

Probabilistic Verification of Concurrent Autonomous Systems

Dave Parker

University of Birmingham

EXPRESS-SOS, Aug 2021

Probabilistic Verification of Concurrent Autonomous Systems

Dave Parker

University of Birmingham

Joint work with:

Gabriel Santos, Gethin Norman, Marta Kwiatkowska, ...

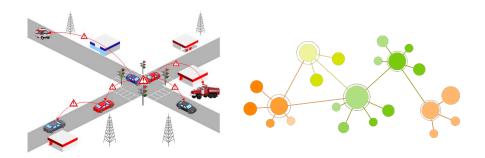
ERC Advanced Grant FUN2MODEL

Verification of stochastic systems

Formal verification needs stochastic modelling

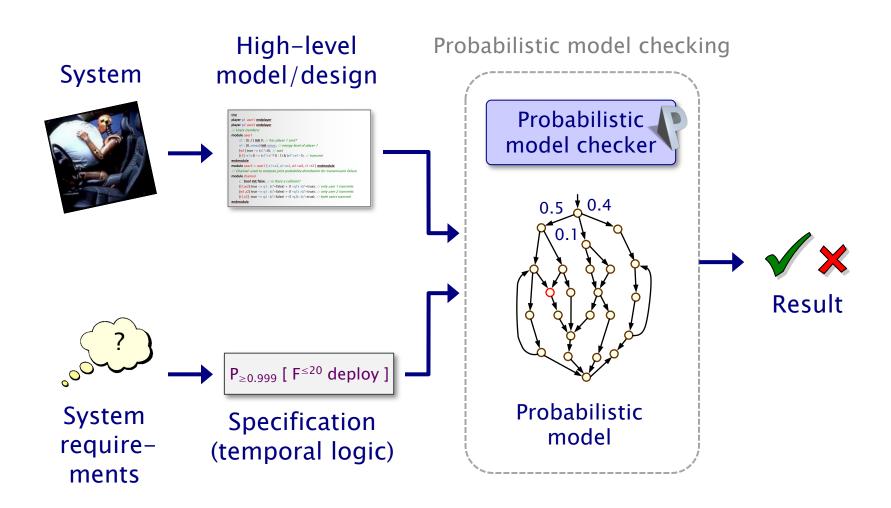
faulty sensors/actuators

unpredictable/unknown environments

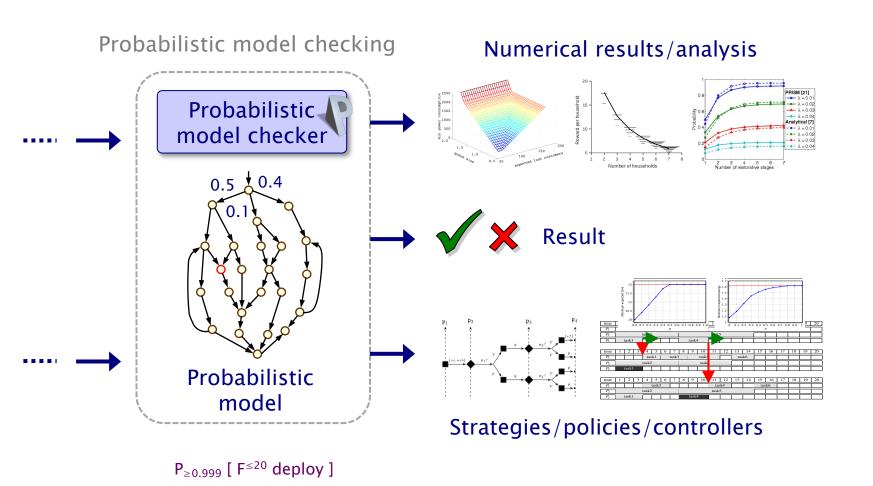


randomised protocols

Probabilistic model checking



Probabilistic model checking



Verification with stochastic games

- How do we verify stochastic systems with...
 - multiple autonomous agents acting concurrently
 - competitive or collaborative behaviour between agents, possibly with differing/opposing goals
 - e.g. security protocols, algorithms for distributed consensus, energy management, autonomous robotics, auctions

