

Multi-objective Reasoning with Probabilistic Model Checking

Dave Parker

University of Birmingham

2nd Intl. Workshop on Multi-objective Reasoning in Verification and Synthesis (MoRe'19)

Vancouver, June 2019

Multi-objective Reasoning with Probabilistic Model Checking

Dave Parker

University of Birmingham

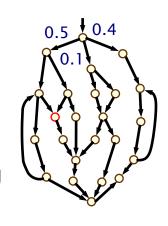
Joint work with:

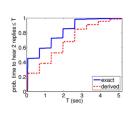
Gabriel Santos, Gethin Norman, Marta Kwiatkowska, ...

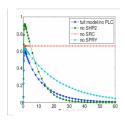
Probabilistic model checking

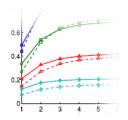
Probabilistic model checking

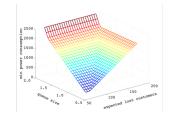
- formal construction/analysis of probabilistic models
- "correctness" properties expressed in temporal logic
- e.g. trigger → $P_{\geq 0.999}$ [$F^{\leq 20}$ deploy]
- mix of exhaustive & numerical/quantitative reasoning











Trends and advances

- increasingly expressive/powerful model classes
- from verification problems to control problems
- ever widening range of application domains

Overview

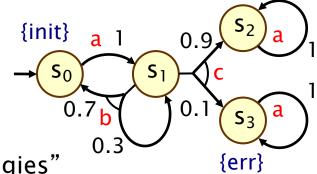
- Multi-objective probabilistic model checking
 - Markov decision processes (MDPs)
 - examples: robot navigation, task scheduling
- Multiple players: competition/collaboration
 - rPATL model checking and strategy synthesis
 - stochastic multi-player games (SMGs)
 - example: energy management
 - concurrent stochastic games (CSGs)
 - example: investor models
- Multiple players and multiple objectives
 - (social welfare) Nash equilibria
 - example: communication protocols

Verification vs. Strategy synthesis

- Markov decision processes (MDPs)
 - models nondeterministic (actions, strategies) and probabilistic behaviour
 - strategies: randomisation, memory, ...

1. Verification

- quantify over all possible strategies (i.e. best/worst-case)
- $-P_{\leq 0.1}$ [F err] : "the probability of an error occurring is ≤ 0.1 for all strategies"



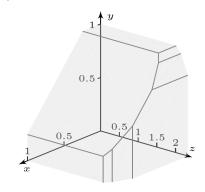
{succ}

2. Strategy synthesis

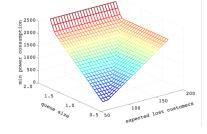
- generation of "correct-by-construction" controllers
- $P_{\leq 0.1}$ [F *err*] : "does there exist a strategy for which the probability of an error occurring is ≤ 0.1?"

Strategy synthesis for MDPs

- Core property: probabilistic reachability
 - solvable with value iteration, policy iteration, linear programming, interval iteration, ...
- Wide range of useful extensions
 - expected costs/rewards
 - linear temporal logic (LTL)
 - multi-objective model checking
 - real-time (PTAs)
 - partial observability (POMDPs)

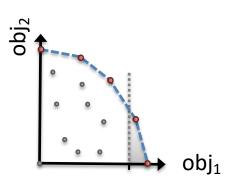


- Applications
 - dynamic power management, robot navigation, UUV mission planning, task scheduling



Multi-objective model checking

- Multi-objective probabilistic model checking
 - investigate trade-offs between conflicting objectives
 - in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P_{≥0.95} [F send], R^{time}_{≥10} [C])
 - e.g. "is there a strategy such that the probability of message transmission is ≥ 0.95 and expected battery life ≥ 10 hrs?"
- Numerical queries: multi(P_{max=?} [F send], R^{time} ≥ 10 [C])
 - e.g. "maximum probability of message transmission, assuming expected battery life-time is \geq 10 hrs?"
- Pareto queries:
 - multi(P_{max=?} [F send], R^{time}_{max=?} [C])
 - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"



