

Automated Verification of Probabilistic Real-time Systems

Dave Parker

University of Birmingham

MOVEP'14 Summer School, Nantes, July 2014

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling
- See: www.prismmodelchecker.org/lectures/movep14/
 - slides, tutorial papers, reference list, ...

Probabilistic model checking

Reminder: Why probability?

- Many real-world systems are inherently probabilistic...
- Unreliable or unpredictable behaviour
 - failures of physical components
 - message loss in wireless communication
- Use of randomisation (e.g. to break symmetry)
 - random back-off in communication protocols
 - in gossip routing to reduce flooding
 - in security protocols, e.g. for anonymity
- And many others...
 - biological processes, e.g. DNA computation
 - quantum computing algorithms

Probabilistic real-time systems

Systems with probability, nondeterminism and real-time

- e.g. wireless communication protocols
- e.g. randomised security protocols
- Randomised back-off schemes
 - Ethernet, WiFi (802.11), Zigbee (802.15.4)
- Random choice of waiting time
 - Bluetooth device discovery phase
 - Root contention in IEEE 1394 FireWire
- Random choice over a set of possible addresses
 - IPv4 dynamic configuration (link-local addressing)
- Random choice of a destination
 - Crowds anonymity, gossip-based routing

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (<mark>DTMCs</mark>)	Markov decision processes (MDPs)
		Probabilistic automata (<mark>PAs</mark>)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	Probabilistic timed automata (PTAs)
		Interactive Markov chains (IMCs),

Verifying probabilistic systems

Quantitative notions of correctness

- "the probability of an airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
- in temporal logic: $P_{\leq 0.001}$ [$G^{\leq 0.02}$!"deploy"]

Not just correctness

reliability, dependability, performance, resource usage (e.g. battery life), security, privacy, trust, anonymity, ...

Usually focus on numerical properties:

- $e.g.: P_{=?} [G^{\leq 0.02} !"deploy"]$
- or $P_{=?}$ [$G^{\leq T}$!"deploy"] for varying T
- Combine numerical + exhaustive aspects
 - i.e. worst-case (or best-case) probabilities
 - $e.g.: P_{max=?} [G^{\leq 0.02} !"deploy"]$

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/

- slides, tutorial papers, reference list, ...

Case study: FireWire protocol

- FireWire (IEEE 1394)
 - high-performance serial bus for networking multimedia devices; originally by Apple
 - "hot-pluggable" add/remove devices at any time

- no requirement for a single PC (but need acyclic topology)
- Root contention protocol
 - leader election algorithm, when nodes join/leave
 - symmetric, distributed protocol
 - uses randomisation (electronic coin tossing) and timing delays
 - nodes send messages: "be my parent"
 - root contention: when nodes contend leadership
 - random choice: "fast"/"slow" delay before retry

FireWire leader election

FireWire root contention

FireWire root contention

FireWire analysis

- Detailed probabilistic model:
 - probabilistic timed automaton (PTA), including:
 - concurrency: messages between nodes and wires
 - timing delays taken from official standard
 - underspecification of delays (upper/lower bounds)
 - maximum model size: 170 million states
- Probabilistic model checking (with PRISM)
 - verified that root contention always resolved with probability 1

+ $\mathbf{P}_{\geq 1}$ [F (end \wedge elected)]

investigated worst-case expected time taken for protocol to complete

• $R_{max=?}$ [F (end \land elected)]

- investigated the effect of using biased coin

"minimum probability of electing leader by time T"

(short wire length)

Using a biased coin

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/

- slides, tutorial papers, reference list, ...

Probabilistic models

	Fully probabilistic	Nondeterministic
Discrete time	Discrete-time Markov chains (DTMCs)	Markov decision processes (MDPs)
		Probabilistic automata (<mark>PAs</mark>)
Continuous time	Continuous-time Markov chains (<mark>CTMCs</mark>)	Probabilistic timed automata (PTAs)
		Interactive Markov chains (IMCs),

Recap: DTMCs

- Discrete-time Markov chains (DTMCs)
 - state-transition systems augmented with probabilities

- Model checking, e.g. with PCTL
 - based on probability measure over paths
 - e.g. $P_{<0.15}$ [F lost] maximum probability of loss is < 0.15

Recap: MDPs

- Markov decision processes (MDPs) (or probabilistic automata)
 - mix probability and nondeterminism
 - states: nondeterministic choice over actions
 - each action leads to a probability distributions over successor states

- Adversaries (schedulers, policies, ...)
 - resolve nondeterministic choices based on history so far
 - properties quantify over all possible adversaries
 - e.g. $P_{<0.15}$ [F lost] maximum probability of loss is < 0.15

Probabilistic timed automata (PTAs)

- Probabilistic timed automata (PTAs)
 - Markov decision processes (MDPs) + real-valued clocks
 - or: timed automata + discrete probabilistic choice
 - model probabilistic, nondeterministic and timed behaviour

