay before retry

FireWire leader election

FireWire root contention

FireWire root contention

FireWire analysis

- Detailed probabilistic model:
- probabilistic timed automaton (PTA), including:
- concurrency: messages between nodes and wires
- timing delays taken from official standard
- underspecification of delays (upper/lower bounds)

- maximum model size: 170 million states
- Probabilistic model checking (with PRISM)
- verified that root contention always resolved with probability 1

```
- P P>1 [F (end ^ elected)]
```

- investigated worst-case expected time taken for protocol to complete

```
- R Rmax=? [ F (end ^ elected)]
```

- investigated the effect of using biased coin

FireWire: Analysis results

"minimum probability of electing leader by time T"

FireWire: Analysis results

"minimum probability of electing leader by time T"
(short wire length)

Using a biased coin

FireWire: Analysis results

"maximum expected time to elect a leader"
(short wire length)

Using a biased coin

FireWire: Analysis results

"maximum expected time to elect a leader"
(short wire length)
Using a biased coin is beneficial!

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www. prismmodelchecker.org/lectures/movep14/
- slides, tutorial papers, reference list,

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs)
Continuous time	Continuous-time Markov chains (CTMCs)	Probabilistic automata (PAs)
Interactive Markov		
chains (IMCs), ...		

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
- state-transition systems augmented with probabilities

- Model checking, e.g. with PCTL
- based on probability measure over paths
- e.g. $\mathrm{P}_{<0.15}$ [F lost] - maximum probability of loss is <0.15

Recap: MDPs

- Markov decision processes (MDPs) (or probabilistic automata)
- mix probability and nondeterminism
- states: nondeterministic choice over actions
- each action leads to a probability distributions over successor states

- Adversaries (schedulers, policies, ...)
- resolve nondeterministic choices based on history so far
- properties quantify over all possible adversaries
- e.g. $\mathrm{P}_{<0.15}$ [F lost] - maximum probability of loss is <0.15

Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
- Markov decision processes (MDPs) + real-valued clocks
- or: timed automata + discrete probabilistic choice
- model probabilistic, nondeterministic and timed behaviour
- PTAs comprise:
- clocks (increase simultaneously)
- locations (labelled with invariants)
- transitions (action + guard + probabilities + resets)
- Semantics

- PTA represents an infinite-state MDP
- states are location/clock valuation pairs (l,v) $\in \operatorname{Loc} \times \mathbb{R}^{X}$
- nondeterminism: choice of actions + elapse of time

Time, clocks and clock valuations

- Dense (continuous) time domain: non-negative reals $\mathbb{R}_{\geq 0}$
- from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}
- Finite set of clocks $x \in X$
- variables taking values from time domain \mathbb{R}
- increase at the same rate as real time
- A clock valuation is a tuple $v \in \mathbb{R}^{X}$. Some notation:
$-v(x)$: value of clock x in v
$-v+t$: time increment of t for v
$-\mathrm{v}[\mathrm{Y}:=0]$: clock reset of clocks $\mathrm{Y} \subseteq \mathrm{X}$ in v

Zones (clock constraints)

- Zones (clock constraints) over clocks X, denoted Zones(X):

$$
\begin{aligned}
& \zeta::=x \leq d|c \leq x| x+c \leq y+d|\neg \zeta| \zeta \vee \zeta \\
& \text { - where } x, y \in X \text { and } c, d \in \mathbb{N} \\
& \text { - e.g.: } x \leq 2, x \leq y,(x \geq 2) \wedge(x<3) \wedge(x \leq y)
\end{aligned}
$$

- Can derive:
- logical connectives, e.g. $\zeta_{1} \wedge \zeta_{2} \equiv \neg\left(\neg \zeta_{1} \vee \neg \zeta_{2}\right)$
- strict inequalities, through negation, e.g. $x>5 \equiv \neg(x \leq 5) \ldots$
- Used for both:
- syntax of PTAs/properties
- algorithms/implementations for model checking

Zones and clock valuations

- A clock valuation v satisfies a zone ζ, written $\vee \triangleright \zeta$ if
- ζ resolves to true after substituting each clock x with $v(x)$
- The semantics of a zone $\zeta \in \operatorname{Zones}(X)$ is the set of clock valuations which satisfy it (i.e. a subset of \mathbb{R}^{X})
- NB: multiple zones may have the same semantics
- e.g. $(x \leq 2) \wedge(y \leq 1) \wedge(x \leq y+2)$ and $(x \leq 2) \wedge(y \leq 1) \wedge(x \leq y+3)$
- but we assume canonical ("tight") zones
- allows us to use syntax for zones interchangeably with semantic, set-theoretic operations
- Some useful classes of zones:
- closed: no strict inequalities (e.g. $x>5$)
- diagonal-free: no comparisons between clocks (e.g. $x \leq y$)
- convex: define a convex set, efficient to manipulate

c-equivalence and c-closure

- Clock valuations v and v^{\prime} are $c-e q u i v a l e n t$ if for any $x, y \in X$
- either $v(x)=v^{\prime}(x)$, or $v(x)>c$ and $v^{\prime}(x)>c$
- either $v(x)-v(y)=v^{\prime}(x)-v^{\prime}(y)$ or $v(x)-v(y)>c$ and $v^{\prime}(x)-v^{\prime}(y)>c$
- The c-closure of the zone ζ, denoted close (ζ, c), equals
- the greatest zone $\zeta^{\prime} \supseteq \zeta$ such that, for any $v^{\prime} \in \zeta^{\prime}$, there exists $v \in \zeta$ and v and v ' are c-equivalent
- c-closure ignores all constraints which are greater than c
- for a given c , there are only a finite number of c -closed zones

