

# Probabilistic Model Checking and Controller Synthesis

Dave Parker

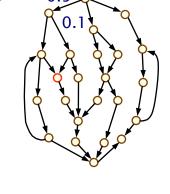
University of Birmingham

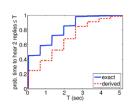
AVACS Autumn School, October 2015

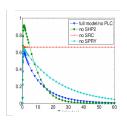
### Overview

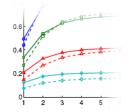
- Probabilistic model checking
  - verification vs. strategy/controller synthesis
  - Markov decision processes (MDPs)
  - example: robot navigation
- Multi-objective probabilistic model checking
  - examples: power management/team–formation
- Stochastic (multi-player) games
  - example: energy management
- Permissive controller synthesis

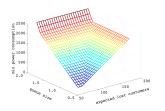
### **Motivation**

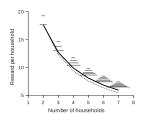

- Verifying probabilistic systems...
  - unreliable or unpredictable behaviour
    - failures of physical components
    - · message loss in wireless communication
    - unreliable sensors/actuators
  - randomisation in algorithms/protocols
    - random back-off in communication protocols
    - · random routing to reduce flooding or provide anonymity
- We need to verify quantitative system properties
  - "the probability of the airbag failing to deploy within 0.02 seconds of being triggered is at most 0.001"
  - not just correctness: reliability, timeliness, performance, ...
  - not just verification: correctness by construction





# Probabilistic model checking


- Construction and analysis of probabilistic models
  - state-transition systems labelled with probabilities
     (e.g. Markov chains, Markov decision processes)
  - from a description in a high-level modelling language
- Properties expressed in temporal logic, e.g. PCTL:
  - trigger →  $P_{\geq 0.999}$  [  $F^{\leq 20}$  deploy ]
  - "the probability of the airbag deploying within 20ms of being triggered is at at least 0.999"
  - properties checked against models using exhaustive search and numerical computation

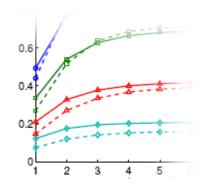










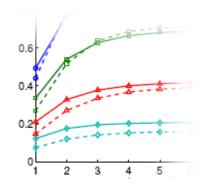




# Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
  - analyse trends, look for system flaws, anomalies
    - P<sub>≤0.1</sub> [ F fail ] "the probability of a failure occurring is at most 0.1"



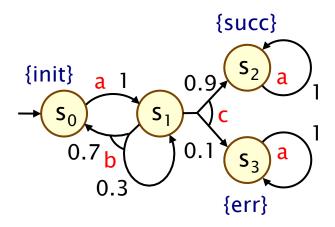
 P<sub>=?</sub> [ F fail ] - "what is the probability of a failure occurring?"




# Probabilistic model checking

- Many types of probabilistic models supported
- Wide range of quantitative properties, expressible in temporal logic (probabilities, timing, costs, rewards, ...)
- Often focus on numerical results (probabilities etc.)
  - analyse trends, look for system flaws, anomalies
- Provides "exact" numerical results/guarantees
  - compared to, for example, simulation

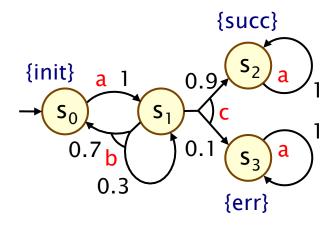







- Fully automated, tools available, widely applicable
  - network/communication protocols, security, biology, robotics & planning, power management, ...

# Markov decision processes (MDPs)


- Markov decision processes (MDPs)
  - widely used also in: AI, planning, optimal control, ...
  - model nondeterministic as well as probabilistic behaviour

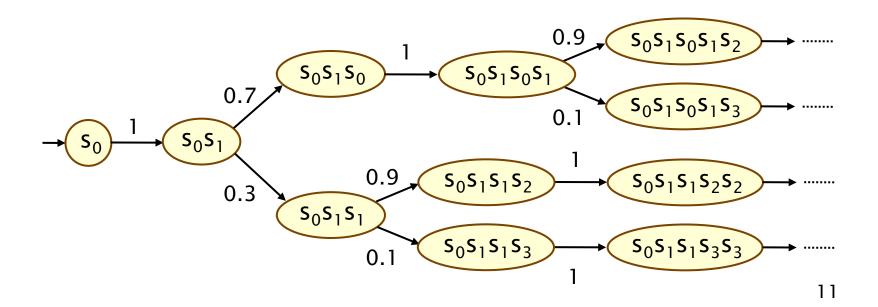


- Nondeterminism for:
  - control: decisions made by a controller or scheduler
  - adversarial behaviour of the environment
  - concurrency/scheduling: interleavings of parallel components
  - abstraction, or under-specification, of unknown behaviour

