

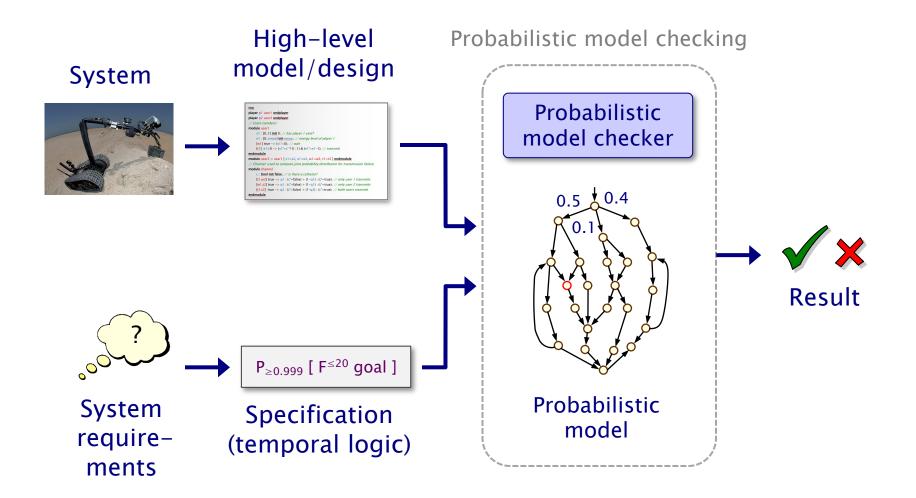
Tutorial: Planning in Formal Methods Land

Dave Parker

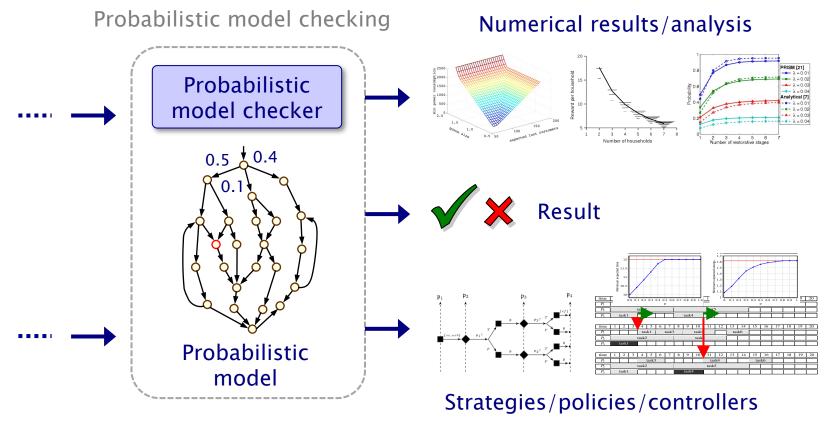
University of Birmingham

"Rigorous Automated Planning", Lorentz Centre, June 2022

Tutorial:


Planning with Probabilistic Model Checking

Dave Parker


University of Birmingham

"Rigorous Automated Planning", Lorentz Centre, June 2022

Probabilistic model checking

Probabilistic model checking

Overview

Temporal logic

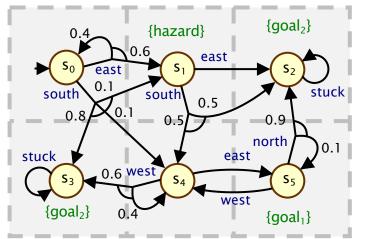
- quantitative task specification/guarantees

Techniques & tools

- models, modelling languages

Multi-agent planning

- stochastic multi-player games



Temporal logic

Temporal logic

- Formal specification of desired behaviour
 - i.e., planning tasks/objectives
 - formal guarantees on resulting behaviour
- Simple examples (PCTL)
 - Probabilistic reachability $P_{\geq 0.7}$ [F goal₁] $P_{\geq 0.6}$ [F^{≤ 10} goal₁]
 - Probabilistic safety/invariance $P_{\geq 0.99}$ [G¬hazard]
 - Numerical queries
 P_{max=?} [F goal₁]
- For planning with MDPs:
 - $P_{\sim p}[\psi]$ means: find a policy/strategy σ satisfying $Pr^{\sigma}(\psi) \sim p$

Example MDP (robot navigation)

Linear temporal logic (LTL)

- Logic for describing properties of executions [Pnueli]
- LTL syntax:

 $- \psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi \mid F \psi \mid G \psi$

- Propositional logic + temporal operators:
 - a is an atomic proposition (labelling a state)
 - $X \psi$ means " ψ is true in the next state"
 - $F \psi$ means " ψ is eventually true"
 - $G \psi$ means " ψ always remains true"
 - ψ_1 U ψ_2 means " ψ_2 is true eventually and ψ_1 is true until then"
- Common alternative notation:

- (next), \diamondsuit (eventually), \Box (always) , U (until)

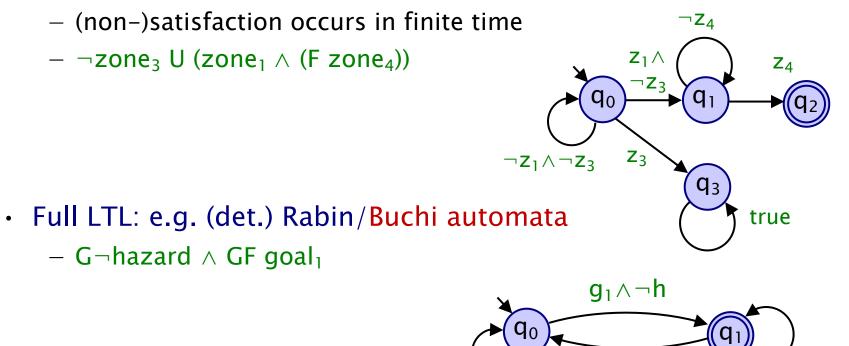
Linear temporal logic (LTL)

• LTL syntax:

 $-\psi ::= true \mid a \mid \psi \land \psi \mid \neg \psi \mid X \psi \mid \psi \cup \psi \mid F \psi \mid G \psi$

- Commonly used LTL formulae:
 - G (a \rightarrow F b) "b always eventually follows a"
 - G (a \rightarrow X b) "b always immediately follows a"
 - GFa "a is true infinitely often"
 - F G a "a becomes true and remains true forever"
- Robot task specifications in LTL (for MDPs)
 - e.g. $P_{>0.7}$ [(G¬hazard) \land (GF goal₁)] "the probability of avoiding hazard and visiting goal₁ infinitely often is > 0.7"
 - e.g. $P_{max=?}$ [$\neg zone_3 U (zone_1 \land (F zone_4))$] "max. probability of patrolling zones 1 then 4, without passing through 3?"

Temporal logic


- Benefits of temporal logic
 - flexible, unambiguous behavioural specification
 - · broad range of quantitative properties expressible
 - (probabilistic) guarantees on safety, performance, etc.
 - · meaningful properties: event probabilities, time, energy,...

 $P_{>0.7}$ [(G¬hazard) \land (GF goal₁)]

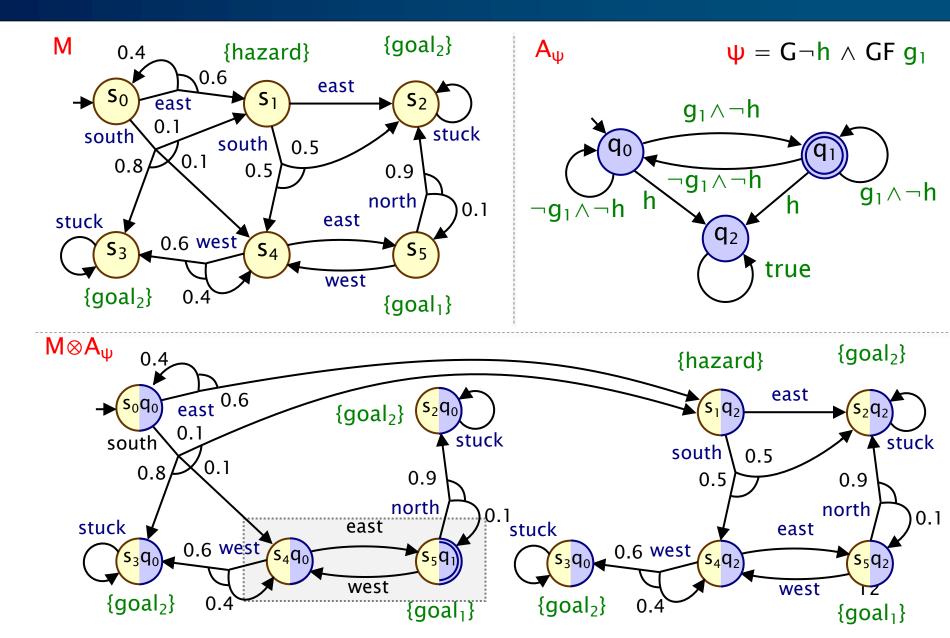
- · (c.f. ad-hoc reward structures, e.g. with discounting)
- caveat: accuracy of model (and its solution)
- efficient LTL-to-automata translation
 - optimal (finite-memory) policy synthesis (via product MDP)
 - correctness monitoring / shielding
 - task progress metrics