• PTAs comprise:

- clocks (increase simultaneously)
- locations (labelled with invariants)
- transitions (action + guard + probabilities + resets)

Semantics

- PTA represents an infinite-state MDP
- states are location/clock valuation pairs (I,v) $\in Loc \times \mathbb{R}^X$
- nondeterminism: choice of actions + elapse of time

0.05

x:=0

done

true

lost

x≤3

0.95

retry

x > 2

x:=0

0.9

0.1

x := 0

send

 $x \ge 1$

init

x<2

Time, clocks and clock valuations

- Dense (continuous) time domain: non-negative reals $\mathbb{R}_{\geq 0}$
 - from this point on, we will abbreviate $\mathbb{R}_{\geq 0}$ to \mathbb{R}
- Finite set of clocks $x \in X$
 - variables taking values from time domain $\ensuremath{\mathbb{R}}$
 - increase at the same rate as real time

• A clock valuation is a tuple $v \in \mathbb{R}^{X}$. Some notation:

- v(x) : value of clock x in v
- -v+t: time increment of t for v
- -v[Y:=0]: clock reset of clocks $Y \subseteq X$ in v

Zones (clock constraints)

• Zones (clock constraints) over clocks X, denoted Zones(X):

 $\zeta ::= \textbf{x} \leq d \ \mid c \leq \textbf{x} \ \mid \textbf{x} + c \leq \textbf{y} + d \ \mid \neg \zeta \ \mid \zeta \lor \zeta$

- where x, $y \in X$ and c, $d \in \mathbb{N}$
- e.g.: $x \le 2$, $x \le y$, $(x \ge 2) \land (x \le 3) \land (x \le y)$

• Can derive:

- logical connectives, e.g. $\zeta_1 \wedge \zeta_2 \equiv \neg (\neg \zeta_1 \vee \neg \zeta_2)$
- strict inequalities, through negation, e.g. $x > 5 \equiv \neg(x \le 5)...$

• Used for both:

- syntax of PTAs/properties
- algorithms/implementations for model checking

Zones and clock valuations

- A clock valuation v satisfies a zone ζ , written v $\triangleright \zeta$ if
 - ζ resolves to true after substituting each clock x with v(x)
- The semantics of a zone $\zeta \in \text{Zones}(X)$ is the set of clock valuations which satisfy it (i.e. a subset of \mathbb{R}^{X})
 - NB: multiple zones may have the same semantics
 - e.g. $(x \le 2) \land (y \le 1) \land (x \le y+2)$ and $(x \le 2) \land (y \le 1) \land (x \le y+3)$
 - but we assume canonical ("tight") zones
 - allows us to use syntax for zones interchangeably with semantic, set-theoretic operations

• Some useful classes of zones:

- closed: no strict inequalities (e.g. x>5)
- diagonal-free: no comparisons between clocks (e.g. $x \le y$)
- convex: define a convex set, efficient to manipulate

c-equivalence and c-closure

- Clock valuations v and v' are c-equivalent if for any $x,y \in X$
 - either v(x) = v'(x), or v(x) > c and v'(x) > c
 - either v(x)-v(y) = v'(x)-v'(y) or v(x)-v(y) > c and v'(x)-v'(y) > c
- The c-closure of the zone ζ , denoted close(ζ ,c), equals
 - the greatest zone $\zeta' \supseteq \zeta$ such that, for any $v' \in \zeta'$, there exists $v \in \zeta$ and v and v' are c-equivalent
 - c-closure ignores all constraints which are greater than c
 - for a given c, there are only a finite number of c-closed zones

Operations on zones

- Operations on zones:
- Set-theoretic operations

Time operations

27

Probabilistic timed automata - Syntax

- A probabilistic timed automata (PTA) is:
 - a tuple (Loc, I_{init} , Act, X, inv, prob, L)
- where:
 - Loc is a finite set of locations
 - $I_{init} \in Loc$ is the initial location
 - Act is a finite set of actions
 - X is a finite set of clocks
 - inv : Loc \rightarrow Zones(X) is the invariant condition
 - prob \subseteq Loc×Zones(X)×Dist(Loc×2^X) is the probabilistic edge relation
 - L : Loc \rightarrow 2^{AP} is a labelling function

Probabilistic edge relation

- Probabilistic edge relation
 - − prob ⊆ Loc×Zones(X)×Act×Dist(Loc×2^X)

• Probabilistic edge $(I,g,a,p) \in prob$

- I is the source location
- g is the guard
- a is the action
- p target distribution

- Edge (I,g,a,p,I',Y)
 - from probabilistic edge (l,g,a,p) where p(l',Y)>0
 - l' is the target location
 - Y is the set of clocks to be reset (to zero)