## Strategies

- A strategy (or "policy", "scheduler", "adversary")
  - is a resolution of nondeterminism, based on history
  - is (formally) a mapping  $\sigma$  from finite paths to distributions
  - induces an (infinite-state) discrete-time Markov chain




- Classes of strategies:
  - randomisation: deterministic or randomised
  - memory: memoryless, finite-memory, or infinite-memory

# Example strategy

- Strategy  $\sigma$  which picks b then c in  $s_1$ 
  - o is finite-memory and deterministic

 $\begin{cases}
\text{succ} \\
\text{init} \\
\text{a} \\
\text{0.9} \\
\text{s}_{2} \\
\text{a} \\
\text{o.7} \\
\text{b} \\
\text{0.1} \\
\text{s}_{3} \\
\text{a} \\
\text{o.3}
\end{cases}$ 

Fragment of induced Markov chain:



# Verification vs. Strategy synthesis

### 1. Verification

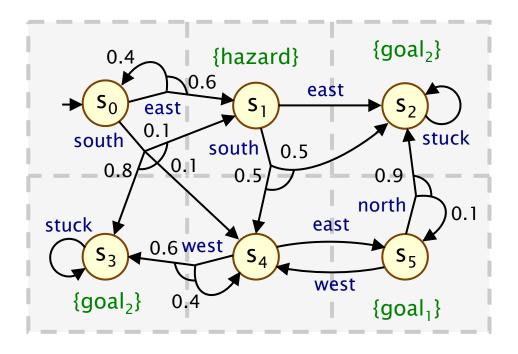
- quantify over all possible strategies (i.e. best/worst-case)
- $-P_{\leq 0.1}$  [ F err ] : "the probability of an error occurring is  $\leq 0.1$  for all strategies"
- applications: randomised communication
   protocols, randomised distributed algorithms, security, ...

### 2. Strategy synthesis

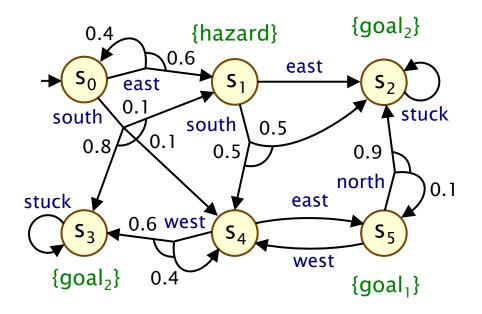
- generation of "correct-by-construction" controllers
- $P_{\leq 0.1}$  [ F err ] : "does there exist a strategy for which the probability of an error occurring is ≤ 0.1?"
- applications: robotics, power management, security, ...

### • Two dual problems; same underlying computation:

compute optimal (minimum or maximum) values


{succ}

{err}


{init}

# Running example

- Example MDP
  - robot moving through terrain divided in to  $3 \times 2$  grid



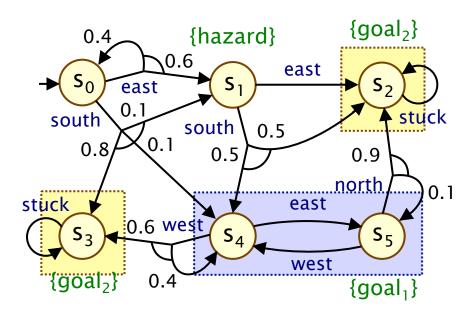
# Example – Reachability

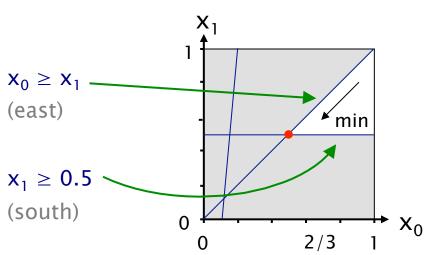


```
Verify: P_{\leq 0.6} [ F goal<sub>1</sub> ]

or

Synthesise for: P_{\geq 0.4} [ F goal<sub>1</sub> ]


\Downarrow

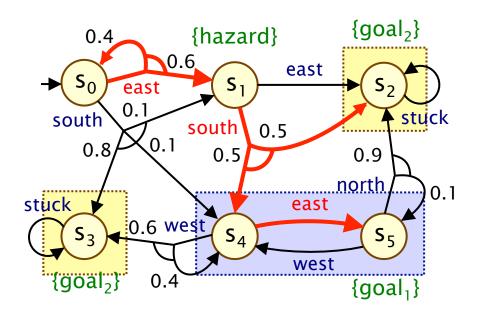

Compute: P_{max=?} [ F goal<sub>1</sub> ]
```