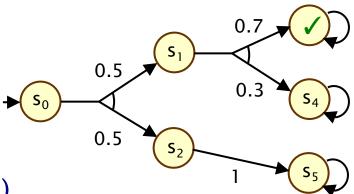
- This talk: verification with stochastic multi-player games
 - verification (and synthesis) of strategies that are robust in adversarial settings and stochastic environments
 - models, logics, algorithms, tools, examples

Overview

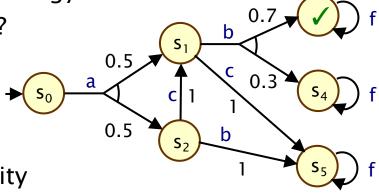
- Markov decision processes
- Stochastic multi-player games
- Concurrent stochastic games
- Equilibria-based properties

Probabilistic models

- Discrete-time Markov chains
 - e.g. what is the probability of reaching state ✓?

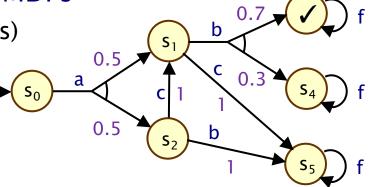


- Markov decision processes (MDPs)
 - strategies (or policies) resolve actions based on history
 - e.g. what is the <u>maximum</u> probability of reaching ✓ achievable by any strategy <u>o</u>?
 - and what is an optimal strategy?
- Formally:
 - we write: $\sup_{\sigma} \Pr_{s}^{\sigma}(F \checkmark)$
 - where Pr_s^σ denotes the probability from state s under strategy σ



Solving MDPs

- Various techniques exist to solve MDPs
 - (and to perform strategy synthesis)



- Here, we focus on value iteration
 - dynamic programming approach
 - common for probabilistic model checking
- For example:
 - maximum probability p(s) to reach ✓ from s
 - values p(s) are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ \max_{a} \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{otherwise} \end{cases}$$

basis for iterative numerical computation

transition probabilities:

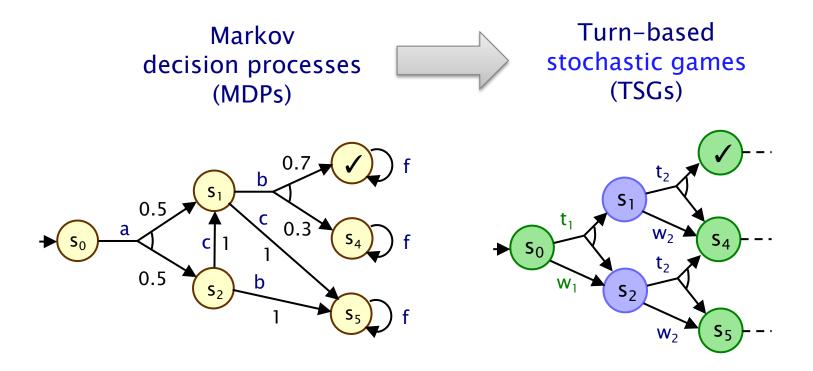
$$\delta: S \times Act \rightarrow Dist(S)$$

$$let p(s) \\
= sup_{\sigma} Pr_{s}^{\sigma}(F \checkmark)$$

Stochastic games

Stochastic multi-player games

- Stochastic multi-player games
 - strategies + probability + multiple players
 - for now: turn-based (player i controls states S_i)



Property specification: rPATL

- rPATL (reward probabilistic alternating temporal logic)
 - branching-time temporal logic for stochastic games
- CTL, extended with:
 - coalition operator ((C)) of ATL
 - probabilistic operator P of PCTL
 - generalised (expected) reward operator R from PRISM
- In short:
 - zero-sum, probabilistic reachability + expected total reward
- Example:
 - $-\langle\langle\{\text{robot}_1,\text{robot}_3\}\rangle\rangle P_{>0.99}[F^{\leq 10}(\text{goal}_1\vee\text{goal}_3)]$
 - "robots 1 and 3 have a strategy to ensure that the probability of reaching the goal location within 10 steps is >0.99, regardless of the strategies of other players"

rPATL syntax/semantics

Syntax:

```
\begin{split} \varphi &::= true \mid a \mid \neg \varphi \mid \varphi \wedge \varphi \mid \langle \langle C \rangle \rangle P_{\bowtie q}[\psi] \mid \langle \langle C \rangle \rangle R^r_{\bowtie x} \left[ \rho \right] \\ \psi &::= X \varphi \mid \varphi U^{\leq k} \varphi \mid \varphi U \varphi \\ \rho &::= I^{=k} \mid C^{\leq k} \mid F \varphi \end{split}
```

where:

- a∈AP is an atomic proposition, C⊆N is a coalition of players, $\bowtie \in \{\le,<,>,\ge\}$, $q \in [0,1] \cap \mathbb{Q}$, $x \in \mathbb{Q}_{\ge 0}$, $k \in \mathbb{N}$ r is a reward structure
- Semantics:
- e.g. P operator: $s = \langle \langle C \rangle \rangle P_{\bowtie q}[\psi]$ iff:
 - "there exist strategies for players in coalition C such that, for all strategies of the other players, the probability of path formula ψ being true from state s satisfies \bowtie q"

Model checking rPATL

- Main task: checking individual P and R operators
 - reduces to solving a (zero-sum) stochastic 2-player game
 - e.g. max/min reachability probability: $\sup_{\sigma_1} \inf_{\sigma_2} \Pr_{s_0} \sigma_{1,\sigma_2} (F \checkmark)$
 - complexity: $NP \cap coNP$ (if we omit some reward operators)

- We again use value iteration
 - values p(s) are the least fixed point of:

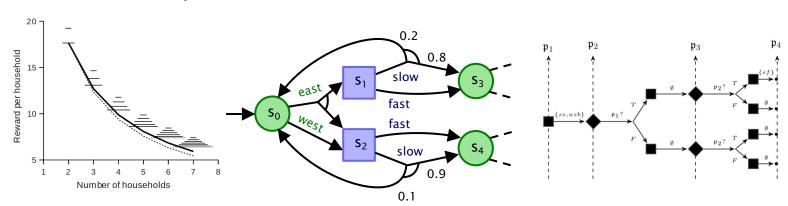
$$p(s) = \begin{cases} 1 & \text{if } s \vDash \checkmark \\ \max_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_1 \\ \min_a \Sigma_{s'} \delta(s,a)(s') \cdot p(s') & \text{if } s \not\models \checkmark \text{ and } s \in S_2 \end{cases}$$

- and more: graph-algorithms, sequences of fixed points, ...

PRISM-games

- PRISM-games: <u>prismmodelchecker.org/games</u>
 - extension of PRISM modelling language
 - explicit state (and prototype symbolic) implementation

- Example application domains
 - collective decision making and team formation protocols
 - security: attack-defence trees; network protocols
 - human-in-the-loop UAV mission planning
 - autonomous urban driving
 - self-adaptive software architectures

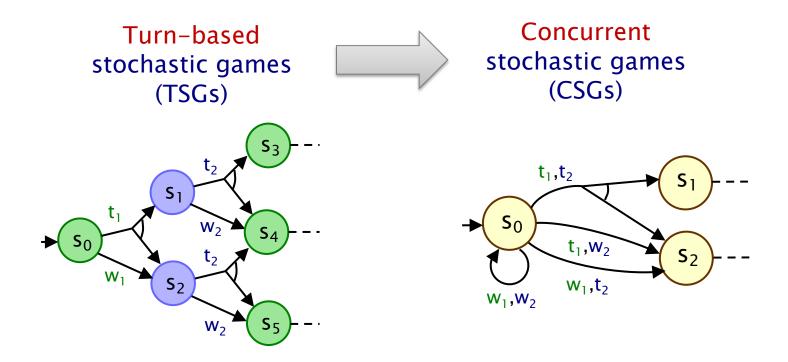


Concurrent stochastic games

Concurrent stochastic games

Motivation:

more realistic model of components operating concurrently,
 making action choices <u>without</u> knowledge of others



Concurrent stochastic games

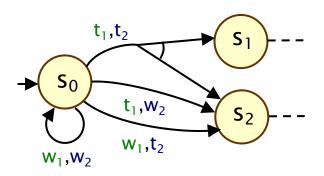
- Concurrent stochastic games (CSGs)
 - players choose actions concurrently & independently
 - jointly determines (probabilistic) successor state
 - $-\delta: S\times (A_1\cup \{\bot\})\times ...\times (A_n\cup \{\bot\})\rightarrow Dist(S)$
 - generalises turn-based stochastic games
- We again use the logic rPATL for properties
- Same overall rPATL model checking algorithm [QEST'18]
 - key ingredient is now solving (zero-sum) 2-player CSGs
 - this problem is in PSPACE
 - note that optimal strategies are now randomised

rPATL model checking for CSGs

- We again use a value iteration based approach
 - e.g. max/min reachability probabilities
 - $-\sup_{\sigma_1}\inf_{\sigma_2}\Pr_s^{\sigma_1,\sigma_2}(F \checkmark)$ for all states s
 - values p(s) are the least fixed point of:

$$p(s) = \begin{cases} 1 & \text{if } s \models \checkmark \\ val(Z) & \text{if } s \not\models \checkmark \end{cases}$$