PTA – Example

- Models a simple probabilistic communication protocol
 - starts in location init; after between 1 and 2 time units, the protocol attempts to send the data:
 - with probability 0.9 data is sent correctly, move to location done
 - with probability 0.1 data is lost, move to location lost
 - in location lost, after 2 to 3 time units, attempts to resend
 - · correctly sent with probability 0.95 and lost with probability 0.05

PTAs – Behaviour

- A state of a PTA is a pair (I,v) \in Loc $\times \mathbb{R}^{X}$ such that v \triangleright inv(I)
- Start in the initial location with all clocks set to zero

 i.e. initial state is (l_{init},<u>0</u>)
- For any state (I,v), there is nondeterministic choice between making a discrete transition and letting time pass
 - discrete transition (l,g,a,p) enabled if $v \triangleright g$ and probability of moving to location l' and resetting the clocks Y equals p(l',Y)
 - time transition available only if invariant inv(l) is continuously satisfied while time elapses

PTA – Example execution

PTAs – Formal semantics

- Formally, the semantics of a PTA P is an infinite-state MDP $M_P = (S_P, s_{init}, \alpha_P, \delta_P, L_P)$ with:
- States: $S_P = \{ (I,v) \in Loc \times \mathbb{R}^X \text{ such that } v \triangleright inv(I) \}$
- Initial state: $s_{init} = (I_{init}, \underline{0})$
- Actions: $\alpha_P = Act \cup \mathbb{R}$
- + $\delta_P \subseteq S_P \times \alpha_P \times \text{Dist}(S_P)$ such that (s, a, μ) $\in \delta_P$ iff:
 - (time transition) $a \in \mathbb{R}$, $\mu(I,v+t)=1$ and $v+t' \triangleright inv(I)$ for all $t' \le t$
 - (discrete transition) $a \in Act$ and there exists (l,g,a,p) \in prob

such that $v \triangleright g$ and, for any $(I',v') \in S_P$: $\mu(I',v') = \sum_{\P \subseteq X \land v[Y:=0]=v'} p(I',Y)$

• Labelling: $L_P(I,v) = L(I)$

multiple resets may give same clock valuation

actions of MDP M_P are the actions

of PTA P or real time delays

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/

- slides, tutorial papers, reference list, ...

Properties of PTAs – PTCTL

- PTCTL: Probabilistic timed computation tree logic [KNSS02]
 derived from PCTL [BdA95] and TCTL [AD94]
- Syntax: $-\phi ::= true | a | \zeta | z. \phi | \phi \land \phi | \neg \phi | P_{\sim p} [\phi \cup \phi]$ "freeze quantifier" (formula clock z) $\phi \cup \phi \text{ is true with probability } \sim p$ (for all adversaries)
- where:
 - where Z is a set of formula clocks, $\zeta \in \text{Zones}(X \cup Z)$, $z \in Z$,
 - a is an atomic proposition, $p \in [0,1]$ and $\textbf{\sim} \in \{<,>,\leq,\geq\}$
- Usual equivalences
 - e.g. $F \varphi \equiv true U \varphi$ and $G \varphi \equiv \neg F(\neg \varphi)$

PTCTL – Examples

- z . $P_{>0.99}$ [F delivered \land (z<5)]
 - "with probability greater than 0.99, the system delivers the packet within 5 time units"
- z . $P_{>0.95}$ [(x \leq 3) U (z = 8)]
 - "with probability at least 0.95, the system clock x does not exceed 3 before 8 time units elapse"
- z . $P_{\leq 0.1}$ [G (failure \lor (z \leq 60))]
 - "the system fails after the first 60 time units have elapsed with probability at most 0.01"
Properties of PTAs (PRISM)

- PRISM property specification for PTAs [NPS13]
 - PCTL + zones + time bounds + expected rewards
- Syntax:
 - $\varphi ::= true \mid a \mid \zeta \mid \phi \land \phi \mid \neg \phi \mid P_{\sim p} \left[\psi \right] \mid R_{\sim q}^{r} \left[\rho \right]$
 - $\ \psi ::= \varphi \ U^{\leq k} \ \varphi \ | \ \varphi \ U \ \varphi$
 - $\ \rho \, ::= \, I^{=k} \, \mid \, C^{\leq k} \, \mid \, F \ \varphi$
- Expected reward (costs/prices)
 - at time k ($I^{=k}$)
 - cumulated up to time k (C $\leq k$)
 - cumulated until a ϕ -state is reached (F ϕ)
- Reward structures
 - location rewards (rate accumulated) + transition rewards
- Also: numerical variants: P_{max=?}, R^r_{min=?}, etc.

expected reward p (for reward structure r) satisfies ~q (for all adversaries)