Multi-objective model checking

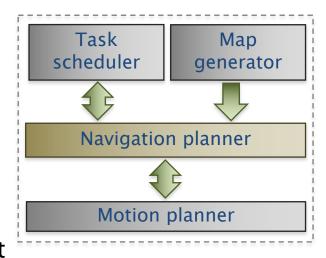
- PRISM implements two distinct approaches
- 1. Linear programming
 - solve dual problem to classical LP formulation
- 2. Value iteration based weighted sweep
 - approximate exploration/construction of Pareto curve
 - e.g. $P_{\geq r1}$ [...] $\wedge P_{\geq r2}$ [...] for $r=(r_1,r_2)=(0.2,0.7)$

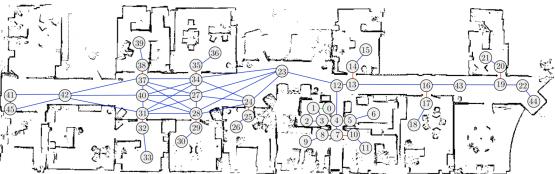


method 2 extends to step-bounded objectives

Application: Robot navigation

- Robot navigation planning: [IROS'14,IJCAI'15,ICAPS'17,IJRR'19]
 - learnt MDP models navigation through uncertain environment
 - co-safe LTL used to formally specify tasks to be executed by robot
 - finite-memory strategy synthesis to construct plans/controllers
 - ROS module based on PRISM
 - 100s of hrs of autonomous deployment





Multi-objective: Partial satisfiability

- Partially satisfiable task specifications
 - e.g. $P_{max=?}$ [¬zone₃ U (room₁ ∧ (F room₄ ∧ F room₅)] < 1
- Synthesise strategies that, in decreasing order of priority:
 - maximise the probability of finishing the task;
 - maximise progress towards completion, if this is not possible;
 - minimise the expected time (or cost) required
- Progress function constructed from DFA
 - (distance to accepting states, reward for decreasing distance)
- Encode prioritisation using multi-objective queries:

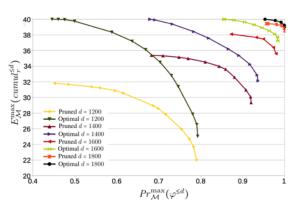
```
\begin{split} &-p = P_{max=?} \text{ [ task ]} \\ &-r = multi(R_{max=?}^{prog} \text{ [ C ], } P_{>=p} \text{ [ task ])} \\ &- multi(R_{min=?}^{time} \text{ [ task ], } P_{>=p} \text{ [ task ]} \land R_{>=r}^{prog} \text{ [ C ])} \end{split}
```

· Or alternatively, using nested value iteration

Multi-obj: Time-bounded guarantees

- Often need probabilistic time-bounded guarantees
 - e.g. "probability of completing tasks within 5 mins is > 0.99"
 - but verification techniques for these are less efficient/scalable
 - and often needed in conjunction with secondary objectives
- Efficient generation of time-bounded guarantees [ICAPS'17]
 - implemented in the PRISM model checker
- Key ideas:
 - optimize secondary goal wrt. guarantee
 - two phase verification: initial exploration of Pareto front on coarser untimed model

significant gains in scalability



Overview

- Multi-objective probabilistic model checking
 - Markov decision processes (MDPs)
 - examples: robot navigation, task scheduling
- Multiple players: competition/collaboration
 - rPATL model checking and strategy synthesis
 - stochastic multi-player games (SMGs)
 - example: energy management
 - concurrent stochastic games (CSGs)
 - example: investor models
- Multiple players and multiple objectives
 - (social welfare) Nash equilibria
 - example: communication protocols