- where Z is the matrix game with $z_{ij} = \Sigma_{s'} \delta(s,(a_i,b_i))(s') \cdot p(s')$
- · So each iteration solves a matrix game for each state
 - LP problem of size |A|, where A = action set



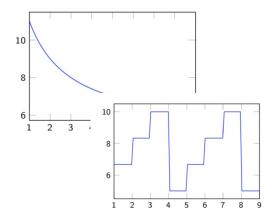
CSGs in PRISM-games

- CSG model checking implemented in PRISM-games 3.0
- Further extension of PRISM modelling language
- Explicit engine implementation
 - plus LP solvers for matrix game solution
 - this is the main bottleneck
 - experiments with CSGs up to ~3 million states
- Case studies:
 - future markets investor,
 trust models for user-centric networks,
 intrusion detection policies,
 multi-robot planning, ...
 jamming radio systems

Example: Future markets investor

Model of interactions between:

- stock market, evolves stochastically
- two investors i₁, i₂ decide when to invest
- market decides whether to bar investors



Modelled as a 3-player CSG

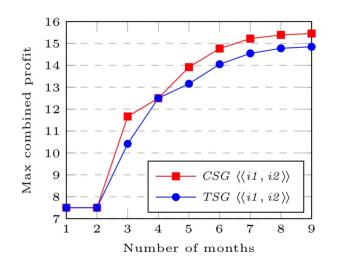
- extends simpler model originally from [McIver/Morgan'07]
- investing/barring decisions are simultaneous
- profit reduced for simultaneous investments
- market cannot observe investors' decisions

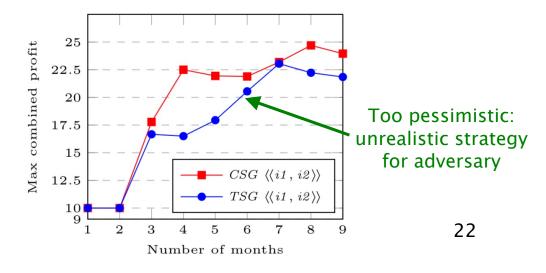
Analysed with rPATL model checking & strategy synthesis

- distinct profit models considered: 'normal market', 'later cash-ins' and 'later cash-ins with fluctuation'
- comparison between TSG and CSG models

Example: Future markets investor

- Example rPATL query:
 - ⟨⟨investor₁,investor₂⟩⟩ R^{profit₁,2}_{max=?} [F finished₁,2]
 - i.e. maximising joint profit
- Results: with (left) and without (right) fluctuations
 - optimal (randomised) investment strategies synthesised
 - CSG yields more realistic results (market has less power due to limited observation of investor strategies)





Equilibria-based properties

Equilibria-based properties

Motivation:

players/components may have distinct objectives
 but which are not directly opposing (non zero-sum)

```
Zero-sum properties Equilibria-based properties  \langle (robot_1) \rangle_{max=?} P [F^{\leq k} goal_1]   \langle (robot_1:robot_2) \rangle_{max=?} (P [F^{\leq k} goal_1] + P [F^{\leq k} goal_2])
```

- We use Nash equilibria (NE)
 - no incentive for any player to unilaterally change strategy
 - actually, we use ϵ -NE, which always exist for CSGs
 - a strategy profile $\sigma = (\sigma_{1,...}, \sigma_n)$ for a CSG is an ϵ -NE for state s and objectives $X_1,...,X_n$ iff:
 - $-\Pr_{s}^{\sigma}(X_{i}) \geq \sup \{\Pr_{s}^{\sigma'}(X_{i}) \mid \sigma' = \sigma_{-i}[\sigma_{i}'] \text{ and } \sigma_{i}' \in \Sigma_{i} \} \epsilon \text{ for all } i$