Examples

- Examples
 - $P_{\geq 0.8}$ [$F^{\leq k}$ ack_n] "the probability that the sender has received *n* acknowledgements within time *k* is at least 0.8"
 - trigger → $P_{<0.0001}$ [G^{≤20} ¬deploy] "the probability of the airbag failing to deploy within 20 milliseconds of being triggered is strictly less than 0.0001"
 - P_{max=?} [¬sent U fail] "what is the maximum probability of a failure occurring before message transmission is complete?"
 - R^{time}_{max=?} [F end] "what is the maximum expected time for the protocol to terminate?"
 - $R_{<q}^{pwr}$ [$C^{\le 60}$] "the expected energy consumption during the first 60 seconds is < q"
- Property reductions [NPS13]
 - verification reduces to probabilistic reachability (P [F ϕ]) and expected reachability (R[F ϕ]), e.g. by adding extra clocks

Time divergence

- We restrict our attention to time divergent behaviour
 - a common restriction imposed in real-time systems
 - unrealisable behaviour (i.e. corresponding to time not advancing beyond a time bound) is disregarded
 - also called non-zeno behaviour
- For a path $\omega = s_0(a_0, \mu_0)s_1(a_1, \mu_1)s_2(a_2, \mu_2)...$ in the MDP M_P
 - $D_{\omega}(n)$ denotes the duration up to state s_n
 - i.e. $D_{\omega}(n) = \Sigma \{ \mid a_i \mid 0 \le i < n \land a_i \in \mathbb{R} \mid \}$
- A path ω is time divergent if, for any $t \in \mathbb{R}_{\geq 0}$: - there exists $j \in \mathbb{N}$ such that $D_{\omega}(j) > t$
- Example of non-divergent path:
 - $s_0(1,\mu_0)s_0(0.5,\mu_0)s_0(0.25,\mu_0)s_0(0.125,\mu_0)s_0...$

Time divergence

- An adversary of M_P is divergent if, for each state $s \in S_P$:
 - the probability of divergent paths under A is 1
 - i.e Pr^{A}_{s} { $\omega \in Path^{A}(s) \mid \omega \text{ is divergent } }=1$
- Motivation for probabilistic definition of divergence:

- in this PTA, any adversary has one non-divergent path:
 - \cdot takes the loop in I₀ infinitely often, without 1 time unit passing
- but the probability of such behaviour is 0
- a stronger notion of divergence would mean no divergent adversaries exist for this PTA

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, …

PTA model checking – Summary

Several different approaches developed

- basic idea: reduce to the analysis of a finite-state model
- in most cases, this is a Markov decision process (MDP)
- Region graph construction [KNSS02]
 - shows decidability, but gives exponential complexity
- Digital clocks approach [KNPS06]
 - (slightly) restricted classes of PTAs
 - works well in practice, still some scalability limitations
- Zone-based approaches:
 - (preferred approach for non-probabilistic timed automata)
 - forwards reachability [KNSS02]
 - backwards reachability [KNSW07]
 - game-based abstraction refinement [KNP09c]

The region graph

- Region graph construction for PTAs [KNSS02]
 - adapts region graph construction for timed automata [ACD93]
 - partitions PTA states into a finite set of regions
 - based on notion of clock equivalence
 - construction is also dependent on PTCTL formula
- + For a PTA P and PTCTL formula φ
 - construct a time-abstract, finite-state MDP $R(\phi)$
 - translate PTCTL formula ϕ to PCTL formula ϕ'
 - $-\phi$ is preserved by region equivalence
 - i.e. φ holds in a state of M_P if and only if φ' holds in the corresponding state of $R(\varphi)$
 - model check $R(\phi)$ using standard methods for MDPs

The region graph – Clock equivalence

Regions are sets of clock equivalent clock valuations

• Some notation:

- let c be largest constant appearing in PTA or PTCTL formula
- let [t] denotes the integral part of t
- t and t' agree on their integral parts if and only if
 (1) [t] = [t']
 - (2) t and t' are both integers or neither is an integer
- Clock valuations v and v' are clock equivalent ($v \cong v'$) if:
 - for all clocks $x \in X$, either:
 - \cdot v(x) and v'(x) agree on their integral parts
 - v(x)>c and v'(x)>c
 - for all clock pairs $x,y \in X$, either:
 - $\cdot v(x) v(x')$ and v'(x) v'(x') agree on their integral parts
 - v(x) v(x') > c and v'(x) v'(x') > c

Region graph – Clock equivalence

• Example regions (for 2 clocks x and y)

Region graph – Clock equivalence

- Fundamental result: if $v \cong v'$, then $v \triangleright \zeta \Leftrightarrow v' \triangleright \zeta$
 - it follows that $r \vartriangleright \zeta$ is well defined for a region r
- All regions (for 2 clocks x and y), max constant c=2:

Region graph – Clock equivalence

• r' is the (time) successor region of r, written succ(r) = r, if

- for each $v \in r$, there exists t > 0 such that:
- $\ v{+}t \in r' \ and \ v{+}t' \in r \cup r' \ for \ all \ t' < t$
- Examples (region and successor):

