
“Rigorous Automated Planning”, Lorentz Centre, June 2022

Tutorial:
Planning in Formal Methods Land

Dave Parker

University of Birmingham

“Rigorous Automated Planning”, Lorentz Centre, June 2022

Tutorial:
Planning with Probabilistic Model Checking

Dave Parker

University of Birmingham

3

High-level
model/design

Specification
(temporal logic)

System

System
require-
ments

Probabilistic
model checker

Probabilistic
model

Probabilistic model checking

?

0.5
0.1

0.4

Probabilistic model checking

Result

P≥0.999 [F≤20 goal]

4

Probabilistic
model checker

Probabilistic
model

Probabilistic model checking

0.5
0.1

0.4

Probabilistic model checking

22

are added to encode the random delays. For example, in the case of multiplication, with
probability 1

3 the task completes after 2 time units; with probability 2
3 , the PTA moves to a

location where, with probability 1
2 the task completes after 1 additional time unit (i.e., of a

total of 3 time units) or moves to a location where the task completes after 2 more time units
(i.e., 4 time units in total). When the task completes, the PTA moves to a location where no
time can pass (clock x is reset upon entering and the invariant of the location is x≤0) and
immediately notifies the scheduler the task is computed through action p1 done. To prevent
the scheduler from seeing into the future when making decisions, the probabilistic choice
for task completion is made on completion rather than on initialisation.

Analysing this model, we find that the optimal expected time and energy consumption to
complete all tasks equals 12.226 picoseconds and 1.3201 nanojoules, respectively. This im-
proves on the results obtained using the optimal schedulers for the original model, where the
expected time and energy consumption equal 13.1852 picoseconds and 1.3211 nanojoules.
Examining the optimal schedulers, we find that they change their decision based upon the
delays of previously completed tasks. For example, for elapsed time, the optimal scheduler
starts as for the non-probabilistic case, first scheduling task1 followed by task3 on P1 and
task2 on P2. However, it is now possible for task2 to complete before task3 (if the execution
times for task1, task2 and task3 are 3, 6 and 4 respectively), in which case the optimal sched-
uler now makes a different decision from the non-probabilistic case. Under one possible set
of execution times for the remaining tasks, the optimal scheduling is as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

Adding a Faulty Processor. As a second extension of the scheduling problem, we add a
third processor P3 which consumes the same energy as P2 but is faster (addition takes 3
picoseconds and multiplication 5 picoseconds). However, this comes at a cost: there is a
chance (probability p) that the processor fails and the computation must be rescheduled and
performed again.

In Figure 8(b), we show the PTA for the faulty version of processor P1. In this PTA, when
a task completes, there is a probabilistic choice between moving to a location corresponding
to successful completion and one to failure. In both cases, we move to a location where
no time can pass and immediate notify the scheduler of either the success or failure of the
computation. The automaton for the scheduler also changes for this model since it must
react to the failure signals from the processors. In addition, the reward structure energy is
extended to include the energy consumed by the additional processor.

The graphs in Figure 9 plot the optimal expected time and energy consumption for this
extended model as the failure probability p varies. The dashed lines show the optimal re-
sults for the original model, i.e., when not using the processor P3. As can be seen, once the
probability of failure becomes sufficiently large, there is no gain in using the processor P3

but, while when the probability of failure is small, it uses offers considerable gains in per-
formance. To illustrate this fact, below we give a scheduler that optimises (minimises) the
expected energy consumption when p=0.5. Dark boxes for tasks are used to denote proces-
sor P3 failing to complete a task correctly, meaning that the task needs to be rescheduled.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task6

P2 task2 task5

P3 task1 task4

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

23

(a) Expected time (b) Expected energy consumption

Fig. 9 Optimal expected time and energy consumption as the failure probability of processor P3 varies

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

P3 task1

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task3 task4 task6

P2 task2 task5

P3 task1 task4

Notice that the scheduler uses the processor P3 for task1 and, if this task is completed suc-
cessfully, it later uses P3 for task4. However, if task1 fails to complete, P3 is not used again.