Operations on zones

- Operations on zones:
- Set-theoretic operations

- Time operations

Probabilistic timed automata - Syntax

- A probabilistic timed automata (PTA) is:
- a tuple (Loc, $\mathrm{I}_{\text {init }}$, Act, X, inv, prob, L)
- where:
- Loc is a finite set of locations
$-I_{\text {init }} \in$ Loc is the initial location
- Act is a finite set of actions
- X is a finite set of clocks
- inv : Loc \rightarrow Zones(X) is the invariant condition
- prob $\subseteq \operatorname{Loc} \times \operatorname{Zones}(X) \times \operatorname{Dist}\left(\operatorname{Loc} \times 2^{\mathrm{X}}\right)$ is the probabilistic edge relation
-L : Loc $\rightarrow 2^{\text {AP }}$ is a labelling function

Probabilistic edge relation

- Probabilistic edge relation
- prob $\subseteq \operatorname{Loc} \times$ Zones $(X) \times$ Act $\left.\times \operatorname{Dist(Loc} \times 2^{\mathrm{X}}\right)$
- Probabilistic edge $(\mathrm{l}, \mathrm{g}, \mathrm{a}, \mathrm{p}) \in \mathrm{prob}$
- I is the source location
- g is the guard
- a is the action
- p target distribution
- Edge (l,g,a,p,l’,Y)

- from probabilistic edge (l,g,a,p) where $p\left(l^{\prime}, Y\right)>0$
- I' is the target location
- Y is the set of clocks to be reset (to zero)

PTA - Example

- Models a simple probabilistic communication protocol
- starts in location init; after between 1 and 2 time units, the protocol attempts to send the data:
- with probability 0.9 data is sent correctly, move to location done
- with probability 0.1 data is lost, move to location lost
- in location lost, after 2 to 3 time units, attempts to resend
- correctly sent with probability 0.95 and lost with probability 0.05

PTAs - Behaviour

- A state of a PTA is a pair $(\mathrm{I}, \mathrm{v}) \in \operatorname{Loc} \times \mathbb{R}^{\mathrm{X}}$ such that $\mathrm{v} \triangleright \operatorname{inv}(\mathrm{I})$
- Start in the initial location with all clocks set to zero
- i.e. initial state is ($\mathrm{I}_{\text {init }}, \mathbf{0}$)
- For any state (l, v), there is nondeterministic choice between making a discrete transition and letting time pass
- discrete transition (l,g,a,p) enabled if $\mathrm{v} \triangleright \mathrm{g}$ and probability of moving to location I' and resetting the clocks Y equals $p\left(l^{\prime}, Y\right)$
- time transition available only if invariant inv(I) is continuously satisfied while time elapses

PTA - Example execution

PTAs - Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_{p}=\left(S_{p}, s_{\text {init }}, \alpha_{p}, \delta_{p}, L_{p}\right)$ with:
- States: $S_{P}=\left\{(I, v) \in \operatorname{Loc} \times \mathbb{R}^{X}\right.$ such that $\left.v \triangleright \operatorname{inv}(\mathrm{I})\right\}$
- Initial state: $\mathrm{s}_{\text {init }}=\left(\mathrm{l}_{\text {init }}, \underline{0}\right)$ of PTA P or real time delays
- Actions: $\alpha_{p}=A c t \cup \mathbb{R}$
- $\delta_{p} \subseteq S_{P} \times \alpha_{p} \times \operatorname{Dist}\left(S_{P}\right)$ such that $(s, a, \mu) \in \delta_{p}$ iff:
- (time transition) $a \in \mathbb{R}, \mu(l, v+t)=1$ and $v+t^{\prime} \triangleright i n v(l)$ for all $t^{\prime} \leq t$
- (discrete transition) $\mathrm{a} \in$ Act and there exists $(\mathrm{l}, \mathrm{g}, \mathrm{a}, \mathrm{p}) \in$ prob such that $v \triangleright g$ and, for any $\left(l^{\prime}, v^{\prime}\right) \in S_{p}: \mu\left(l^{\prime}, v^{\prime}\right)=\quad \sum p\left(I^{\prime}, Y\right)$
- Labelling: $L_{p}(I, v)=L(I)$

multiple resets may give same clock valuation

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www. prismmodelchecker.org/lectures/movep 14 /
- slides, tutorial papers, reference list,

Properties of PTAs - PTCTL

- PTCTL: Probabilistic timed computation tree logic [KNSS02]
- derived from PCTL [BdA95] and TCTL [AD94]
- Syntax:

"zone over XUZ"

$-\phi::=\operatorname{true}|\mathrm{a}| \zeta|\mathrm{z} . \phi| \phi \wedge \phi|\neg \phi| \mathrm{P}_{\sim p}[\phi U \phi]$
"freeze quantifier" (formula clock z)
$\phi U \phi$ is true with probability $\sim p$ (for all adversaries)

- where:
- where Z is a set of formula clocks, $\zeta \in \operatorname{Zones}(X \cup Z), z \in Z$,
-a is an atomic proposition, $\mathrm{p} \in[0,1]$ and $\sim \in\{<,>, \leq, \geq\}$
- Usual equivalences
- e.g. $\mathrm{F} \phi \equiv$ true $\mathrm{U} \phi$ and $\mathrm{G} \phi \equiv \neg \mathrm{F}(\neg \phi)$