Social-welfare Nash equilibria

- Key idea: formulate model checking (strategy synthesis) in terms of social-welfare Nash equilibria (SWNE)
 - these are NE which maximise the sum $E_s^{\sigma}(X_1) + ... E_s^{\sigma}(X_n)$
 - i.e., optimise the players combined goal
- We extend rPATL accordingly

Zero-sum properties

Equilibria-based properties

 $\langle (robot_1) \rangle_{max=?} P [F^{\leq k} goal_1]$

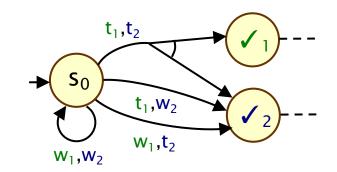
 $\langle (robot_1:robot_2) \rangle_{max=?}$ (P [F^{$\leq k$} goal₁]+P [F $\leq k$ goal₂])

find a robot 1 strategy which maximises the probability of it reaching its goal, regardless of robot 2

find (SWNE) strategies for robots 1 and 2 where there is no incentive to change actions and which maximise joint goal probability

Model checking for extended rPATL

- Model checking for CSGs with equilibria
 - first: 2-coalition case [FM'19]
 - needs solution of bimatrix games
 - (basic problem is EXPTIME)
 - we adapt a known approach using labelled polytopes, and implement with an SMT encoding



We further extend the value iteration approach:

$$p(s) = \begin{cases} (1,1) & \text{if } s \vDash \checkmark_1 \land \checkmark_2 \\ (p_{max}(s, \checkmark_2), 1) & \text{if } s \vDash \checkmark_1 \land \lnot \checkmark_2 \\ (1, p_{max}(s, \checkmark_1)) & \text{if } s \vDash \lnot \checkmark_1 \land \lnot \checkmark_2 \end{cases} \text{ bimatrix game}$$

- where Z_1 and Z_2 encode matrix games similar to before

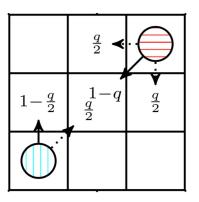
PRISM-games support

- Implementation in PRISM-games 3.0
 - bimatrix games solved using Z3/Yices encoding
 - optimised filtering of dominated strategies
 - scales up to CSGs with ~2 million states
 - extended to n-coalition case in [QEST'20]

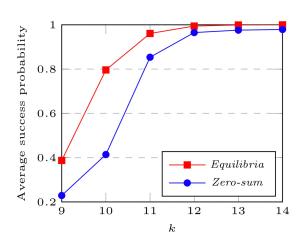
- Applications & results
 - robot navigation in a grid, medium access control,
 Aloha communication protocol, power control
 - SWNE strategies outperform those found with rPATL
 - $-\epsilon$ -Nash equilibria found typically have ϵ =0

Example: multi-robot coordination

- 2 robots navigating an | x | grid
 - start at opposite corners, goals are to navigate to opposite corners
 - obstacles modelled stochastically: navigation in chosen direction fails with probability q



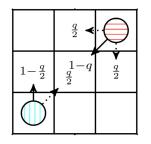
- We synthesise SWNEs to maximise the average probability of robots reaching their goals within time k
 - $-\langle\langle robot1:robot2\rangle\rangle_{max=?}$ (P [$F^{\leq k}$ goal₁]+P [$F^{\leq k}$ goal₂])
- Results (10 x 10 grid)
 - better performance obtained than using zero-sum methods, i.e., optimising for robot 1, then robot 2



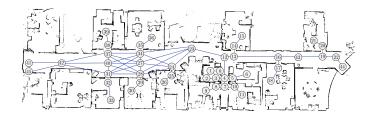
Future challenges

Challenges

- Partial information/observability
 - we need realisable strategies
 - leverage progress on POMDPs?



- Managing model uncertainty
 - integration with learning
 - robust verification



- Accuracy of model checking results
 - value iteration improvements; exact methods
- Scalability & efficiency
 - e.g. symbolic methods, abstraction, symmetry reduction
 - sampling-based strategy synthesis methods

PRISM-games

- · See the PRISM-games website for more info
 - prismmodelchecker.org/games/
 - documentation, examples, case studies, papers

 - − open source (GPLV2): GitHub