7 Conclusions

In this paper, we have presented an introduction to the model of probabilistic timed au-
tomata and summarised the various techniques developed to perform probabilistic model
checking. Verification of probabilistic real-time systems is an active field of research and
further progress is required in several important directions. Examples include the develop-
ment of verification techniques for probabilistic timed games [43,6] and for probabilistic

hybrid automata [64,36,9]. The former have proved, in the non-probabilistic setting, to be-
ing applicable to a variety of useful synthesis problems [12]. The latter provide essential
modelling capabilities for domains such as embedded systems and cyber-physical systems;
they represent a useful, but more tractable, subclass of the model of stochastic hybrid au-
tomata. Other important issues to investigate in the context of PTAs include robustness [7]
and continuously-distributed time delays [53,1,60].

Acknowledgments. David Parker is part supported by ERC Advanced Grant VERIWARE.
Jeremy Sproston is part supported by the project AMALFI (Advanced Methodologies for
the AnaLysis and management of the Future Internet, Università di Torino/Compagnia di
San Paolo). We thank the anonymous referees for various useful comments.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for probabilistic real-time systems. In: Proc. 19th
International Colloquium on Automata, Languages and Programming (ICALP’91), LNCS, vol. 510, pp.
115–136. Springer (1991)

2. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense real time. Information and Computation
104(1), 2–34 (1993)

Strategies/policies/controllers

Numerical results/analysis

Result

P≥0.999 [F≤20 goal]

5

Overview

• Temporal logic
− quantitative task specification/guarantees

• Techniques & tools
− models, modelling languages

• Multi-agent planning
− stochastic multi-player games

Temporal
logic

7

Temporal logic

• Formal specification of desired behaviour
− i.e., planning tasks/objectives
− formal guarantees on resulting behaviour

• Simple examples (PCTL)

− Probabilistic reachability
P≥0.7 [F goal1]
P≥0.6 [F≤10 goal1]

− Probabilistic safety/invariance
P≥0.99 [G¬hazard]

− Numerical queries
Pmax=? [F goal1]

• For planning with MDPs:
− P~p[ψ] means: find a policy/strategy σ satisfying Prσ(ψ)~p

s0

s4s3

0.5

east s1
south

0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south

0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

Example MDP (robot navigation)

8

Linear temporal logic (LTL)

• Logic for describing properties of executions [Pnueli]

• LTL syntax:
− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Propositional logic + temporal operators:
− a is an atomic proposition (labelling a state)
− X ψ means "ψ is true in the next state"
− F ψ means “ψ is eventually true”
− G ψ means “ψ always remains true”
− ψ1 U ψ2 means "ψ2 is true eventually and ψ1 is true until then”

• Common alternative notation:
− ◯ (next), ◇ (eventually), □ (always) , U (until)

9

Linear temporal logic (LTL)

• LTL syntax:
− ψ ::= true | a | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ | F ψ | G ψ

• Commonly used LTL formulae:
− G (a → F b) - "b always eventually follows a"
− G (a → X b) - "b always immediately follows a”
− G F a - "a is true infinitely often"
− F G a - "a becomes true and remains true forever"

• Robot task specifications in LTL (for MDPs)
− e.g. P>0.7 [(G¬hazard) ∧ (GF goal1)] – ”the probability of

avoiding hazard and visiting goal1 infinitely often is > 0.7"
− e.g. Pmax=? [¬zone3 U (zone1 ∧ (F zone4))] – "max. probability

of patrolling zones 1 then 4, without passing through 3?”

10

Temporal logic

• Benefits of temporal logic
− flexible, unambiguous behavioural specification

• broad range of quantitative properties expressible

− (probabilistic) guarantees on safety, performance, etc.
• meaningful properties: event probabilities, time, energy,…

• (c.f. ad-hoc reward structures, e.g. with discounting)
• caveat: accuracy of model (and its solution)

− efficient LTL-to-automata translation
• optimal (finite-memory) policy synthesis (via product MDP)
• correctness monitoring / shielding
• task progress metrics

P>0.7 [(G¬hazard) ∧ (GF goal1)]

11

LTL & automata

• Safe/co-safe LTL: (deterministic) finite automata
− (non-)satisfaction occurs in finite time
− ¬zone3 U (zone1 ∧ (F zone4))