PTCTL - Examples

- z. $\mathrm{P}_{>0.99}$ [F delivered $\wedge(\mathrm{z}<5)$]
- "with probability greater than 0.99 , the system delivers the packet within 5 time units"
- $z . P_{>0.95}[(x \leq 3) U(z=8)]$
- "with probability at least 0.95 , the system clock x does not exceed 3 before 8 time units elapse"
- z. $\mathrm{P}_{\leq 0.1}$ [G (failure $\left.\vee(\mathrm{z} \leq 60)\right)$]
- "the system fails after the first 60 time units have elapsed with probability at most 0.01"

Properties of PTAs (PRISM)

- PRISM property specification for PTAs [NPS13]
- PCTL + zones + time bounds + expected rewards
- Syntax:

$$
\begin{aligned}
& -\phi::=\operatorname{true}|\mathrm{a}| \zeta|\phi \wedge \phi| \neg \phi\left|\mathrm{P}_{\sim p}[\psi]\right| \mathrm{R}_{\sim q}^{r}[\rho] \\
& -\psi::=\phi U \leq \mathrm{k} \phi \mid \phi \cup \phi
\end{aligned}
$$

$$
-\rho::=I=k|C \leq k| F \phi
$$

- Expected reward (costs/prices)
- at time k (${ }^{=k}$)
expected reward ρ (for reward structure r) satisfies $\sim q$ (for all adversaries)
- cumulated up to time $k\left(C^{\leq k}\right)$
- cumulated until a ϕ-state is reached ($\mathrm{F} \phi$)
- Reward structures
- location rewards (rate accumulated) + transition rewards
- Also: numerical variants: $\mathrm{P}_{\max =\text { ? }}, \mathrm{R}_{\min =\text { ? }}^{r}$, etc.

Examples

- Examples
- $P_{\geq 0.8}\left[F \leq k\right.$ ack ${ }_{n}$ - "the probability that the sender has received n acknowledgements within time k is at least 0.8 "
- trigger $\rightarrow \mathrm{P}_{<0.0001}$ [$\mathrm{G}^{\leq 20} \neg$ deploy] - "the probability of the airbag failing to deploy within 20 milliseconds of being triggered is strictly less than 0.0001 "
- $\mathrm{P}_{\max =?}$ [\neg sent U fail] - "what is the maximum probability of a failure occurring before message transmission is complete?"
$-R_{\text {max }}^{\text {time }}$ [F end] - "what is the maximum expected time for the protocol to terminate?"
- $\mathrm{R}_{<9}^{\mathrm{pwr}}[\mathrm{C} \leq 60$] - "the expected energy consumption during the first 60 seconds is $<q$ "
- Property reductions [NPS 13]
- verification reduces to probabilistic reachability ($\mathrm{P}[\mathrm{F} \phi]$) and expected reachability ($[[F \phi]$), e.g. by adding extra clocks

Time divergence

- We restrict our attention to time divergent behaviour
- a common restriction imposed in real-time systems
- unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
- also called non-zeno behaviour
- For a path $\omega=s_{0}\left(a_{0}, \mu_{0}\right) s_{1}\left(a_{1}, \mu_{1}\right) s_{2}\left(a_{2}, \mu_{2}\right) \ldots$ in the MDP M_{P}
- $D_{\omega}(n)$ denotes the duration up to state S_{n}
- i.e. $D_{\omega}(n)=\Sigma\left\{\left|a_{i}\right| 0 \leq i<n \wedge a_{i} \in \mathbb{R} \mid\right\}$
- A path ω is time divergent if, for any $t \in \mathbb{R}_{\geq 0}$:
- there exists $\mathrm{j} \in \mathbb{N}$ such that $\mathrm{D}_{\omega}(\mathrm{j})>\mathrm{t}$
- Example of non-divergent path:
$-\mathrm{s}_{0}\left(1, \mu_{0}\right) \mathrm{s}_{0}\left(0.5, \mu_{0}\right) \mathrm{s}_{0}\left(0.25, \mu_{0}\right) \mathrm{s}_{0}\left(0.125, \mu_{0}\right) \mathrm{s}_{0} \ldots$

Time divergence

- An adversary of M_{p} is divergent if, for each state $s \in S_{p}$:
- the probability of divergent paths under A is 1
- i.e $\operatorname{Pr}_{s}\left\{\omega \in \operatorname{Path}^{\mathrm{A}}(\mathrm{s}) \mid \omega\right.$ is divergent $\}=1$
- Motivation for probabilistic definition of divergence:

- in this PTA, any adversary has one non-divergent path:
- takes the loop in I_{0} infinitely often, without 1 time unit passing
- but the probability of such behaviour is 0
- a stronger notion of divergence would mean no divergent adversaries exist for this PTA

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www. prismmodelchecker.org/lectures/movep14/ - slides, tutorial papers, reference list,

PTA model checking - Summary

- Several different approaches developed
- basic idea: reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)
- Region graph construction [KNSSO2]
- shows decidability, but gives exponential complexity
- Digital clocks approach [KNPS06]
- (slightly) restricted classes of PTAs
- works well in practice, still some scalability limitations
- Zone-based approaches:
- (preferred approach for non-probabilistic timed automata)
- forwards reachability [KNSS02]
- backwards reachability [KNSW07]
- game-based abstraction refinement [KNP09c]