Region graph: MDP over states (I,r) for location I, region r

The region graph

- The region graph MDP is (S_R,s_{init},Steps_R,L_R) where...
 - the set of states S_R comprises pairs (I,r) such that I is a location and r is a region over $X \cup Z$
 - the initial state is $(I_{init}, \underline{0})$
 - the set of actions is {succ} \cup Act
 - $\cdot\,$ succ is a unique action denoting passage of time
 - the probabilistic transition function Steps_R is defined as:
 - $S_R \times 2^{(\{succ\} \cup Act) \times Dist(S_R)}$
 - $\ (succ, \mu) \in \textbf{Steps}_R(l, r) \ iff \ \mu(l, succ(r)) \!=\! 1$
 - (a,µ) $\in \textbf{Steps}_{R}(I,r)$ if and only if \exists (I,g,a,p) \in prob such that

 $r \triangleright g \text{ and, for any (l',r')} \in S_{R:} \quad \mu(l',r') = \sum_{Y \subseteq X \land r[Y:=0]=r'} p(l',Y)$

- the labelling is given by: $L_R(I,r) = L(I)$

Region graph – Example

PTCTL formula: z.P $_{\leq 0.1}$ [F (done \land z<2)]

Region graph (fragment):

Region graph construction

• Region graph

- useful for establishing decidability of model checking
- or proving complexity results for model checking algorithms

• But...

- the number of regions is exponential in the number of clocks and the size of largest constant
- so model checking based on this is extremely expensive
- and so not implemented (even for timed automata)

Improved approaches based on:

- digital clocks
- zones (unions of regions)

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, …

Digital clocks

- Simple idea: Clocks can only take integer (digital) values
 - i.e. time domain is $\mathbb N$ as opposed to $\mathbb R$
 - based on notion of ϵ -digitisation [HMP92]
- Only applies to a restricted class of PTAs; zones must be:
 - closed no strict inequalities (e.g. x > 5)
 - diagonal-free: no comparisons between clocks (e.g. $x \le y$)
- Digital clocks semantics yields a finite-state MDP
 - state space is a subset of Loc $\times \ \mathbb{N}^X$, rather than Loc $\times \ \mathbb{R}^X$
 - clocks bounded by c_{max} (max constant in PTA and formula)
 - then use standard techniques for finite-state MDPs

Example – Digital clocks

Digital clocks

- Digital clocks approach preserves:
 - minimum/maximum reachability probabilities
 - a subset of PTCTL properties
 - · (no nesting, only closed zones in formulae)
 - only works for the initial state of the PTA
 - · (but can be extended to any state with integer clock values)
 - also: expected rewards (priced PTAs)

• In practice:

- translation from PTA to MDP can often be done manually
- (by encoding the PTA directly into the PRISM language)
- automated translations exist: mcpta and PRISM
- many case studies, despite "closed" restriction
- potential problem: can lead to very large MDPs
- alleviated partially by efficient symbolic model checking

Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi = z.P_{<1}$ [F (a \land z ≤ 1)]
 - a is an atomic proposition only true in location I_1
- Digital semantics:
 - no state satisfies ϕ since for any state we have
 - Prob^A(s, $\mathcal{E}[z:=0]$, true U (a \land z \leq 1)) = 1 for some adversary A
 - hence $P_{<1}$ [true U φ] is trivially true in all states

Digital clocks do not preserve PTCTL

- Consider the PTCTL formula $\phi = z.P_{<1}$ [F (a \land z ≤ 1)]
 - a is an atomic proposition only true in location I_1
- Dense time semantics:
 - any state (I₀,v) where v(x) \in (1,2) satisfies φ

more than one time unit must pass before we can reach I_1

- hence $P_{<1}$ [true U φ] is not true in the initial state

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/
 – slides, tutorial papers, reference list, …

Zone-based approaches

- An alternative is to use zones to construct an MDP
- Conventional symbolic model checking relies on computing
 - post(S') the states that can be reached from a state in S' in a single step
 - pre(S') the states that can reach S' in a single step
- Extend these operators to include time passage
 - dpost[e](S') the states that can be reached from a state in S' by traversing the edge e
 - tpost(S') the states that can be reached from a state in S' by letting time elapse
 - pre[e](S') the states that can reach S' by traversing the edge e
 - tpre(S') the states that can reach S' by letting time elapse

Zone-based approaches

- Symbolic states (I, ζ) where
 - $I \in Loc (location)$
 - $\boldsymbol{\zeta}$ is a zone over PTA clocks and formula clocks
 - generally fewer zones than regions
- tpost(I, ζ) = (I, $\land \zeta \land inv(I)$)
 - $\checkmark \zeta$ can be reached from ζ by letting time pass
 - $\angle \zeta \land inv(I)$ must satisfy the invariant of the location I
- tpre(I, ζ) = (I, $\checkmark \zeta \land inv(I)$)
 - $\checkmark \zeta$ can reach ζ by letting time pass
 - $\checkmark \zeta \land$ inv(l) must satisfy the invariant of the location l