LTL & automata

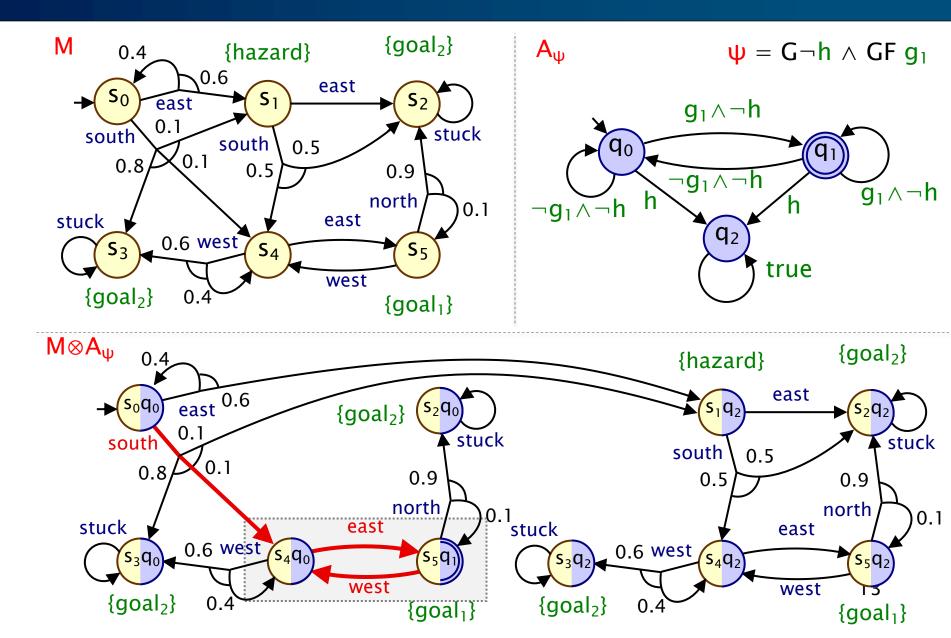
Safe/co-safe LTL: (deterministic) finite automata

 $\neg g_1 \land \neg h$

Other useful LTL subclasses
 – GR(1), LTL\GU, ...


 $g_1 \wedge \neg h$

 $\neg g_1 \land \neg h$


 \mathbf{q}_2

true

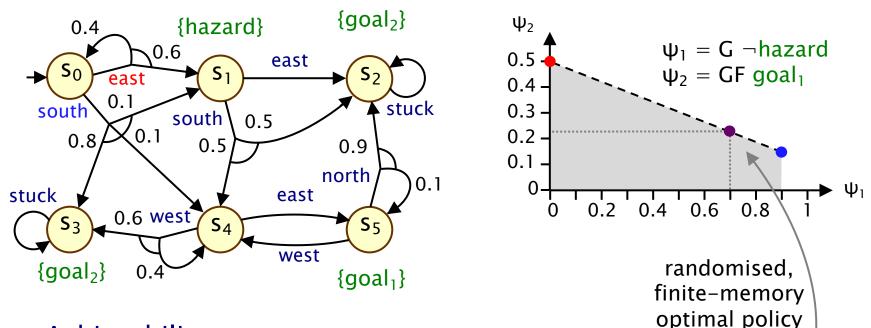
LTL planning via product MDP

LTL planning via product MDP

Costs & Rewards

- Costs & rewards
 - i.e., values assigned to model states or state-action pairs
- Temporal logic examples
 - $R_{\leq 1.5}^{hazard}$ [$C^{\leq 20}$] the expected number of times that the robot enters the hazard location within 20 steps is at most 1.5
 - R^{energy}_{min=?} [F goal] minimise the expected energy consumption until the the goal is reached
 - $R_{min=?}^{time}$ [$\neg zone_3 U (zone_1 \land (F zone_4))$] minimise expected time to patrol zones 1 then 4, without passing through 3
- Notes:
 - 1. the above use PRISM's R (reward) operator, even for costs
 - 2. discounted rewards are more rarely used in this context

More temporal logic


- Multi-objective queries
 - e.g. $\langle \langle^* \rangle \rangle$ ($P_{max=?}$ [GF goal₁], $P_{\geq 0.7}$ [G ¬hazard])
 - max. objective 1 subject to constrained objective 2
 - also: achievability & Pareto queries
- Nested (branching-time) queries
 - e.g. $R_{min=?}$ [$P_{\geq 0.99}$ [$F^{\leq 10}$ base] U (zone1 \wedge (F zone4))]
 - "minimise expected time to visit zones 1 then 4, whilst ensuring the base can always be reliably reached
- And more
 - cost-bounded, conditional probabilities, quantiles
 - metric temporal logic, signal temporal logic

- ...

obi₁

obj₂

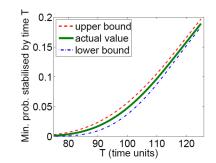
Multi-objective specifications

Achievability query

- $P_{\geq 0.7}$ [G ¬hazard] \land $P_{\geq 0.2}$ [GF goal₁] ?