The region graph

- Region graph construction for PTAs [KNSS02]
- adapts region graph construction for timed automata [ACD93]
- partitions PTA states into a finite set of regions
- based on notion of clock equivalence
- construction is also dependent on PTCTL formula
- For a PTA P and PTCTL formula ϕ
- construct a time-abstract, finite-state MDP R(ϕ)
- translate PTCTL formula ϕ to PCTL formula ϕ '
- ϕ is preserved by region equivalence
- i.e. ϕ holds in a state of M_{p} if and only if ϕ ' holds in the corresponding state of $\mathrm{R}(\phi)$
- model check $R(\phi)$ using standard methods for MDPs

The region graph - Clock equivalence

- Regions are sets of clock equivalent clock valuations
- Some notation:
- let c be largest constant appearing in PTA or PTCTL formula
- let $\lfloor\mathrm{t}\rfloor$ denotes the integral part of t
- t and t^{\prime} agree on their integral parts if and only if
(1) $\lfloor t\rfloor=\left\lfloor t^{\prime}\right\rfloor$
(2) t and t' are both integers or neither is an integer
- Clock valuations v and v^{\prime} are clock equivalent $\left(v \cong v^{\prime}\right)$ if:
- for all clocks $x \in X$, either:
- $v(x)$ and $v^{\prime}(x)$ agree on their integral parts
- $v(x)>c$ and $v^{\prime}(x)>c$
- for all clock pairs $x, y \in X$, either:
- $v(x)-v\left(x^{\prime}\right)$ and $v^{\prime}(x)-v^{\prime}\left(x^{\prime}\right)$ agree on their integral parts
- $v(x)-v\left(x^{\prime}\right)>c$ and $v^{\prime}(x)-v^{\prime}\left(x^{\prime}\right)>c$

Region graph - Clock equivalence

- Example regions (for 2 clocks x and y)

Region graph - Clock equivalence

- Example regions (for 2 clocks x and y)

Region graph - Clock equivalence

- Fundamental result: if $v \cong v^{\prime}$, then $v \triangleright \zeta \Leftrightarrow v^{\prime} \triangleright \zeta$
- it follows that $r \triangleright \zeta$ is well defined for a region r
- All regions (for 2 clocks x and y), max constant $c=2$:

Region graph - Clock equivalence

- r ' is the (time) successor region of r, written $\operatorname{succ}(r)=r$, if
- for each $v \in r$, there exists $t>0$ such that:
$-\mathrm{v}+\mathrm{t} \in \mathrm{r}^{\prime}$ and $\mathrm{v}+\mathrm{t}^{\prime} \in \mathrm{r} u \mathrm{r}^{\prime}$ for all $\mathrm{t}^{\prime}<\mathrm{t}$
- Examples (region and successor):

- Region graph: MDP over states (I,r) for location I, region r

The region graph

- The region graph MDP is $\left(\mathrm{S}_{\mathrm{R}}, \mathrm{s}_{\text {init }}\right.$, Steps $\left._{\mathrm{R}}, \mathrm{L}_{\mathrm{R}}\right)$ where...
- the set of states S_{R} comprises pairs (I,r) such that I is a location and r is a region over $X \cup Z$
- the initial state is ($\mathrm{l}_{\text {nitit }}, \underline{0}$)
- the set of actions is \{succ\} \cup Act
- succ is a unique action denoting passage of time
- the probabilistic transition function Steps $_{R}$ is defined as:
$-S_{R} \times 2^{(\text {(sucfl }} \mathbf{U A c t)} \times \operatorname{Dist}\left(S_{R}\right)$
- $($ succ, $\mu) \in \operatorname{Steps}_{R}(1, r)$ iff $\mu(1, \operatorname{succ}(r))=1$
$-(\mathrm{a}, \mathrm{\mu}) \in \operatorname{Steps}_{\mathrm{R}}(\mathrm{l}, \mathrm{r})$ if and only if $\exists(\mathrm{l}, \mathrm{g}, \mathrm{a}, \mathrm{p}) \in$ prob such that
$r \triangleright g$ and, for any $\left(l^{\prime}, r^{\prime}\right) \in S_{R:} \quad \mu\left(l^{\prime}, r^{\prime}\right)=\sum_{Y \subseteq X \wedge r[Y:=0]=r^{\prime}} p\left(I^{\prime}, Y\right)$
- the labelling is given by: $L_{R}(I, r)=L(I)$

Region graph - Example

PTCTL formula: $z \mathrm{P}_{\leq 0.1}[\mathrm{~F}($ done $\wedge z<2)]$

Region graph (fragment):

$$
\text { (init, } x=z=0) \xrightarrow{\text { succ }}(\text { init, } 0<x=z<1) \xrightarrow{\text { succ }}(\text { init, } x=z=1) \xrightarrow{\text { succ }} \text { (init, } 1<x=z<2 \text {) }
$$

Region graph construction

- Region graph
- useful for establishing decidability of model checking
- or proving complexity results for model checking algorithms
- But...
- the number of regions is exponential in the number of clocks and the size of largest constant
- so model checking based on this is extremely expensive
- and so not implemented (even for timed automata)
- Improved approaches based on:
- digital clocks
- zones (unions of regions)

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www. prismmodelchecker.org/lectures/movep14/
- slides, tutorial papers, reference list,