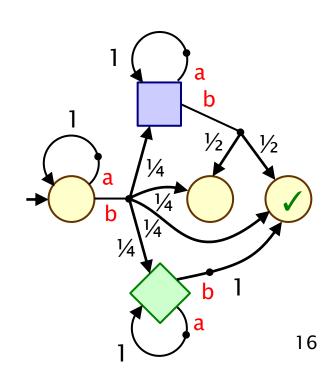
Competitive/collaborative behaviour

Open systems

- multiple system components, not all under our control
- possibly with differing/opposing goals
- giving rise to competitive/collaborative behaviour
- Many occurrences in practice
 - e.g. security protocols, algorithms for distributed consensus, energy management or sensor network co-ordination
- Natural to adopt a game-theoretic view
 - here: stochastic multi-player games
 - key ingredients: temporal logic, probabilistic model checking, tool support (PRISM-games), case studies

Stochastic multi-player games

- Stochastic multi-player game (SMGs)
 - nondeterminism + probability + multiple players
 - for now: turn-based (players control states)
 - applications: e.g. security (system vs. attacker),
 controller synthesis (controller vs. environment)
- A (turn-based) SMG is a tuple (N, S, $\langle S_i \rangle_{i \in \mathbb{N}}$, A, δ , L) where:
 - N is a set of n players
 - S is a (finite) set of states
 - $-\langle S_i \rangle_{i \in \mathbb{N}}$ is a partition of S
 - A is a set of action labels
 - $-\delta$: S × A → Dist(S) is a (partial) transition probability function
 - L: S → 2^{AP} is a labelling function



Strategies, probabilities & rewards

- Strategy for player i: resolves choices in S_i states
 - based on execution history, i.e. σ_i : (SA)*S_i → Dist(A)
 - can be: deterministic (pure), randomised, memoryless, finite-memory, ...
 - $-\Sigma_i$ denotes the set of all strategies for player i
- Strategy profile: strategies for all players: $\sigma = (\sigma_1, ..., \sigma_n)$
 - induces a set of (infinite) paths from some start state s
 - a probability measure Pr_s^σ over these paths
 - expectation $E_s^{\sigma}(X)$ of random variable X over Pr_s^{σ}
- Rewards (or costs)
 - non-negative values assigned to states/transitions
 - e.g. elapsed time, energy consumption, number of packets lost, net profit, ...

Property specification: rPATL

- rPATL (reward probabilistic alternating temporal logic)
 - branching-time temporal logic for SMGs
- CTL, extended with:
 - coalition operator ((C)) of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
- In short:
 - zero-sum, probabilistic reachability + expected (total) reward
- Example:
 - $\langle \langle \{1,3\} \rangle \rangle$ P_{<0.01} [F^{≤10} error]
 - "players 1 and 3 have a strategy to ensure that the probability of an error occurring within 10 steps is less than 0.01, regardless of the strategies of other players"

rPATL syntax/semantics

Syntax:

```
\begin{split} \varphi &::= true \mid a \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle \langle C \rangle \rangle P_{\bowtie q}[\psi] \mid \langle \langle C \rangle \rangle R^r_{\bowtie x} \left[ \rho \right] \\ \psi &::= X \varphi \mid \varphi U^{\leq k} \varphi \mid \varphi U \varphi \\ \rho &::= I^{=k} \mid C^{\leq k} \mid F \varphi \end{split}
```

where:

- a∈AP is an atomic proposition, C⊆N is a coalition of players, $\bowtie \in \{\le,<,>,\ge\}$, $q \in [0,1] \cap \mathbb{Q}$, $x \in \mathbb{Q}_{\ge 0}$, $k \in \mathbb{N}$ r is a reward structure
- Semantics:
- e.g. P operator: $s = \langle \langle C \rangle \rangle P_{\bowtie q}[\psi]$ iff:
 - "there exist strategies for players in coalition C such that, for all strategies of the other players, the probability of path formula ψ being true from state s satisfies \bowtie q"