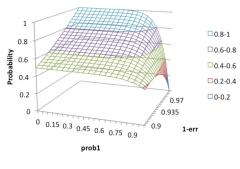
Numerical query

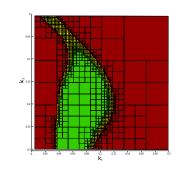
- $P_{max=?}$ [GF goal₁] such that $P_{\geq 0.7}$ [G ¬hazard] ?-

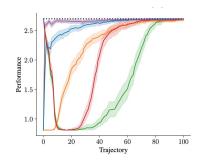

Pareto query

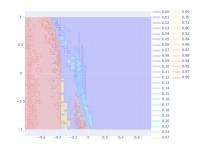
- for $P_{max=?}$ [G ¬hazard], $P_{max=?}$ [GF goal₁] ?

Techniques & tools


Verification techniques

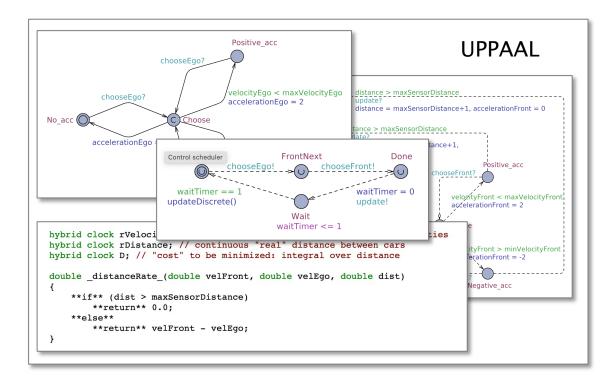

- Probabilistic model checking techniques
 - automata + graph analysis + numerical solution
 - often more focus on exhaustive/"exact"/optimal methods
 - e.g., for MDPs: value iteration (VI), linear programming
- But: known accuracy and convergence issues
 - interval iteration, sound VI, optimistic VI
 - separate convergence from above and below
- Scalability vs accuracy/guarantees
 - scalability/efficiency is always an issue
 - statistical model checking: sampling-based methods
 - abstraction + sound bounds (often property driven)




Probabilistic verification: directions

- Research directions
 - parametric model checking
 - e.g., for parameter synthesis, sensitivity analysis
 - quantification of uncertainty
 - e.g. robust verification with interval MDPs, convex optimisation
 - verification + machine learning
 - learnt policies
 e.g. (sampling/heuristics? neural nets?)
 - · learnt models + parameters

Verification tools


- Probabilistic verification tools
 - PRISM (and PRISM-games), STORM, MODEST, ePMC
 - general purpose probabilistic model checking tools, wide range of models (Markov chains, (PO)MDPs, games), many temporal logics & solution techniques
- Real-time verification tools
 - UPPAAL (and UPPAAL-Stratego/Tiga/CORA/SMC/...)
 - timed automata, plus stochastic & game variants
- Also many other specialised tools
 - **PET** (partial exploration, sampling)
 - Prophesy (parametric techniques)
 - FAUST², StocHy (continuous space/hybrid systems)

- Example languages for formal model specification
 - PRISM: textual language, based on guarded commands
 - UPPAAL: graphical/textual description of automata networks

Example languages for formal model specification

```
csg // Model type: concurrent stochastic game
                                                                                     hds
                                                              PRISM-games
player p1 user1 endplayer player p2 user2 endplayer
                                                                                     hetworks
// Parameters
const int emax; const double q1; const double q2 = 0.9 * q1;
// Modules: users (senders) + channel
module user1
       s1 : [0..1] init 0; // has player 1 sent?
       e1 : [0..emax] init emax; // energy level of player 1
       [w1] true -> (s1'=0); // wait
       [t] e_1 > 0 -> (s_1' = c'? 0: 1) \& (e_1' = e_1 - 1); // transmit
endmodule
module user2 = user1 [s1=s2, e1=e2, w1=w2, t1=t2] endmodule
module channel
       c : bool init false; // is there a collision?
       [t1,w2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 1 transmits
       [w_1,t_2] true -> q1 : (c'=false) + (1-q1) : (c'=true); // only user 2 transmits
       [t_1,t_2] true -> q2 : (c'=false) + (1-q2) : (c'=true); // both users transmit
endmodule
// Reward structures: energy usage
rewards "energy" [t1] true: 1.5; [t2] true: 1.2; endrewards
```