Zone-based approaches

For an edge e= (I,g,a,p,I',Y) where

- I is the source
- g is the guard
- a is the action
- l' is the target
- Y is the clock reset
- dpost[e](I, ζ) = (I', ($\zeta \land g$)[Y:=0])
 - $\zeta \wedge g$ satisfy the guard of the edge
 - $(\zeta \land g)[Y:=0]$ reset the clocks Y
- **dpre**[e](l', ζ ') = (l, [Y:=0] ζ ' \land (g \land inv(l)))
 - $[Y:=0]\zeta'$ the clocks Y were reset
 - [Y:=0] $\zeta' \land$ (g \land inv(l)) satisfied guard and invariant of l

Forwards reachability

- Based on the operation **post**[e](I, ζ) = **tpost**(**dpost**[e](I, ζ))
 - $(l',v') \in post[e](l,\zeta)$ if there exists $(l,v) \in (l,\zeta)$ such that after traversing edge e and letting time pass one can reach (l',v')
- Forwards algorithm (part 1)
 - start with initial state $S_F = \{tpost((I_{init}, \underline{0}))\}$ then iterate for each symbolic state $(I, \zeta) \in S_F$ and edge e add $post[e](I, \zeta)$ to S_F
 - until set of symbolic states S_F does not change
- To ensure termination need to take c-closure of each zone encountered (c is the largest constant in the PTA)

Forwards reachability

- Forwards algorithm (part 2)
 - construct finite state MDP (S_F , (I_{init} , $\underline{0}$), Steps_F, L_F)
 - states S_F (returned from first part of the algorithm)
 - $L_F(I,\zeta)$ =L(I) for all (I, ζ) \in S_F
 - $\ \mu \in \text{Steps}_F(I,\zeta)$ if and only if

there exists a probabilistic edge (l,g,a,p) of PTA such that for any (l', ζ ') \in Z:

$\mu(l',\zeta') = \sum \{ | p(l',X) | (l,g,\sigma,p,l',X) \in edges(p) \land post[e](l,\zeta) = (l',\zeta') | \}$

summation over all the edges of (l,g,a,p) such that applying **post** to (l, ζ) leads to the symbolic state (l', ζ ')

Forwards reachability – Example

64

Forwards reachability - Limitations

- Problem reduced to analysis of finite-state MDP, but...
- Only obtain upper bounds on maximum probabilities
 caused by when edges are combined
- Suppose **post**[e_1](I, ζ)=(I_1, ζ_1) and **post**[e_2](I, ζ)=(I_2, ζ_2)
 - where e_1 and e_2 from the same probabilistic edge
- By definition of post
 - there exists $(I,v_i) \in (I,\zeta)$ such that a state in (I_i, ζ_i) can be reached by traversing the edge e_i and letting time pass
- Problem
 - we combine these transitions but are (I,v_1) and (I,v_2) the same?
 - may not exist states in (I, ζ) for which both edges are enabled

Forwards reachability – Example

- Maximum probability of reaching I_3 is 0.5 in the PTA
 - for the left branch need to take the first transition when x=1
 - for the right branch need to take the first transition when x=0
- · However, in the forwards reachability graph probability is 1
 - can reach I_3 via either branch from ($I_0, x=y$)

Backwards reachability

- An alternative zone-based method: backwards reachability
 - state-space exploration in opposite direction, from target to initial states; uses pre rather than post operator
- Basic ideas: (see [KNSW07] for details)
 - construct a finite-state MDP comprising symbolic states
 - need to keep track of branching structure and take conjunctions of symbolic states if necessary
 - MDP yields maximum reachability probabilities for PTA
 - for min. probs, do graph-based analysis and convert to max.
- Advantages:
 - gives (exact) minimum/maximum reachability probabilities
 - extends to full PTCTL model checking
- Disadvantage:
 - operations to implement are expensive, limits applicability
 - (requires manipulation of non-convex zones)

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

See: www.prismmodelchecker.org/lectures/movep14/

- slides, tutorial papers, reference list, ...

Abstraction

- Very successful in (non-probabilistic) formal methods
 - essential for verification of large/infinite-state systems
 - hide details irrelevant to the property of interest
 - yields smaller/finite model which is easier/feasible to verify
 - loss of precision: verification can return "don't know"
- Construct abstract model of a concrete system
 - e.g. based on a partition of the concrete state space
 - an abstract state represents a set of concrete states

Automatic generation of abstractions using refinement

 start with a simple coarse abstraction; iteratively refine

Abstraction of MDPs

- Abstraction increases degree of nondeterminism [DDJL01]
 - i.e. minimum probabilities are lower and maximums higher

• We build abstractions of MDPs as stochastic games [KNP06b]

- yields lower/upper bounds for min/max probabilities

Abstraction refinement

- Consider (max) difference between lower/upper bounds
 - gives a quantitative measure of the abstraction's precision