rPATL and beyond

- Generalised reward operators [TACAS'12, FMSD'13]
 - $-\langle\langle C\rangle\rangle R^{r}_{\bowtie x}$ [F* φ] where * $\in \{\infty,c,0\}$
 - F⁰ is tricky: needs finite-memory strategies
- Quantitative (numerical) properties:
 - $-\langle\langle\{1\}\rangle\rangle$ $P_{\text{max}=?}[Ferror]$, i.e. $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} Pr_s^{\sigma_1,\sigma_2}(Ferror)$
 - "what is the maximum probability of reaching an error state that player 1 can guarantee?" (against player 2)
- Nesting (and n>2 players)
 - players: sensor₁, sensor₂, repairer
 - $-\langle\langle sensor_1\rangle\rangle P_{<0.01}[F(\neg\langle\langle repairer\rangle\rangle P_{\geq 0.95}[F"operational"])]$
- And more...
 - rPATL*, reward-bounded [FMSD], exact bounds [CONCUR'12]
 - multi-objective model checking [QEST'13,TACAS15,I&C'17] 20

rPATL model checking for SMGs

- Reduces to solving zero-sum stochastic 2-player games
 - complexity: NP \cap coNP (without any R[F⁰] operators)
 - complexity for full logic: NEXP \cap coNEXP (due to R[F⁰])
- In practice, we use value iteration (numerical fixed points)
 - and more: graph-algorithms, sequences of fixed points, ...
- E.g. probabilistic reachability: $\langle\langle C \rangle\rangle P_{\geq q}[F \varphi]$
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2} (F \varphi)$ for all states s
 - deterministic memoryless strategies suffice
 - value p(s) for state s is least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \in Sat(\varphi) \\ max_{a \in A(s)} \sum_{s' \in S} \delta(s, a)(s') \cdot p(s') & \text{if } s \in S_1 \setminus Sat(\varphi) \\ min_{a \in A(s)} \sum_{s' \in S} \delta(s, a)(s') \cdot p(s') & \text{if } s \in S_2 \setminus Sat(\varphi) \end{cases}$$

convergence criteria need to be selected carefully

PRISM-games

- PRISM-games: www.prismmodelchecker.org/games
 - extension of PRISM modelling language (see later)
 - implementation in explicit engine
 - prototype MTBDD version also available

- Example application domains
 - security: attack-defence trees; DNS bandwidth amplification
 - self-adaptive software architectures
 - autonomous urban driving
 - human-in-the-loop UAV mission planning
 - collective decision making and team formation protocols
 - energy management protocols

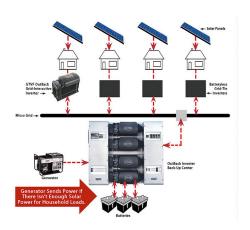
Application: Energy management

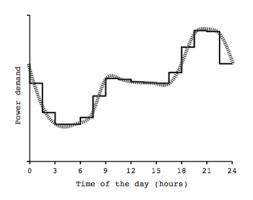
Energy management protocol for Microgrid

- randomised demand management protocol
- random back-off when demand is high
- Original analysis [Hildmann/Saffre'11]
 - protocol increases "value" for clients
 - simulation-based, clients are honest

Our analysis

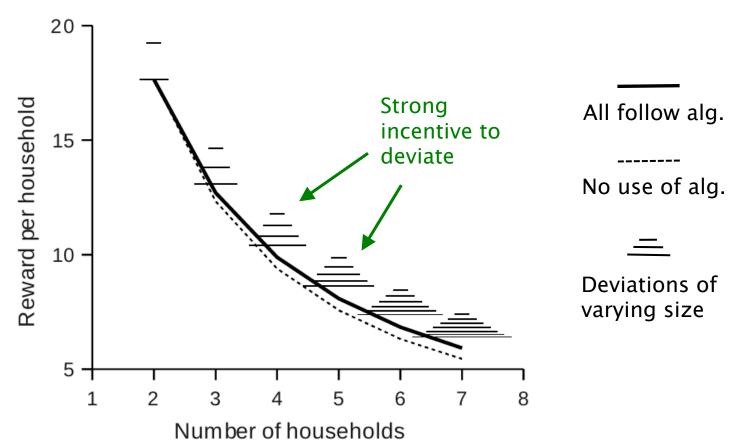
- stochastic multi-player game model
- clients can cheat (and cooperate)
- model checking: PRISM-games
- exposes protocol weakness (incentive for clients to act selfishly
- propose/verify simple fix using penalties