Digital clocks

- Simple idea: Clocks can only take integer (digital) values
- i.e. time domain is \mathbb{N} as opposed to \mathbb{R}
- based on notion of ϵ-digitisation [HMP92]
- Only applies to a restricted class of PTAs; zones must be:
- closed - no strict inequalities (e.g. $x>5$)
- diagonal-free: no comparisons between clocks (e.g. $x \leq y$)
- Digital clocks semantics yields a finite-state MDP
- state space is a subset of $\operatorname{Loc} \times \mathbb{N}^{X}$, rather than $\operatorname{Loc} \times \mathbb{R}^{X}$
- clocks bounded by $\mathrm{c}_{\max }$ (max constant in PTA and formula)
- then use standard techniques for finite-state MDPs

Example - Digital clocks

MDP: (digital clocks)
(init, $x=z=0$)

\longrightarrow (init, $x=z=2$)

$$
\text { (done, } x=0 \wedge z=1) \quad(\text { lost }, x=0 \wedge z=1) \quad(\text { done }, x=0 \wedge z=2)
$$

$$
\text { (lost, } x=1 \wedge z=2 \text {) }
$$

PTA:

(done, $x=0 \wedge z=3$) (lost, $x=0 \wedge z=3$)

Digital clocks

- Digital clocks approach preserves:
- minimum/maximum reachability probabilities
- a subset of PTCTL properties
- (no nesting, only closed zones in formulae)
- only works for the initial state of the PTA
- (but can be extended to any state with integer clock values)
- also: expected rewards (priced PTAs)
- In practice:
- translation from PTA to MDP can often be done manually
- (by encoding the PTA directly into the PRISM language)
- automated translations exist: mcpta and PRISM
- many case studies, despite "closed" restriction
- potential problem: can lead to very large MDPs
- alleviated partially by efficient symbolic model checking

Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi=z . P_{<1}[F(a \wedge z \leq 1)]$
$-a$ is an atomic proposition only true in location I_{1}
- Digital semantics:
- no state satisfies ϕ since for any state we have $\operatorname{Prob}^{A}(s, \mathcal{E}[z:=0]$, true $U(a \wedge z \leq 1))=1$ for some adversary A
- hence $P_{<1}$ [true $\left.U \phi\right]$ is trivially true in all states

Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi=z . P_{<1}[F(a \wedge z \leq 1)]$
$-a$ is an atomic proposition only true in location I_{1}
- Dense time semantics:
- any state $\left(\mathrm{I}_{0}, \mathrm{v}\right)$ where $\mathrm{v}(\mathrm{x}) \in(1,2)$ satisfies ϕ more than one time unit must pass before we can reach I_{1}
- hence $P_{<1}$ [true $\left.U \phi\right]$ is not true in the initial state

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www. prismmodelchecker.org/lectures/movep14/
- slides, tutorial papers, reference list,

Zone-based approaches

- An alternative is to use zones to construct an MDP
- Conventional symbolic model checking relies on computing
- post(S') the states that can be reached from a state in S' in a single step
- pre(S') the states that can reach S^{\prime} in a single step
- Extend these operators to include time passage
- dpost[e](S') the states that can be reached from a state in S' by traversing the edge e
- $\operatorname{tpost}\left(S^{\prime}\right)$ the states that can be reached from a state in S' by letting time elapse
- pre[e](S') the states that can reach S' by traversing the edge e
- tpre(S') the states that can reach S' by letting time elapse

Zone-based approaches

- Symbolic states (I, ζ) where
$-I \in \operatorname{Loc}$ (location)
- ζ is a zone over PTA clocks and formula clocks
- generally fewer zones than regions
- tpost $(I, \zeta)=(I, \nearrow \zeta \wedge \operatorname{inv}(I))$
- ζ can be reached from ζ by letting time pass
- $\nearrow \zeta \wedge$ inv(l) must satisfy the invariant of the location I
- tpre $(\mathrm{I}, \zeta)=(\mathrm{I}, \iota \zeta \wedge \operatorname{inv}(\mathrm{I}))$
$-\iota \zeta$ can reach ζ by letting time pass
$-\iota \zeta \wedge$ inv(l) must satisfy the invariant of the location I

Zone-based approaches

- For an edge $\mathrm{e}=(\mathrm{l}, \mathrm{g}, \mathrm{a}, \mathrm{p}, \mathrm{l}$ ', Y$)$ where
- I is the source
- g is the guard
- a is the action
- I ' is the target
- Y is the clock reset
- dpost $[\mathrm{e}](\mathrm{I}, \zeta)=\left(\mathrm{I}^{\prime},(\zeta \wedge \mathrm{g})[\mathrm{Y}:=0]\right)$
$-\zeta \wedge g$ satisfy the guard of the edge
- ($\zeta \wedge \mathrm{g})[\mathrm{Y}:=0]$ reset the clocks Y
- dpre[e] $\left(\mathrm{l}^{\prime}, \zeta^{\prime}\right)=\left(\mathrm{I},[\mathrm{Y}:=0] \zeta^{\prime} \wedge(\mathrm{g} \wedge \operatorname{inv}(\mathrm{I}))\right)$
- $[\mathrm{Y}:=0] \zeta^{\prime}$ the clocks Y were reset
$-[Y:=0] \zeta^{\prime} \wedge(g \wedge \operatorname{inv}(I))$ satisfied guard and invariant of I