• Full LTL: e.g. (det.) Rabin/Buchi automata
− G¬hazard ∧ GF goal1

• Other useful LTL subclasses
− GR(1), LTL\GU, …

q0 q2

z1∧
¬z3

¬z1∧¬z3
q3

true

q1

z4

z3

¬z4

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

12

LTL planning via product MDP

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

0.5

east
south

0.8

0.1

{goal1}

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

{goal2}

s4q0s3q0

s1q2

s4q2s3q0 s5q2

s2q2

M⊗Aψ

M

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

Aψ ψ = G¬h ∧ GF g1

13

LTL planning via product MDP

0.5

east
south

0.8

0.1

{goal1}

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6

0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal1}{goal2}

stuck

stuck

0.4

0.6 west

west

east 0.1

0.9
north

s0q0 s2q0

s5q1

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

{goal2}

s4q0s3q0

s1q2

s4q2s3q2 s5q2

s2q2

M⊗Aψ

M

q1
¬g1∧¬h

g1∧¬h

g1∧¬h¬g1∧¬h
q2

true

hh

q0

Aψ ψ = G¬h ∧ GF g1

14

Costs & Rewards

• Costs & rewards
− i.e., values assigned to model states or state-action pairs

• Temporal logic examples
− R ≤1.5 [C≤20] - the expected number of times that the robot

enters the hazard location within 20 steps is at most 1.5
− R min=? [F goal] – minimise the expected energy consumption

until the the goal is reached
− R min=? [¬zone3 U (zone1 ∧ (F zone4))] – minimise expected

time to patrol zones 1 then 4, without passing through 3

• Notes:
1. the above use PRISM’s R (reward) operator, even for costs
2. discounted rewards are more rarely used in this context

hazard

energy

time

15

More temporal logic

• Multi-objective queries
− e.g. ⟨⟨*⟩⟩ (Pmax=? [GF goal1], P≥0.7 [G ¬hazard])
− max. objective 1 subject to constrained objective 2
− also: achievability & Pareto queries

• Nested (branching-time) queries
− e.g. Rmin=? [P≥0.99 [F≤10 base] U (zone1 ∧ (F zone4))]
− "minimise expected time to visit zones 1 then 4, whilst

ensuring the base can always be reliably reached

• And more
− cost-bounded, conditional probabilities, quantiles
− metric temporal logic, signal temporal logic
− …

obj1

ob
j 2

16

Multi-objective specifications

s0

s4s3

0.5

east s1

south
0.8

0.1

{goal1}

s2

s5

{hazard}

0.1

{goal2}

{goal2}

south
0.5

0.6
0.4

stuck

east

stuck

0.4

0.6 west

west

east 0.1

0.9
north

• Achievability query
− P≥0.7 [G ¬hazard] ∧ P≥0.2 [GF goal1] ?

• Numerical query
− Pmax=? [GF goal1] such that P≥0.7 [G ¬hazard] ?

• Pareto query
− for Pmax=? [G ¬hazard], Pmax=? [GF goal1] ?

0.80.60.4 10.20
0

0.2

0.4
0.5

0.3

0.1
ψ1

ψ2
ψ1 = G ¬hazard
ψ2 = GF goal1

randomised,
finite-memory
optimal policy

Techniques
& tools

18

Verification techniques

• Probabilistic model checking techniques
− automata + graph analysis + numerical solution
− often more focus on exhaustive/“exact”/optimal methods
− e.g., for MDPs: value iteration (VI), linear programming

• But: known accuracy and convergence issues
− interval iteration, sound VI, optimistic VI
− separate convergence from above and below

• Scalability vs accuracy/guarantees
− scalability/efficiency is always an issue
− statistical model checking: sampling-based methods
− abstraction + sound bounds (often property driven)

19

Probabilistic verification: directions

• Research directions

− parametric model checking
• e.g., for parameter synthesis,

sensitivity analysis

− quantification of uncertainty
• e.g. robust verification with interval MDPs,

convex optimisation

− verification + machine learning
• learnt policies

e.g. (sampling/heuristics? neural nets?)
• learnt models + parameters

k r

ki

k

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

r

20

Verification tools

• Probabilistic verification tools
− PRISM (and PRISM-games), STORM, MODEST, ePMC
− general purpose probabilistic model checking tools,

wide range of models (Markov chains, (PO)MDPs, games),
many temporal logics & solution techniques