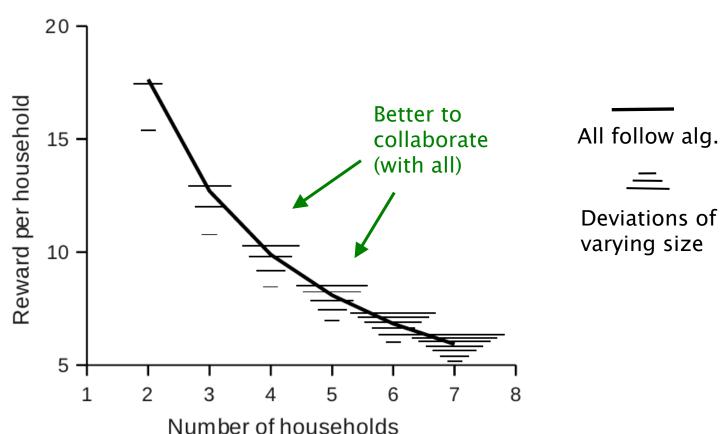
Results: Competitive behaviour

- Expected total value V per household
 - in rPATL: $\langle\langle C\rangle\rangle R^{r_{c_{max}}}$ [F⁰ time=max time] / |C|
 - where r_C is combined rewards for coalition C



Results: Competitive behaviour

- Algorithm fix: simple punishment mechanism
 - distribution manager can cancel some loads exceeding clim



Overview

- Multi-objective probabilistic model checking
 - Markov decision processes (MDPs)
 - examples: robot navigation, task scheduling
- Multiple players: competition/collaboration
 - rPATL model checking and strategy synthesis
 - stochastic multi-player games (SMGs)
 - example: energy management
 - concurrent stochastic games (CSGs)
 - example: investor models
- Multiple players and multiple objectives
 - (social welfare) Nash equilibria
 - example: communication protocols

Concurrent stochastic games

- Concurrent stochastic games (CSGs)
 - players choose actions concurrently
 - jointly determines (probabilistic) successor state
 - generalises turn-based stochastic games

Key motivation:

more realistic model of components operating concurrently,
 making action choices without knowledge of others

Formally

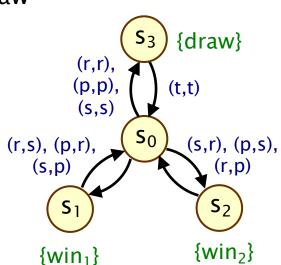
- set of n players N, state space S, actions A_i for player i
- transition probability function $\delta : S \times A \rightarrow Dist(S)$
- where $A = (A_1 \cup \{\bot\}) \times ... \times (A_n \cup \{\bot\})$
- strategies σ_i : FPath → Dist(A_i), strategy profiles $\sigma=(\sigma_1,...,\sigma_n)$
- probability measure Pr_s^{σ} , expectations $E_s^{\sigma}(X)$

Example CSG: rock-paper-scissors

- Rock-paper-scissors game
 - 2 players repeated draw rock (r), paper (p), scissors (s), then restart the game (t)
 - rock > scissors, paper > rock,scissors > paper, otherwise draw

Example CSG

- 2 players: N={1,2}
- $A_1 = A_2 = \{r,p,s,t\}$
- NB: no probabilities here



Matrix games

Matrix games

- finite, one-shot, 2-player, zero-sum games
- utility function $\mathbf{u_i}: \mathbf{A_1} \times \mathbf{A_2} \to \mathbb{R}$ for each player i
- represented by matrix **Z** where $z_{ij} = u_1(a_i,b_j) = -u_2(a_i,b_j)$

• Example:

one round of rock-paper-scissors

- Optimal (player 1) strategy via LP solution (minimax):
 - compute value val(Z): maximise value v subject to:

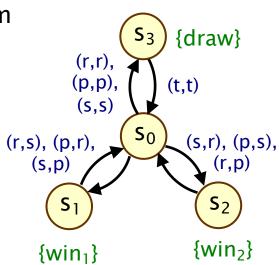
$$- v \le x_p - x_s$$

 $v \le x_s - x_r$,
 $v \le x_s - x_p$
 $x_r + x_p + x_s = 1$
 $x_r \ge 0$, $x_p \ge 0$, $x_s \ge 0$

Optimal strategy (randomised):
$$(x_r, x_p, x_s) = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

rPATL for CSGs

- We use the same logic rPATL as for SMGs
- Examples for rock-paper-scissors game:
 - $\langle\langle 1 \rangle\rangle$ P_{≥ 1} [F win₁] player 1 can ensure it eventually wins a round of the game with probability 1
 - $\langle\langle 2\rangle\rangle$ $P_{max=?}$ [$\neg win_1$ U win_2] the maximum probability with which player 2 can ensure it wins before player 1
 - $\langle\langle 1 \rangle\rangle$ R_{max=?} [C^{$\leq 2K$}] the maximum expected utility player 1 can ensure over K rounds (utility = 1/0/-1 for win/draw/lose)



rPATL model checking for CSGs

- Extends model checking algorithm for SMGs [QEST'18]
 - key ingredients are solution of (zero-sum) 2-player CSGs
- E.g. $\langle \langle C \rangle \rangle P_{\geq q}[F \varphi]$: max/min reachability probabilities
 - compute $\sup_{\sigma_1 \in \Sigma_1} \inf_{\sigma_2 \in \Sigma_2} \Pr_s^{\sigma_1, \sigma_2} (F \varphi)$ for all states s
 - note that optimal strategies are now randomised
 - solution of the 2-player CSG is in PSPACE
 - we use a value iteration based approach
- Value p(s) for state s is least fixed point of:
 - p(s) = 1 if s∈Sat(ϕ) and otherwise p(s) = val(Z) where:
 - Z is the matrix game with $z_{ij} = \sum_{s' \in S} \delta(s,(a_i,b_i))(s') \cdot p(s')$
 - so each iteration requires solution of a matrix game for each state (LP problem of size |A|, where A = action set)

CSGs in PRISM-games

- CSG model checking implemented in PRISM-games
- Extension of PRISM modelling language
 - player specification via partition of modules
 - unlike SMGs, all modules move simultaneously
 - concurrent updates modelled with multi-action commands, e.g. [r1,r2] $m1=0 \rightarrow ...$ and chained updates, e.g. (m2'=m1')
- Explicit engine implementation
 - plus LPsolve library for minimax LP solution
 - experiments with CSGs up to ~3 million states
- Case studies:
 - future markets investor, trust models for user-centric networks, intrusion detection policies, jamming radio systems

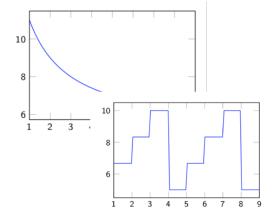
CSGs in PRISM (rock-paper-scissors)

```
csg
                                                                              {draw}
player player 1 M1 endplayer
                                                                   (r,r)
player player2 M2 endplayer
                                                                   (p,p)
                                                                              (t,t)
                                                                   (s,s)
module M1
                                                                                (s,r), (p,s),
                                                           (r,s), (p,r),
     m1:[0..3];
                                                              (s,p)
                                                                                   (r,p)
     [r1] m1 = 0 \rightarrow (m1'=1); // rock
                                                                                   S_2
     [p1] m1 = 0 \rightarrow (m1'=2); // paper
     [s1] m1=0 \rightarrow (m1'=3); // scissors
                                                                                 \{win_2\}
                                                              \{win_1\}
     [t]] m] > 0 \rightarrow (m]' = 0): // restart
endmodule
module M2 = M1 [ m1 = m2, r1 = r2, p1 = p2, s1 = s2, t1 = t2 ] endmodule
label "win1" = (m1=1&m2=3) | (m1=2&m2=1) | (m1=3&m2=2); // player 1 wins round
rewards "utility1" // utility for player 1
     [t1] (m1=1 \& m2=3) | (m1=2 \& m2=1) | (m1=3 \& m2=2) : 1; // player 1 wins
     [t1] (m1=1 \& m2=2) \mid (m1=2 \& m2=3) \mid (m1=3 \& m2=1) : -1; // player 2 wins
endrewards
```