Forwards reachability

- Based on the operation post[e] $(I, \zeta)=\operatorname{tpost}(\operatorname{dpost}[e](I, \zeta))$
- ($\left(l^{\prime}, v^{\prime}\right) \in \operatorname{post}[e](I, \zeta)$ if there exists $(I, v) \in(I, \zeta)$ such that after traversing edge e and letting time pass one can reach (l', v')
- Forwards algorithm (part 1)
- start with initial state $\mathrm{S}_{\mathrm{F}}=\left\{\operatorname{tpost}\left(\left(\mathrm{l}_{\text {init }}, 0\right)\right)\right\}$ then iterate for each symbolic state $(I, \zeta) \in S_{F}$ and edge e add post[e] $(1, \zeta)$ to S_{F}
- until set of symbolic states S_{F} does not change
- To ensure termination need to take c-closure of each zone encountered (c is the largest constant in the PTA)

Forwards reachability

- Forwards algorithm (part 2)
- construct finite state MDP ($\mathrm{S}_{\mathrm{F}},\left(\mathrm{l}_{\text {init }}, \underline{0}\right)$, Steps $\left._{\mathrm{F}}, \mathrm{L}_{\mathrm{F}}\right)$
- states S_{F} (returned from first part of the algorithm)
- $\mathrm{L}_{\mathrm{F}}(\mathrm{I}, \zeta)=\mathrm{L}(\mathrm{I})$ for all $(\mathrm{I}, \zeta) \in \mathrm{S}_{\mathrm{F}}$
$-\mu \in \operatorname{Steps}_{\mathrm{F}}(\mathrm{I}, \zeta)$ if and only if
there exists a probabilistic edge (l,g,a,p) of PTA such that for any $\left(I^{\prime}, \zeta^{\prime}\right) \in Z$:
$\mu\left(l^{\prime}, \zeta^{\prime}\right)=\sum\left\{\left|p\left(l^{\prime}, X\right)\right|\left(I, g, \sigma, p, I^{\prime}, X\right) \in \operatorname{edges}(p) \wedge \operatorname{post}[e](l, \zeta)=\left(I^{\prime}, \zeta^{\prime}\right) \mid\right\}$
summation over all the edges of ($1, \mathrm{~g}, \mathrm{a}, \mathrm{p}$) such that applying post to (I, ζ) leads to the symbolic state ($\left(l^{\prime}, \zeta^{\prime}\right)$

Forwards reachability - Example

Forwards reachability - Limitations

- Problem reduced to analysis of finite-state MDP, but...
- Only obtain upper bounds on maximum probabilities
- caused by when edges are combined
- Suppose post $\left[\mathrm{e}_{1}\right](I, \zeta)=\left(\mathrm{I}_{1}, \zeta_{1}\right)$ and post $\left[\mathrm{e}_{2}\right](\mathrm{I}, \zeta)=\left(\mathrm{I}_{2}, \zeta_{2}\right)$
- where e_{1} and e_{2} from the same probabilistic edge
- By definition of post
- there exists $\left(\mathrm{l}, \mathrm{v}_{\mathrm{i}}\right) \in(\mathrm{I}, \zeta)$ such that a state in $\left(\mathrm{l}_{\mathrm{i}}, \zeta_{\mathrm{i}}\right)$ can be reached by traversing the edge e_{i} and letting time pass
- Problem
- we combine these transitions but are $\left(1, v_{1}\right)$ and $\left(1, v_{2}\right)$ the same?
- may not exist states in (I, $)$ for which both edges are enabled

Forwards reachability - Example

- Maximum probability of reaching I_{3} is 0.5 in the PTA
- for the left branch need to take the first transition when $x=1$
- for the right branch need to take the first transition when $x=0$
- However, in the forwards reachability graph probability is 1
- can reach I_{3} via either branch from ($\mathrm{I}_{0}, \mathrm{x}=\mathrm{y}$)

Backwards reachability

- An alternative zone-based method: backwards reachability
- state-space exploration in opposite direction, from target to initial states; uses pre rather than post operator
- Basic ideas: (see [KNSW07] for details)
- construct a finite-state MDP comprising symbolic states
- need to keep track of branching structure and take conjunctions of symbolic states if necessary
- MDP yields maximum reachability probabilities for PTA
- for min. probs, do graph-based analysis and convert to max.
- Advantages:
- gives (exact) minimum/maximum reachability probabilities
- extends to full PTCTL model checking
- Disadvantage:
- operations to implement are expensive, limits applicability
- (requires manipulation of non-convex zones)

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www. prismmodelchecker.org/lectures/movep14/ - slides, tutorial papers, reference list,

Abstraction

- Very successful in (non-probabilistic) formal methods
- essential for verification of large/infinite-state systems
- hide details irrelevant to the property of interest
- yields smaller/finite model which is easier/feasible to verify
- loss of precision: verification can return "don't know"
- Construct abstract model of a concrete system
- e.g. based on a partition of the concrete state space
- an abstract state represents a set of concrete states

- Automatic generation of abstractions using refinement
- start with a simple coarse abstraction; iteratively refine

Abstraction of MDPs

- Abstraction increases degree of nondeterminism [DDJLO1]
- i.e. minimum probabilities are lower and maximums higher

- We build abstractions of MDPs as stochastic games [KNP06b]

- yields lower/upper bounds for min/max probabilities

Abstraction refinement

- Consider (max) difference between lower/upper bounds
- gives a quantitative measure of the abstraction's precision

- If the difference ("error") is too great, refine the abstraction
- a finer partition yields a more precise abstraction
- lower/upper bounds can tell us where to refine (which states)
- (memoryless) strategies can tell us how to refine

Abstraction-refinement loop

- Quantitative abstraction-refinement loop for MDPs

- Refinements yield strictly finer partition
- Guaranteed to converge for finite models
- Guaranteed to converge for infinite models with finite bisimulation

Abstraction refinement: Applications

- Examples (MDPs):