- If the difference ("error") is too great, refine the abstraction
 - a finer partition yields a more precise abstraction
 - lower/upper bounds can tell us where to refine (which states)
 - (memoryless) strategies can tell us how to refine

Abstraction-refinement loop

Quantitative abstraction-refinement loop for MDPs

 Refinements yield strictly finer partition

- Guaranteed to converge for finite models
- Guaranteed to converge for infinite models with finite bisimulation
Abstraction refinement: Applications

• Examples (MDPs):

Applications

- probabilistic software (C + probabilities) [qprover] [KKNP10]
- concurrent probabilistic programs [PASS] [HHWZ10b]
- probabilistic timed automata (exact) [PRISM] [KNP09c]

Abstraction refinement for PTAs

Model checking for PTAs using abstraction refinement

Abstraction refinement for PTAs

- Computes reachability probabilities in PTAs
 - minimum or maximum, exact values ("error" ϵ =0)
 - also time-bounded reachability, with extra clock
- In practice, performs very well
 - implemented in PRISM (using DBMs)
 - faster than digital clocks or backwards on large example set
 - (sometimes by several orders of magnitude)
 - handles larger PTAs than the digital clocks approach

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/

- slides, tutorial papers, reference list, ...

The PRISM tool

- PRISM: Probabilistic symbolic model checker
 - developed at Birmingham/Oxford University, since 1999
 - free, open source (GPL), runs on all major OSs
- Support for:
 - models: DTMCs, CTMCs, MDPs, PAs, PTAs
 - (see also PRISM-games: stochastic multi-player games)
 - properties: PCTL, CSL, LTL, PCTL*, costs/rewards, numerical extensions, multi-objective, ...
- Features:
 - simple but flexible high-level modelling language
 - user interface: editors, simulator, experiments, graph plotting
 - multiple efficient model checking engines (e.g. symbolic)
 - (mostly symbolic BDDs; up to 10^{10} states, 10^7 -10⁸ on avg.)
- See: <u>http://www.prismmodelchecker.org/</u>

The PRISM tool

PTA example: message transmission over faulty channel

- States
- locations + data variables

Transitions

• guards and action labels

Real-valued clocks

• state invariants, guards, resets

Probability

discrete probabilistic choice

PRISM modelling language

- textual language, based on guarded commands

pta const int N; module transmitter s : [0..3] init 0; tries : [0..N+1] init 0; x : clock; invariant (s=0 \Rightarrow x≤2) & (s=1 \Rightarrow x≤5) endinvariant [send] s=0 & tries $\leq N$ & $x \geq 1$ $\rightarrow 0.9$: (s'=3) + 0.1 : (s'=1) & (tries'=tries+1) & (x'=0);[retry] $s=1 \& x \ge 3 \rightarrow (s' = 0) \& (x' = 0);$ [quit] $s=0 \& tries > N \rightarrow (s' = 2);$ endmodule **rewards** "energy" (s=0) : 2.5; endrewards

PRISM modelling language

- textual language, based on guarded commands

PRISM modelling language

- textual language, based on guarded commands

PRISM modelling language

- textual language, based on guarded commands

PRISM - Case studies

- Randomised communication protocols
 - Bluetooth, FireWire Zeroconf 802.11 Zigbee gossiping, ...
- Randomised distributed algorithms
 - consensus, leader election, self-stabilisation, ...
- Security protocols/systems
 - pin cracking, anonymity, quantum crypto, non-repudiation, ...
- Planning & controller synthesis
 - robotics, dynamic power management, task-graph scheduling
- Performance & reliability
 - nanotechnology, cloud computing, manufacturing systems, ...
- Biological systems
 - cell signalling pathways, DNA computation, pacemakers, ...
- See: <u>www.prismmodelchecker.org/casestudies</u>

Overview

- Probabilistic model checking
 - example: FireWire protocol
- Probabilistic timed automata (PTAs)
 - clocks, zones, syntax, semantics
 - property specification
- Verification techniques for PTAs
 - region graphs + digital clocks + zone-based methods
 - abstraction-refinement
- Tool support: PRISM
- Verification vs. controller synthesis
 - example: task-graph scheduling

• See: www.prismmodelchecker.org/lectures/movep14/

- slides, tutorial papers, reference list, ...

Verification vs. Controller synthesis

Verification vs. synthesis

- verification = check that a (model of) system satisfies a specification of correctness
- synthesis = build a "correct-by-construction" system directly from a specification of correctness

Controller synthesis (for MDPs)

- generate a controller/scheduler (an adversary) that chooses actions such that a correctness specification is satisfied
- dual problem to verification on MDPs
- For example: P_{<0.01}[F err]
 - verification: "the probability of an error is always < 0.01"
 - controller synthesis: "does there exist a controller (adversary) for which the probability of an error occurring is < 0.01?"
 - or, optimise: "what is the minimum probability of an error?"