• Real-time verification tools
− UPPAAL (and UPPAAL-Stratego/Tiga/CORA/SMC/…)
− timed automata, plus stochastic & game variants

• Also many other specialised tools
− PET (partial exploration, sampling)
− Prophesy (parametric techniques)
− FAUST2, StocHy (continuous space/hybrid systems)
− …

21

Modelling languages

• Example languages for formal model specification
− PRISM: textual language, based on guarded commands
− UPPAAL: graphical/textual description of automata networks

22

Modelling languages

• Example languages for formal model specification
− PRISM: textual language, based on guarded commands
− UPPAAL: graphical/textual description of automata networks

csg // Model type: concurrent stochastic game
player p1 user1 endplayer player p2 user2 endplayer

// Parameters
const int emax; const double q1; const double q2 = 0.9 * q1;
// Modules: users (senders) + channel
module user1

s1 : [0..1] init 0; // has player 1 sent?
e1 : [0..emax] init emax; // energy level of player 1
[w1] true -> (s1'=0); // wait
[t1] e1>0 -> (s1'=c’ ? 0 : 1) & (e1'=e1-1); // transmit

endmodule

module user2 = user1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule

module channel
c : bool init false; // is there a collision?
[t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
[w1,t2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
[t1,t2] true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit

endmodule

// Reward structures: energy usage
rewards “energy” [t1] true: 1.5; [t2] true: 1.2; endrewards

PRISM-games

23

Modelling languages

• Example languages for formal model specification
− PRISM: textual language, based on guarded commands
− UPPAAL: graphical/textual description of automata networks

UPPAAL

24

Modelling languages

• Example languages for formal model specification
− PRISM: textual language, based on guarded commands
− UPPAAL: graphical/textual description of automata networks

• Some key modelling language features
− Compositional model specifications

• components, parallel composition, communication
− Parameterised models

• probabilities, sizes, components

• Challenges
− language/tool interoperability

• e.g., JANI (models), PPDDL (planning), HOAF (automata), tool APIs
− modelling stochasticity/uncertainty

• probabilistic programming languages?

25

Models, models, models…

• Wide range of probabilistic models

discrete states & probabilities: Markov chains
+ nondeterminism: Markov decision processes (MDPs)
+ real-time clocks: probabilistic timed automata (PTAs)
+ uncertainty: interval MDPs (IMDPs)
+ partial observability: partially observable MDPs (POMDPs)
+ multiple players: (turn-based) stochastic games
+ concurrency: concurrent stochastic games

• And many others
− stochastic timed automata
− stochastic hybrid automata
− Markov automata
− …

Multi-agent
planning

27

Verification with stochastic games

• How do we plan rigorously with…
− multiple autonomous agents acting concurrently
− competitive or collaborative behaviour between agents,

possibly with differing/opposing goals
− e.g. security protocols, algorithms for distributed consensus,

energy management, autonomous robotics, auctions

• Verification with stochastic multi-player games
− verification (and synthesis) of strategies that are robust

in adversarial settings and stochastic environments

28

Stochastic multi-player games

• Stochastic multi-player games
− strategies + probability + multiple players
− for now: turn-based (player i controls states Si)

s0

s1

w1 s2

t1 w2

t2

w2

t2

✓

s4

s5

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1

b
1

c
c

f

f

f

0.7

Markov
decision processes

(MDPs)

Turn-based
stochastic games

(TSGs)

29

Property specification: rPATL

• rPATL (reward probabilistic alternating temporal logic)
− branching-time temporal logic for stochastic games

• CTL, extended with:
− coalition operator ⟨⟨C⟩⟩ of ATL
− probabilistic operator P of PCTL
− generalised (expected) reward operator R from PRISM

• In short:
− zero-sum, probabilistic reachability + expected total reward

• Example:
− ⟨⟨{robot1,robot3}⟩⟩ P>0.99 [F≤10 (goal1∨ goal3)]
− “robots 1 and 3 have a strategy to ensure that the probability

of reaching the goal location within 10 steps is >0.99,
regardless of the strategies of other players”

30

rPATL syntax/semantics

• Syntax:
φ ::= true | a | ¬φ | φ ∧ φ | ⟨⟨C⟩⟩P⋈q[ψ] | ⟨⟨C⟩⟩Rr⋈x [ρ]
ψ ::= X φ | φ U≤k φ | φ U φ
ρ ::= I=k | C≤k | F φ