- Example languages for formal model specification
 - PRISM: textual language, based on guarded commands
 - UPPAAL: graphical/textual description of automata networks

- Example languages for formal model specification
 - PRISM: textual language, based on guarded commands
 - UPPAAL: graphical/textual description of automata networks
- Some key modelling language features
 - Compositional model specifications
 - · components, parallel composition, communication
 - Parameterised models
 - probabilities, sizes, components
- Challenges
 - language/tool interoperability
 - · e.g., JANI (models), PPDDL (planning), HOAF (automata), tool APIs
 - modelling stochasticity/uncertainty
 - probabilistic programming languages?

Models, models, models...

• Wide range of probabilistic models

discrete states & probabilities: Markov chains

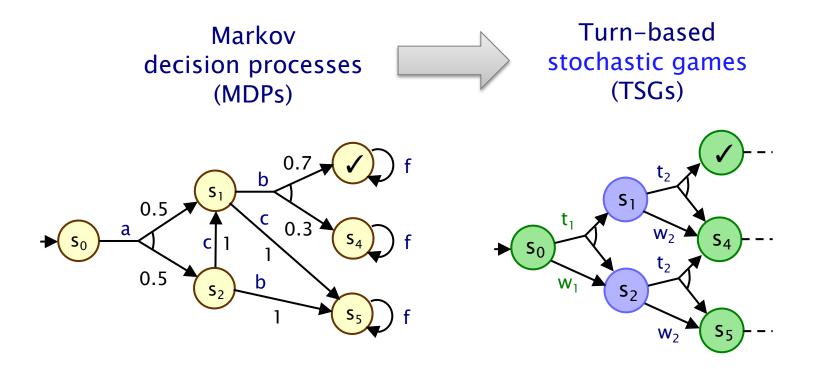
- + nondeterminism: Markov decision processes (MDPs)
- + real-time clocks: probabilistic timed automata (PTAs)
- + uncertainty: interval MDPs (IMDPs)
- + partial observability: partially observable MDPs (POMDPs)
- + multiple players: (turn-based) stochastic games

+ concurrency: concurrent stochastic games

- And many others
 - stochastic timed automata
 - stochastic hybrid automata
 - Markov automata

Multi-agent planning

Verification with stochastic games

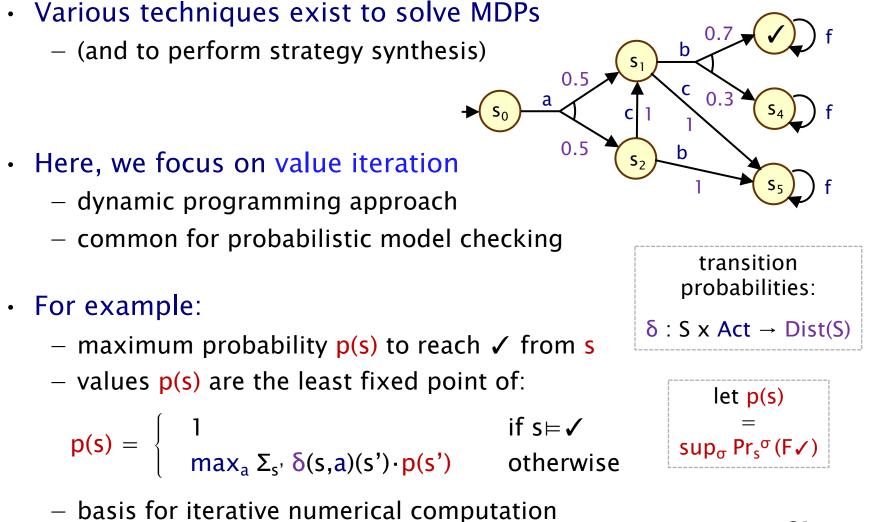

- How do we plan rigorously with...
 - multiple autonomous agents acting concurrently
 - competitive or collaborative behaviour between agents, possibly with differing/opposing goals
 - e.g. security protocols, algorithms for distributed consensus, energy management, autonomous robotics, auctions

- Verification with stochastic multi-player games
 - verification (and synthesis) of strategies that are robust in adversarial settings and stochastic environments

Stochastic multi-player games

- Stochastic multi-player games
 - strategies + probability + multiple players
 - for now: turn-based (player i controls states S_i)