Optimal strategies: memoryless and deterministic

Computation: graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

# Example – Reachability






Verify:  $P_{\leq 0.6}$  [ F goal<sub>1</sub> ] or Synthesise for:  $P_{\geq 0.4}$  [ F goal<sub>1</sub> ]  $\downarrow \downarrow$ Compute:  $P_{max=?}$  [ F goal<sub>1</sub> ] = 0.5

Optimal strategies: memoryless and deterministic

Computation: graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

# Example - Reachability



### Optimal strategy:

s<sub>0</sub>: east

 $s_1$ : south

**S**<sub>2</sub>: -

S<sub>3</sub>: -

s<sub>4</sub>: east

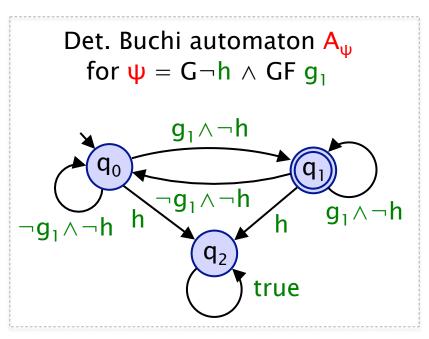
 $S_5$ : -

Verify:  $P_{\leq 0.6}$  [ F goal<sub>1</sub> ] or Synthesise for:  $P_{\geq 0.4}$  [ F goal<sub>1</sub> ]

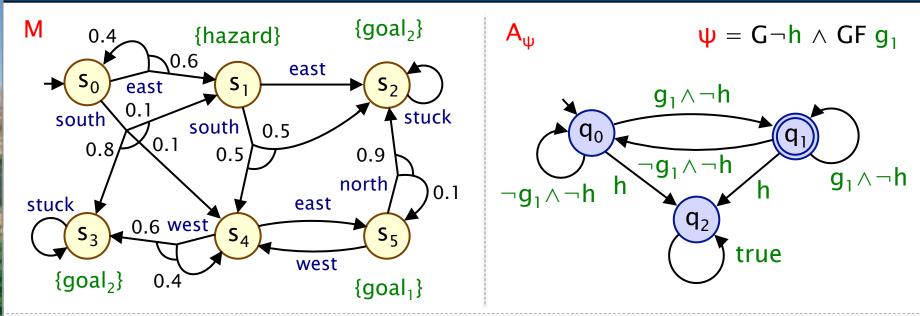
Compute:  $P_{\text{max}=?}[F \text{ goal}_1] = 0.5$ 

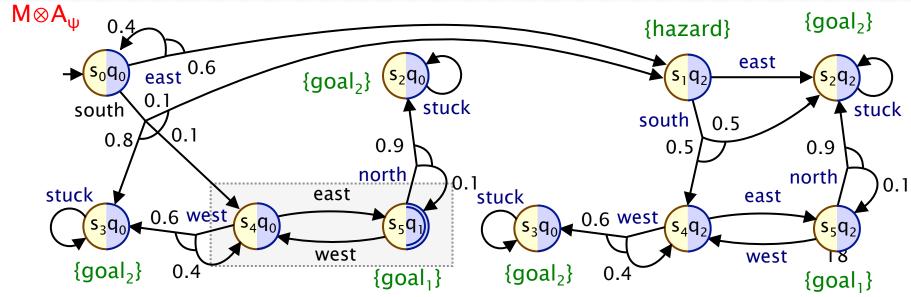
Optimal strategies: memoryless and deterministic