Application: Future markets investor

Model of interactions between:

- stock market, evolves stochastically
- two investors i₁, i₂ decide when to invest
- market decides whether to bar investors



Modelled as a 3-player CSG

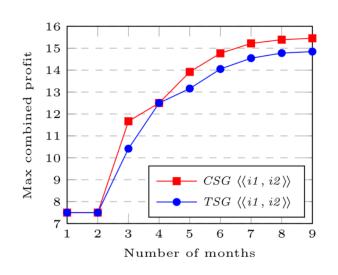
- extends simpler model originally from [McIver/Morgan'07]
- investing/barring decisions are simultaneous
- profit reduced for simultaneous investments
- market cannot observe investors' decisions

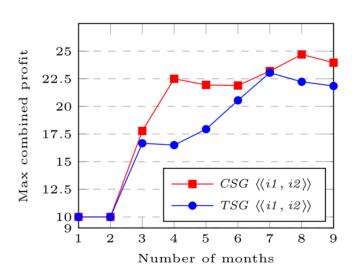
Analysed with rPATL model checking & strategy synthesis

- distinct profit models considered: 'normal market', 'later cash-ins' and 'later cash-ins with fluctuation'
- comparison between SMG and CSG models

Application: Future markets investor

- Example rPATL queries:
 - ⟨⟨investor₁⟩⟩ R^{profit₁}_{max=?} [F finished₁]
 - $-\langle\langle investor_1, investor_2\rangle\rangle$ $R_{max=?}^{profit_{1,2}}$ [F finished_{1,2}]
 - i.e. maximising individual/joint profit
- Results (joint profit) limited power of market shown
 - with (left) and without (right) fluctuations
 - optimal (randomised) investment strategies synthesised





Overview

- Multi-objective probabilistic model checking
 - Markov decision processes (MDPs)
 - examples: robot navigation, task scheduling
- Multiple players: competition/collaboration
 - rPATL model checking and strategy synthesis
 - stochastic multi-player games (SMGs)
 - example: energy management
 - concurrent stochastic games (CSGs)
 - example: investor models
- Multiple players and multiple objectives
 - (social welfare) Nash equilibria
 - · example: communication protocols

Multiple objectives: Nash equilibria

- Now consider distinct objectives X_i for each player i
 - i.e., no longer restricted to zero-sum goals
- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - more precisely subgame−perfect ∈-Nash equilibrium
 - a strategy profile $\sigma = (\sigma_{1,...}, \sigma_n)$ for a CSG is a subgame-perfect ϵ -Nash equilibrium for objectives $X_1,...,X_n$ iff:
 - $E_s^{\sigma}(X_i) \ge \sup \{ E_s^{\sigma'}(X_i) \mid \sigma' = \sigma_{-i}[\sigma_i'] \text{ and } \sigma_i' \in \Sigma_i \} \epsilon \text{ for all } i, s$
 - $-\epsilon$ -NE (but not 0-NE) guaranteed to exist for CSGs
- In particular: social welfare Nash equilibria (SWNE)
 - NE which maximise sum $E_s^{\sigma}(X_1) + ... E_s^{\sigma}(X_n)$

Example

CSG example: Medium access control protocol

- 2 players (senders); states = e_1s_1 e_2s_2

(energy₁/sent₁, energy₂/sent₂)

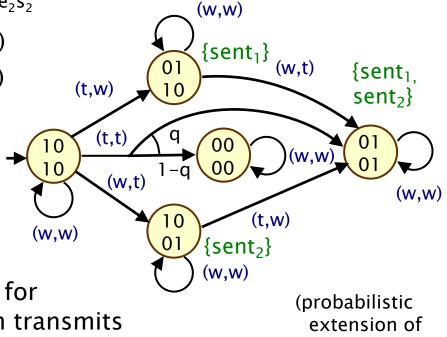
– actions = t (transmit), w (wait)

q = probability of success if messages collide

 If objectives X_i = probability to send successfully:

> 2 SWNEs when one user waits for the other to transmit and then transmits

- If the objectives X_i = probability of being first to transmit their packet:
 - only 1 SWNE: both immediately try to transmit



[Brenguier'13])

rPATL + Nash operator

Extension of rPATL for Nash equilibria [FM'19]

```
\begin{split} \varphi &::= true \mid a \mid \neg \varphi \mid \varphi \wedge \varphi \mid \\ & \langle \langle C \rangle \rangle P_{\bowtie q} [\psi] \mid \langle \langle C \rangle \rangle R^r_{\bowtie_X} \left[ \rho \right] \mid \langle \langle C, C' \rangle \rangle_{max\bowtie_X} \left[ \theta \right] \\ \theta &::= P[\psi] + P[\psi] \mid R^r[\rho] + R^r[\rho] \\ \psi &::= X \varphi \mid \varphi U^{\leq k} \varphi \mid \varphi U \varphi \\ \rho &::= I^{=k} \mid C^{\leq k} \mid F \varphi \end{split}
```

where:

- a∈AP is an atomic proposition, C⊆N is a coalition of players and C'=N\C, \bowtie ∈ {≤,<,>,≥}, q ∈ [0,1] \cap Q, x ∈ Q_{≥0}, k ∈ \bowtie r is a reward structure

Semantics:

- $((C,C'))_{max\bowtie x}$ [θ] is satisfied if there exist strategies for all players that form a SWNE between coalitions C and $C'(=N\setminus C)$, and under which the *sum* of the two objectives in θ is $\bowtie x$

Model checking for extended rPATL

- Key ingredient is now:
 - solution of SWNEs for bimatrix games
 - (basic problem is EXPTIME)
 - we adapt known approach using labelled polytopes, and implement using an encoding to SMT
- Two types of model checking operator
 - bounded: backwards induction
 - unbounded: value iteration, e.g.:

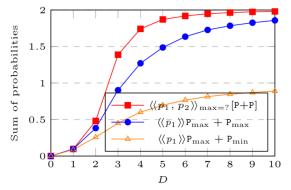
$$\mathbf{V}_{\mathsf{G}^C}(s,\theta,n) = \begin{cases} (1,1) & \text{if } s \in Sat(\phi^1) \cap Sat(\phi^2) \\ (1,\mathsf{P}^{\max}_{\mathsf{G},s}(\mathsf{F}\ \phi^2)) & \text{else if } s \in Sat(\phi^1) \\ (\mathsf{P}^{\max}_{\mathsf{G},s}(\mathsf{F}\ \phi^1),1) & \text{else if } s \in Sat(\phi^2) \\ (0,0) & \text{else if } n{=}0 \\ val(\mathsf{Z}_1,\mathsf{Z}_2) & \text{otherwise} \end{cases}$$

- where Z_1 and Z_2 encode matrix games similar to before

PRISM-games support

Implementation in PRISM-games

- needed further extensions to modelling language
- extends CSG rPATL model checking implementation
- bimatrix games solved using Z3 encoding
- optimised filtering of dominated strategies
- scales up to CSGs with ~2 million states



Applications

- robot navigation in a grid, medium access control,
 Aloha communication protocol, power control
- SWNE strategies outperform those found with rPATL
- $-\epsilon$ -Nash equilibria found typically have ϵ =0

Conclusions

- Probabilistic model checking: PRISM & PRISM-games
 - multi-objective techniques for MDPs
 - rPATL model checking for
 - stochastic multi-player games (SMGs)
 - concurrent stochastic games (CSGs)
 - CSGs + (social welfare) Nash equilibria
 - wide variety of case studies studied
- Challenges & directions
 - extending to >2 players
 - scalability, e.g. symbolic methods, abstraction
 - partial information/observability & greater efficiency
 - further applications and case studies