Property specification: rPATL


- rPATL (reward probabilistic alternating temporal logic)
 - branching-time temporal logic for stochastic games
- CTL, extended with:
 - coalition operator $\langle\langle C \rangle\rangle$ of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
- In short:
 - zero-sum, probabilistic reachability + expected total reward
- Example:
 - $\langle \langle \{robot_1, robot_3\} \rangle \rangle P_{>0.99} [F^{\leq 10} (goal_1 \lor goal_3)]$
 - "robots 1 and 3 have a strategy to ensure that the probability of reaching the goal location within 10 steps is >0.99, regardless of the strategies of other players"

rPATL syntax/semantics

• Syntax:

- $$\begin{split} \varphi &::= true \mid a \mid \neg \varphi \mid \varphi \land \varphi \mid \langle \langle C \rangle \rangle P_{\bowtie q}[\psi] \mid \langle \langle C \rangle \rangle R^{r}_{\bowtie x} \left[\rho \right] \\ \psi &::= X \varphi \mid \varphi U^{\leq k} \varphi \mid \varphi U \varphi \\ \rho &::= I^{=k} \mid C^{\leq k} \mid F \varphi \end{split}$$
- where:
 - a∈AP is an atomic proposition, C⊆N is a coalition of players, $\bowtie \in \{\le, <, >, \ge\}, q \in [0,1] \cap \mathbb{Q}, x \in \mathbb{Q}_{\ge 0}, k \in \mathbb{N}$ r is a reward structure
- Semantics:
- e.g. P operator: $s \models \langle \langle C \rangle \rangle P_{\bowtie q}[\psi]$ iff:
 - "<u>there exist</u> strategies for players in coalition C such that, <u>for all</u> strategies of the other players, the probability of path formula ψ being true from state s satisfies $\bowtie q$ "

Reminder: Solving MDPs

Model checking rPATL

- Main task: checking individual P and R operators
 - reduces to solving a (zero-sum) stochastic 2-player game
 - e.g. max/min reachability probability: $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_s^{\sigma_1,\sigma_2}(F \checkmark)$
 - complexity: $NP \cap cONP$ (if we omit some reward operators)

- We again use value iteration
 - values p(s) are the least fixed point of:

 $p(s) = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \max_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \nvDash \checkmark \text{ and } s \in S_1 \\ \min_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \nvDash \checkmark \text{ and } s \in S_2 \end{cases}$

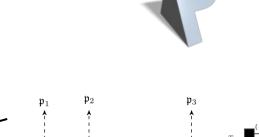
- and more: graph-algorithms, sequences of fixed points, ...