• where:
− a∈AP is an atomic proposition, C⊆N is a coalition of players,
⋈ ∈ {≤,<,>,≥}, q ∈ [0,1]∩ℚ, x ∈ ℚ≥0, k ∈ ℕ
r is a reward structure

• Semantics:
• e.g. P operator: s ⊨ ⟨⟨C⟩⟩P⋈q[ψ] iff:

− “there exist strategies for players in coalition C such that,
for all strategies of the other players, the probability of path
formula ψ being true from state s satisfies ⋈ q”

31

Reminder: Solving MDPs

• Various techniques exist to solve MDPs
− (and to perform strategy synthesis)

• Here, we focus on value iteration
− dynamic programming approach
− common for probabilistic model checking

• For example:
− maximum probability p(s) to reach ✓ from s
− values p(s) are the least fixed point of:

− basis for iterative numerical computation

s0

0.5

0.5
a

s2

s1

s5

✓

s40.3
1

b

1

b
1

c
c

f

f

f

0.7

p(s) = 1 if s⊨✓
maxa Σs’ δ(s,a)(s’)·p(s’) otherwise

let p(s)
=

supσ Prsσ (F✓)

transition
probabilities:

δ : S x Act → Dist(S)

32

Model checking rPATL

• Main task: checking individual P and R operators
− reduces to solving a (zero-sum) stochastic 2-player game
− e.g. max/min reachability probability: supσ1

infσ2
Prsσ1,σ2 (F✓)

− complexity: NP ∩ coNP (if we omit some reward operators)

• We again use value iteration
− values p(s) are the

least fixed point of:

− and more: graph-algorithms, sequences of fixed points, …

p(s) =
1 if s⊨✓
maxa Σs’ δ(s,a)(s’)·p(s’) if s⊭✓ and s∈S1

mina Σs’ δ(s,a)(s’)·p(s’) if s⊭✓ and s∈S2

s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5

33

Applications

• Example application domains (PRISM-games)
− collective decision making and team formation protocols
− security: attack-defence trees; network protocols
− human-in-the-loop UAV mission planning
− autonomous urban driving
− self-adaptive software architectures

s0 west

east
slow s3

s4s2

s1

slow

fast

0.8
0.2

0.9

0.1

fast

34

Concurrent stochastic games

• Motivation:
− more realistic model of components operating concurrently,

making action choices without knowledge of others

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

Turn-based
stochastic games

(TSGs)

Concurrent
stochastic games

(CSGs)

s0

s1

w1 s2

t1 w2

t2

w2

t2

s3

s4

s5

35

0,2
0.9

0.1

1,2

0,1 1,1

east,⊥

⊥,west east,
west

CSG for 2 robots on a 3x1 grid

0 east 1 2
east

{goal1}

0
west

1 2
west

{goal2}

2,2

1,1 2,1

0,0 1,0 2,0

{crash}

36

0,2

east,⊥

0.9

0.1

1,2 2,2

0,1 1,1 2,1

0,0 1,0 2,0

0.9
0.1

0.9
0.1

0.9

0.1

east,⊥

east,⊥
east,⊥

east,⊥
east,⊥

⊥,west east,
west

east,
west

⊥,west

east,
west

east,
west

⊥,west⊥,west

⊥,
west

0.9
0.1

⊥,west

{goal1,
goal2}

{goal1}

{crash,
goal1}

{crash,
goal2}

{goal2}

{crash}

CSG for 2 robots on a 3x1 grid

0 east 1 2
east

{goal1}

0
west

1 2
west

{goal2}

37

Concurrent stochastic games

• Concurrent stochastic games (CSGs)
− players choose actions concurrently & independently
− jointly determines (probabilistic) successor state
− δ : S×(A1∪{⊥}) × … × (An∪{⊥}) → Dist(S)
− generalises turn-based stochastic games

• We again use the logic rPATL for properties

• Same overall rPATL model checking algorithm [QEST’18]
− key ingredient is now solving (zero-sum) 2-player CSGs
− this problem is in PSPACE
− note that optimal strategies are now randomised