Controller synthesis

- Controller synthesis (for MDPs)
 - nondeterminism: actions available to controller
 - probability: uncertainty about environment's behaviour
- For example: robot controller

Controller synthesis: Extensions

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"
- Controller synthesis with stochastic games
 - player 1 = controller (as for MDPs)
 - player 2 = environment ("uncontrollable" actions)

Multi-strategies

strategies (adversaries) which can choose between multiple actions at each time step

Controller synthesis - Applications

Examples of PRISM-based controller synthesis

Synthesis of dynamic power management controllers [FKN+11]

Motion planning for a service robot using LTL [LPH14b] Synthesis of team formation strategies [CKPS11, FKP12]

Minimise energy consumption, subject to constraints on: (i) expected job queue size; (ii) expected number of lost jobs

Pareto curve: x="probability of completing task 1"; y="probability of completing task 2"; z="expected size of successful team"

Example: Task-graph scheduling

- Use probabilistic model checking of PTAs to solve scheduling problems, e.g. for a task-graph
 - task-graph = tasks to complete + dependencies/ordering
 - for ex.: real-time scheduling, embedded systems controllers
- Simple example: [adapted from BFLM11]
 - evaluate expression: $D \times (C \times (A+B)) + ((A+B) + (C \times D))$
 - with subterms evaluated on one of two processors, P_1 or P_2

	P_1	P_2
+	2 picoseconds	5 picoseconds
×	3 picoseconds	7 picoseconds
idle	10 Watts	20 Watts
active	90 Watts	30 Watts

Example: Task-graph scheduling

Task-graph scheduling

- aim to find optimal (time, energy usage, etc.) schedulers
- successful application of (non-probabilistic) timed automata
- PTAs allow us to reason about uncertain delays + failures
- optimal scheduler derived from optimal adversary

PTA model

- parallel composition of 3 PTAs: one scheduler, two processors
- for example, processor P_1 , with local clock x:

Locations also labelled with costs/rewards for time/energy usage

Example: Task-graph scheduling

- Property specification:
 - R^{time}_{min=?} [F complete] minimise (expected) time
 - R^{energy}_{min=?} [F complete] minimise (expected) energy usage
- Model check with PRISM (digital clocks)
 - and extract optimal adversary/scheduler
- Time optimal (12 picoseconds)

time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
P_1	task1		task3		task5		task4		tas	k6										
P_2				task2	, ,															

Energy optimal (1.32 nanojoules)

time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	
P_1	task1		task3		tas	sk4															
P_2	task2						task5								task6						

• No probabilities yet...

Adding probabilities

- Faulty processors
 - add third processor P_3 : faster, but may fail to execute task

- Probabilistic task execution times
 - simple example: (deterministic) delay of 3 in processor P_1 replaced by distribution: $\frac{1}{3}:2$, $\frac{1}{3}:3$, $\frac{1}{3}:4$

Results (with faulty processor)

- Compute optimal (time/energy) schedulers
 - (using same properties as before)
- Results (for varying failure rates p of processor P₃):
 - dotted red line shows original results (no failures)
 - conclusion: better performance for low values of failure probability p; no benefit for higher values

Schedulers (with faulty processor)

- Example (for p=0.5)
 - optimal scheduler to minimise energy consumption
- Optimal scheduler again obtained from adversary
 - now, behaviour depends on outcome of task execution

time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
P_1					task3										tas	k6				
<i>P</i> ₂	task2										task:	5								
<i>P</i> ₃	task1						task4													
time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
P_1				tas	sk1		task3			task5			tas	k6						
<i>P</i> ₂				task2	2					task	1									
<i>P</i> ₃	task1																			
							I	<u> </u>		L						I				
time	1	2	3	4	5	6	7	8	9	10	_ 11	12	13	14	15	16	17	18	19	20
time P_1	1	2	3	4	5 task3	6	7	8	9	10	11 tas	12 sk4	13	14	15 tas	16 sk6	17	18	19	20
time P_1 P_2	1	2	3	4 task2	5 task3	6	7	8	9	10	11 tas	12 sk4	13	14	15 tas	16 sk6	17	18	19	

Multi-objective properties

- Multi-objective controller synthesis
 - (on MDP generated via digital clocks approach)
 - explore trade-off between time/energy usage

Properties

- e.g. minimise expected time, subject to bound on energy
- or: Pareto curve for two objectives: time/energy —
- NB: both may generate randomised schedulers

Expected energy usage

Overview

- Probabilistic model checking
 - probabilistic real-time systems
- Probabilistic timed automata (PTAs)
 - probability + nondeterminism + (dense) time
 - property specification; PTCTL, PCTL, ...
- Model checking techniques for PTAs
 - region graphs + digital clocks
 - zone-based methods + abstraction-refinement
 - tool support: PRISM
 - verification vs. controller synthesis

Thanks for your attention

More info here: www.prismmodelchecker.org/lectures/movep14/