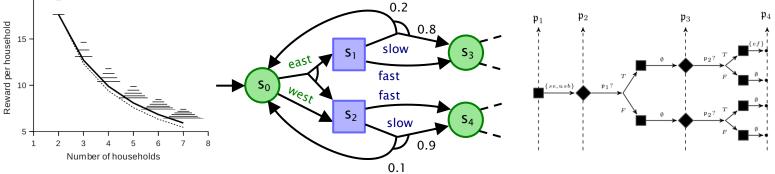
 S_4

 τ_2

W₂

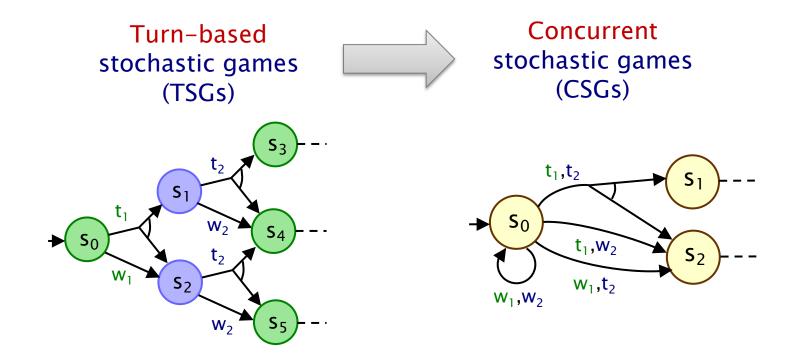
S₁

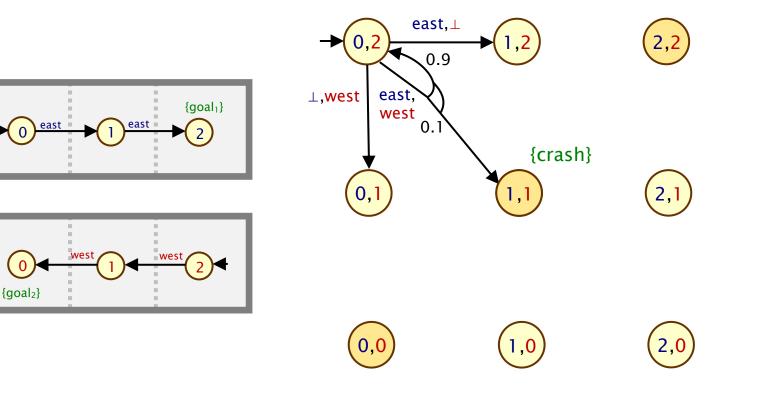

S₂


Applications

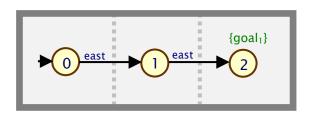
- Example application domains (PRISM-games)
 - collective decision making and team formation protocols
 - security: attack-defence trees; network protocols
 - human-in-the-loop UAV mission planning
 - autonomous urban driving

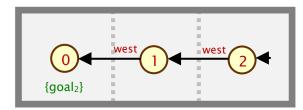
20

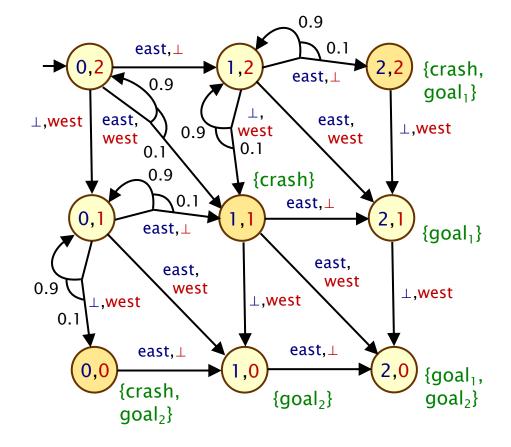

- self-adaptive software architectures



Concurrent stochastic games


- Motivation:
 - more realistic model of components operating concurrently, making action choices <u>without</u> knowledge of others

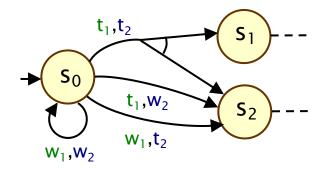



CSG for 2 robots on a 3x1 grid

CSG for 2 robots on a 3x1 grid

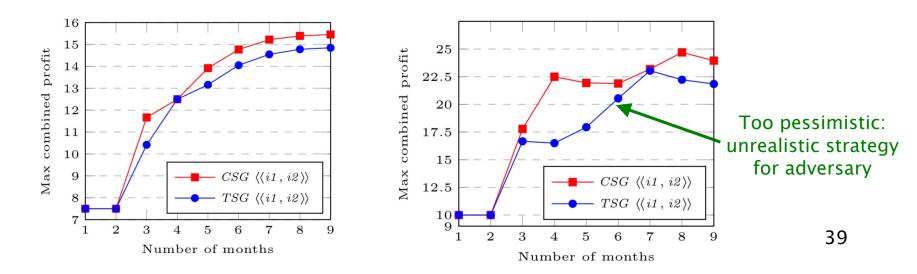
Concurrent stochastic games

- Concurrent stochastic games (CSGs)
 - players choose actions concurrently & independently
 - jointly determines (probabilistic) successor state
 - $\ \delta: S \times (A_1 \cup \{\bot\}) \times \ldots \times (A_n \cup \{\bot\}) \rightarrow Dist(S)$
 - generalises turn-based stochastic games
- We again use the logic rPATL for properties
- Same overall rPATL model checking algorithm [QEST'18]
 - key ingredient is now solving (zero-sum) 2-player CSGs
 - this problem is in PSPACE
 - note that optimal strategies are now randomised


rPATL model checking for CSGs

- We again use a value iteration based approach
 - e.g. max/min reachability probabilities
 - − $sup_{\sigma_1} inf_{\sigma_2} Pr_s^{\sigma_1,\sigma_2}$ (F \checkmark) for all states s
 - values p(s) are the least fixed point of:

$$\mathbf{p(s)} = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \text{val}(\mathsf{Z}) & \text{if } s \nvDash \checkmark \end{cases}$$


- where Z is the matrix game with $z_{ij} = \Sigma_{s'} \delta(s,(a_i,b_j))(s') \cdot p(s')$

- So each iteration solves a matrix game for each state
 - LP problem of size |A|, where A = action set

Example: Future markets investor

- Example rPATL query:
 - $\langle (investor_1, investor_2) \rangle R_{max=?}^{profit_{1,2}} [F finished_{1,2}]$
 - i.e. maximising joint profit
- Results: with (left) and without (right) fluctuations
 - optimal (randomised) investment strategies synthesised
 - CSG yields more realistic results (market has less power due to limited observation of investor strategies)