IJ90 self stabilisation alg.
($1,048,575$ states abstracted to 627)

Zeroconf protocol
(838,905 states abstracted to 881)

- Applications
- probabilistic software (C + probabilities) [qprover] [KKNP10]
- concurrent probabilistic programs [PASS] [HHWZ10b]
- probabilistic timed automata (exact) [PRISM] [KNP09c]

Abstraction refinement for PTAs

- Model checking for PTAs using abstraction refinement

Abstraction refinement for PTAs

- Computes reachability probabilities in PTAs
- minimum or maximum, exact values ("error" $\epsilon=0$)
- also time-bounded reachability, with extra clock
- In practice, performs very well
- implemented in PRISM (using DBMs)
- faster than digital clocks or backwards on large example set
- (sometimes by several orders of magnitude)
- handles larger PTAs than the digital clocks approach

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www.prismmodelchecker.org/lectures/movep 14 /
- slides, tutorial papers, reference list,

The PRISM tool

- PRISM: Probabilistic symbolic model checker
- developed at Birmingham/Oxford University, since 1999
- free, open source (GPL), runs on all major OSs
- Support for:
- models: DTMCs, CTMCs, MDPs, PAs, PTAs
- (see also PRISM-games: stochastic multi-player games)
- properties: PCTL, CSL, LTL, PCTL*, costs/rewards, numerical extensions, multi-objective, ...
- Features:
- simple but flexible high-level modelling language
- user interface: editors, simulator, experiments, graph plotting
- multiple efficient model checking engines (e.g. symbolic)
- (mostly symbolic - BDDs; up to 10^{10} states, $10^{7-1} 0^{8}$ on avg.)
- See: http://www.prismmodelchecker.org/

The PRISM tool

```
*)
Model Properies Smultar Log
```


Modelling PTAs in PRISM

- PTA example: message transmission over faulty channel

States

- locations + data variables

Transitions

- guards and action labels

Real-valued clocks

- state invariants, guards, resets Probability
- discrete probabilistic choice

Modelling PTAs in PRISM

- PRISM modelling language
- textual language, based on guarded commands

```
pta
const int N;
module transmitter
    s:[0..3] init 0;
    tries:[0..N+1] init 0;
    x : clock;
    invariant ( }s=0=>x\leq2)&(s=1=>x\leq5) endinvarian
    [send] s=0 & tries }\leqN&&x\geq
        0.9:(s'=3)
        + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);
    [retry] s=1 & x }\geq3->(\mp@subsup{s}{}{\prime}=0)&(\mp@subsup{x}{}{\prime}=0)
    [quit] s=0 & tries >N }->(\mp@subsup{s}{}{\prime}=2)
endmodule
rewards "energy" (s=0) : 2.5; endrewards
```


Modelling PTAs in PRISM

- PRISM modelling language
- textual language, based on guarded commands

Basic ingredients:

- modules
- variables
- commands

Modelling PTAs in PRISM

- PRISM modelling language
- textual language, based on guarded commands

```
pta
const int N;
module transmitter
    s:[0..3] init 0;
    tries:[0..N+1] init 0;
    x : clock;
    invariant ( }s=0=>x\leq2)&(s=1=>x\leq5) endinvariant
    [send] s=0 & tries }\leqN&&x\geq
        0.9:(s'=3)
        + 0.1:(s'=1)& (tries'=tries+1) & (x'=0);
    [retry] s=1 & x }\geq3->(\mp@subsup{s}{}{\prime}=0)&(\mp@subsup{x}{}{\prime}=0)
    [quit] s=0 & tries }>N->(\mp@subsup{s}{}{\prime}=2)
endmodule
rewards "energy" (s=0) : 2.5; endrewards
```

Basic ingredients:

- modules
- variables
- commands

For PTAs:

- clocks
- invariants
- guards/resets

Modelling PTAs in PRISM

- PRISM modelling language
- textual language, based on guarded commands

```
pta
const int N;
module transmitter
    s:[0..3] init 0;
    tries:[0..N+1] init 0;
    x : clock;
    invariant ( }s=0=>x\leq2)&(s=1=>x\leq5) endinvariant
    [send] s=0 & tries }\leqN&&x\geq
        0.9:(s'=3)
        + 0.1:(s'=1)& (tries'=tries+1)& (x'=0);
    [retry] s=1 & x }\geq3->(\mp@subsup{s}{}{\prime}=0)&(\mp@subsup{x}{}{\prime}=0)
    [quit] s=0 & tries }>N->(\mp@subsup{s}{}{\prime}=2)
endmodule
rewards "energy" (s=0) : 2.5; endrewards
```


pta

Basic ingredients:

- modules
- variables
- commands

For PTAs:

- clocks
- invariants
- guards/resets

Also:

- rewards (i.e. costs, prices)
- parallel composition

PRISM - Case studies

- Randomised communication protocols
- Bluetooth, FireWire Zeroconf 802.11 Zigbee, gossiping, ...
- Randomised distributed algorithms
- consensus, leader election, self-stabilisation, ...
- Security protocols/systems
- pin cracking, anonymity, quantum crypto, non-repudiation. ...
- Planning \& controller synthesis
- robotics, dynamic power management,task-graph scheduling
- Performance \& reliability
- nanotechnology, cloud computing, manufacturing systems, ...
- Biological systems
- cell signalling pathways, DNA computation, pacemakers, ...
- See: www.prismmodelchecker.org/casestudies