38

rPATL model checking for CSGs

• We again use a value iteration based approach
− e.g. max/min reachability probabilities
− supσ1

infσ2
Prsσ1,σ2 (F ✓) for all states s

− values p(s) are the least fixed point of:

− where Z is the matrix game with zij = Σs’ δ(s,(ai,bj))(s’)·p(s’)

• So each iteration solves a matrix game for each state
− LP problem of size |A|, where A = action set

s0

t1,t2

w1,t2w1,w2

s1

s2
t1,w2

p(s) =
1 if s⊨✓
val(Z) if s⊭✓

39

Example: Future markets investor

• Example rPATL query:
− ⟨⟨investor1,investor2⟩⟩ Rmax=? [F finished1,2]
− i.e. maximising joint profit

• Results: with (left) and without (right) fluctuations
− optimal (randomised) investment strategies synthesised
− CSG yields more realistic results (market has less power

due to limited observation of investor strategies)

profit1,2

Too pessimistic:
unrealistic strategy

for adversary

40

Equilibria-based properties

• Motivation:
− players/components may have distinct objectives

but which are not directly opposing (non zero-sum)

• We use Nash equilibria (NE)
− no incentive for any player to unilaterally change strategy
− actually, we use ε-NE, which always exist for CSGs
− a strategy profile σ=(σ1,…,σn) for a CSG

is an ε-NE for state s and objectives X1,…,Xn iff:
− Prsσ (Xi) ≥ sup { Prsσ’ (Xi) | σ’=σ-i[σi’] and σi’∈ Σi } – ε for all i

Zero-sum
properties

Equilibria-based
properties

⟨⟨robot1⟩⟩max=? P [F≤k goal1]
⟨⟨robot1:robot2⟩⟩max=?
(P [F≤k goal1]+P [F ≤k goal2])

41

Social-welfare Nash equilibria

• Key idea: formulate model checking (strategy synthesis)
in terms of social-welfare Nash equilibria (SWNE)
− these are NE which maximise the sum Esσ (X1) + … Esσ (Xn)
− i.e., optimise the players combined goal

• We extend rPATL accordingly

Zero-sum
properties

Equilibria-based
properties

⟨⟨robot1⟩⟩max=? P [F≤k goal1]
⟨⟨robot1:robot2⟩⟩max=?
(P [F≤k goal1]+P [F ≤k goal2])

find a robot 1 strategy
which maximises

the probability of it
reaching its goal,

regardless of robot 2

find (SWNE) strategies for robots 1 and 2
where there is no incentive to change actions

and which maximise joint goal probability

42

Model checking for extended rPATL

• Model checking for CSGs with equilibria
− first: 2-coalition case [FM’19]
− needs solution of bimatrix games
− (basic problem is EXPTIME)
− we adapt a known approach

using labelled polytopes, and
implement with an SMT encoding

• We further extend the value iteration approach:

− where Z1 and Z2 encode matrix games similar to before

p(s) =

(1,1) if s ⊨ ✓1∧✓2

(pmax(s,✓2),1) if s ⊨ ✓1∧¬✓2

(1,pmax(s,✓1)) if s ⊨ ¬✓1∧✓2

val(Z1,Z2) if s ⊨ ¬✓1∧¬✓2

s0

t1,t2

w1,t2w1,w2

✓1

✓2
t1,w2

standard
MDP analysis

bimatrix game

43

Example: multi-robot coordination

• 2 robots navigating an l x l grid
− start at opposite corners, goals are

to navigate to opposite corners
− obstacles modelled stochastically: navigation

in chosen direction fails with probability q

• We synthesise SWNEs to maximise the average
probability of robots reaching their goals within time k
− ⟨⟨robot1:robot2⟩⟩max=? (P [F≤k goal1]+P [F ≤k goal2])

• Results (10 x 10 grid)
− better performance obtained

than using zero-sum methods,
i.e., optimising for robot 1,
then robot 2

Conclusions

45

Conclusions

• Planning & formal verification
− temporal logics & automata
− tools, techniques, modelling languages
− multi-agent systems

• Challenges
− partial information/observability
− managing model uncertainty
− integration with machine learning
− scalability & efficiency vs accuracy

More details and
references here

http://www.prismmodelchecker.org/bibitem.php?key=KNP22