Equilibria-based properties

- Motivation:
 - players/components may have distinct objectives but which are not directly opposing (non zero-sum)


 $\langle (robot_1) \rangle_{max=?} P [F^{\leq k} goal_1]$

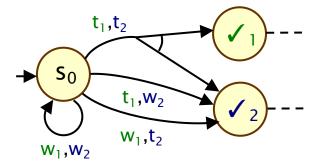
 $\langle (robot_1:robot_2) \rangle_{max=?}$ (P [F^{\le k} goal₁]+P [F ^{\le k} goal₂])

- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - actually, we use ϵ -NE, which always exist for CSGs
 - a strategy profile $\sigma = (\sigma_{1,...}, \sigma_n)$ for a CSG is an ϵ -NE for state s and objectives $X_1,...,X_n$ iff:
 - $Pr_{s}^{\sigma}(X_{i}) \geq sup \{ Pr_{s}^{\sigma'}(X_{i}) \mid \sigma' = \sigma_{-i}[\sigma_{i}'] \text{ and } \sigma_{i}' \in \Sigma_{i} \} \varepsilon \text{ for all } i$

Social-welfare Nash equilibria

- Key idea: formulate model checking (strategy synthesis) in terms of social-welfare Nash equilibria (SWNE)
 - these are NE which maximise the sum $E_s^{\sigma}(X_1) + \dots E_s^{\sigma}(X_n)$
 - i.e., optimise the players combined goal
- We extend rPATL accordingly

Equilibria-based properties

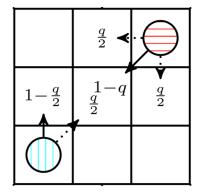

 $\langle (robot_1) \rangle_{max=?} P [F^{\leq k} goal_1]$

find a robot 1 strategy which maximises the probability of it reaching its goal, regardless of robot 2 $\langle (robot_1:robot_2) \rangle_{max=?}$ (P [F^{$\leq k$} goal₁]+P [F $\leq k$ goal₂])

find (SWNE) strategies for robots 1 and 2 where there is no incentive to change actions and which maximise joint goal probability

Model checking for extended rPATL

- Model checking for CSGs with equilibria
 - first: 2-coalition case [FM'19]
 - needs solution of bimatrix games
 - (basic problem is EXPTIME)
 - we adapt a known approach using labelled polytopes, and implement with an SMT encoding

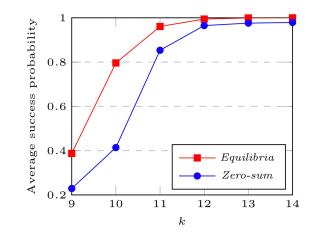

• We further extend the value iteration approach:

$$p(s) = \begin{cases} (1,1) & \text{if } s \models \checkmark_1 \land \checkmark_2 \\ (p_{max}(s,\checkmark_2),1) & \text{if } s \models \checkmark_1 \land \neg \checkmark_2 \\ (1,p_{max}(s,\checkmark_1)) & \text{if } s \models \neg \checkmark_1 \land \checkmark_2 \\ \text{val}(Z_1,Z_2) & \text{if } s \models \neg \checkmark_1 \land \neg \checkmark_2 \\ \text{if } s \models \neg \checkmark_1 \land \neg \checkmark_2 \\ \text{bimatrix game} \end{cases}$$

- where Z_1 and Z_2 encode matrix games similar to before

Example: multi-robot coordination

- 2 robots navigating an I x I grid
 - start at opposite corners, goals are to navigate to opposite corners
 - obstacles modelled stochastically: navigation in chosen direction fails with probability q



43

 We synthesise SWNEs to maximise the average probability of robots reaching their goals within time k

 $- \langle (robot_1:robot_2) \rangle_{max=?} (P [F^{\leq k} goal_1] + P [F^{\leq k} goal_2])$

- Results (10 x 10 grid)
 - better performance obtained than using zero-sum methods, i.e., optimising for robot 1, then robot 2

Conclusions

Conclusions

Planning & formal verification

- temporal logics & automata
- tools, techniques, modelling languages
- multi-agent systems

Challenges

- partial information/observability
- managing model uncertainty
- integration with machine learning
- scalability & efficiency vs accuracy

	Amage Acciects of Control, Robotics, and Anamanus System; Brobabilistic Model Checkslope Dababilistic Model Checkslope Da
ATTENT CONNECT Terremandar Demokrand Agreen Demokrand Agreen D	<section-header><section-header></section-header></section-header>
T More details and	

references here