Overview

- Probabilistic model checking
- example: FireWire protocol
- Probabilistic timed automata (PTAs)
- clocks, zones, syntax, semantics
- property specification
- Verification techniques for PTAs
- region graphs + digital clocks + zone-based methods
- abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
- example: task-graph scheduling
- See: www.prismmodelchecker.org/lectures/movep 14 / - slides, tutorial papers, reference list,

Verification vs. Controller synthesis

- Verification vs. synthesis
- verification $=$ check that a (model of) system satisfies a specification of correctness
- synthesis = build a "correct-by-construction" system directly from a specification of correctness
- Controller synthesis (for MDPs)
- generate a controller/scheduler (an adversary) that chooses actions such that a correctness specification is satisfied
- dual problem to verification on MDPs
- For example: $\mathrm{P}_{<0.01}$ [F err]
- verification: "the probability of an error is always < 0.01"
- controller synthesis: "does there exist a controller (adversary) for which the probability of an error occurring is < 0.01 ?"
- or, optimise: "what is the minimum probability of an error?"

Controller synthesis

- Controller synthesis (for MDPs)
- nondeterminism: actions available to controller
- probability: uncertainty about environment's behaviour
- For example: robot controller

Controller synthesis: Extensions

- Multi-objective probabilistic model checking
- investigate trade-offs between conflicting objectives
- e.g. "is there a strategy such that the probability of message transmission is >0.95 and expected battery life $>10 \mathrm{hrs}$?"
- e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"
- e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
- Controller synthesis with stochastic games
- player 1 = controller (as for MDPs)
- player 2 = environment ("uncontrollable" actions)

- Multi-strategies
- strategies (adversaries) which can choose between multiple actions at each time step

Controller synthesis - Applications

- Examples of PRISM-based controller synthesis

Synthesis of dynamic power management
controllers [FKN+11]

Minimise energy consumption, subject
to constraints on:
(i) expected job queue size;
(ii) expected number of lost jobs

Motion planning for a service robot using LTL [LPH14b]

Synthesis of team formation strategies [CKPS11, FKP1 2]

Pareto curve: $\mathrm{x}=$ "probability of completing task 1 "; $\mathrm{y}=$ "probability of completing task 2"; z="expected size of successful team"

Example: Task-graph scheduling

- Use probabilistic model checking of PTAs to solve scheduling problems, e.g. for a task-graph
- task-graph = tasks to complete + dependencies/ordering
- for ex.: real-time scheduling, embedded systems controllers
- Simple example: [adapted from BFLM11]
- evaluate expression: $\mathrm{D} \times(\mathrm{C} \times(\mathrm{A}+\mathrm{B}))+((\mathrm{A}+\mathrm{B})+(\mathrm{C} \times \mathrm{D}))$
- with subterms evaluated on one of two processors, P_{1} or P_{2}

	P_{1}	P_{2}
+	2 picoseconds	5 picoseconds
\times	3 picoseconds	7 picoseconds
idle	10 Watts	20 Watts
active	90 Watts	30 Watts

Example: Task-graph scheduling

- Task-graph scheduling
- aim to find optimal (time, energy usage, etc.) schedulers
- successful application of (non-probabilistic) timed automata
- PTAs allow us to reason about uncertain delays + failures
- optimal scheduler derived from optimal adversary
- PTA model
- parallel composition of 3 PTAs: one scheduler, two processors
- for example, processor P_{1}, with local clock x:

Locations also labelled with costs/rewards for time/energy usage

Example: Task-graph scheduling

- Property specification:
- $\mathrm{R}_{\min =\text { ? }}^{\text {time }}$ [F complete] - minimise (expected) time
- $R_{\text {min }}^{\text {energy }}$ [F complete] - minimise (expected) energy usage
- Model check with PRISM (digital clocks)
- and extract optimal adversary/scheduler
- Time optimal (12 picoseconds)

- Energy optimal (1.32 nanojoules)

time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
P_{1}	task1		task3			task4														
P_{2}	task2							task5							task6					

- No probabilities yet...

Adding probabilities

- Faulty processors
- add third processor P_{3} : faster, but may fail to execute task

- Probabilistic task execution times
- simple example: (deterministic) delay of 3 in processor P_{1} replaced by distribution: $1 / 3: 2,1 / 3: 3,1 / 3: 4$

Results (with faulty processor)

- Compute optimal (time/energy) schedulers
- (using same properties as before)
- Results (for varying failure rates p of processor P_{3}):
- dotted red line shows original results (no failures)
- conclusion: better performance for low values of failure probability p; no benefit for higher values

Expected time

Expected energy usage

Schedulers (with faulty processor)

- Example (for $p=0.5$)
- optimal scheduler to minimise energy consumption
- Optimal scheduler again obtained from adversary
- now, behaviour depends on outcome of task execution

Multi-objective properties

- Multi-objective controller synthesis
- (on MDP generated via digital clocks approach)
- explore trade-off between time/energy usage
- Properties
- e.g. minimise expected time, subject to bound on energy
- or: Pareto curve for two objectives: time/energy
- NB: both may generate randomised schedulers

Overview

- Probabilistic model checking
- probabilistic real-time systems
- Probabilistic timed automata (PTAs)
- probability + nondeterminism + (dense) time
- property specification; PTCTL, PCTL, ...
- Model checking techniques for PTAs
- region graphs + digital clocks
- zone-based methods + abstraction-refinement
- tool support: PRISM
- verification vs. controller synthesis

Thanks for your attention

More info here:
www.prismmodelchecker.org/lectures/movep14/