### Computation:

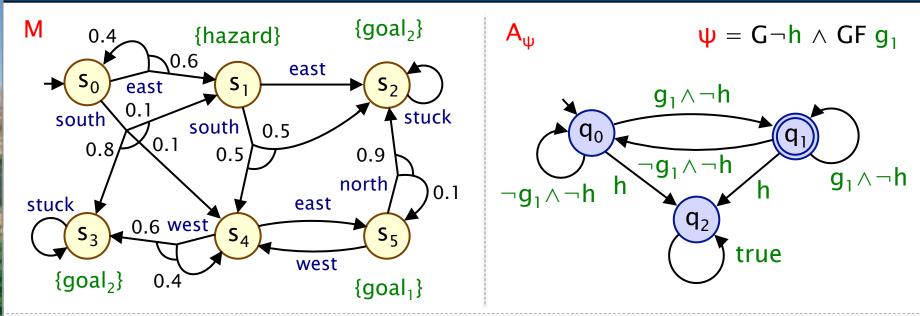

graph analysis + numerical soln. (linear programming, value iteration, policy iteration)

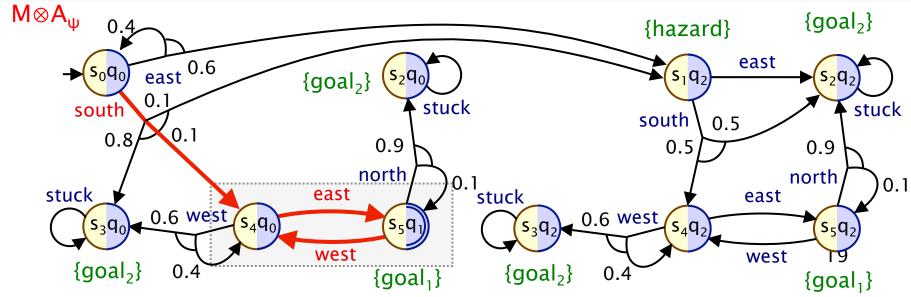
# Linear temporal logic (LTL)


- Probabilistic LTL (multiple temporal operators)
  - e.g.  $P_{max=?}$  [ ( $G\neg hazard$ )  $\land$  ( $GF goal_1$ ) ] "maximum probability of avoiding hazard and visiting goal<sub>1</sub> infinitely often?"
  - e.g.  $P_{\text{max}=?}$  [  $\neg \text{zone}_3$  U ( $\text{zone}_1 \land \text{Fzone}_4$ ) ] "max. probability of patrolling zones 1 then 4, without passing through 3".


### Probabilistic model checking

- convert LTL formula  $\psi$  to deterministic automaton  $A_{\psi}$  (Buchi, Rabin, finite, ...)
- build/solve product MDP M⊗A<sub>ψ</sub>
- reduces to reachability problem
- optimal strategies are:
  - deterministic
  - finite-memory



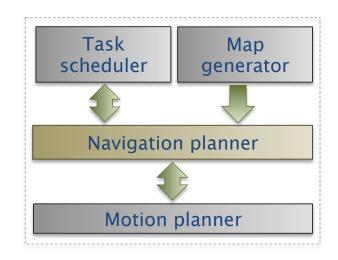


# Example: Product MDP construction



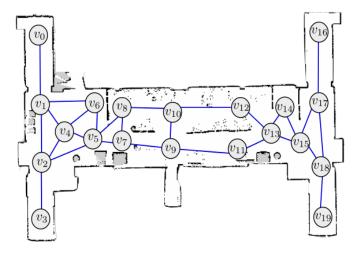


# Example: Product MDP construction






# MDPs – Other properties


- Costs and rewards (expected, accumulated values)
  - e.g. R<sub>max=?</sub> [ F end ] "what is the worst-case (maximum) expected time for the protocol to complete?"
  - e.g. R<sub>min=?</sub> [ F goal<sub>2</sub> ] "what is the optimal (minimum) expected number of moves needed to reach goal<sub>2</sub>?"
  - optimal strategies: memoryless and deterministic
  - similar computation to probabilistic reachability
- Expected cost/reward to satisfy (co-safe) LTL formula
  - e.g.  $R_{min=?}$  [ ¬zone<sub>3</sub> U (zone<sub>1</sub>  $\wedge$  F zone<sub>4</sub>) ] "minimise exp. time to patrol zones 1 then 4, without passing through 3"
  - optimal strategies: finite-memory and deterministic
  - build/solve product of MDP and det. finite automaton
- Nested properties, e.g. using PCTL (branching time logic)

# Application: Robot navigation

- Navigation planning: [IROS'14]
  - MDP models navigation through an uncertain environment
  - LTL used to formally specify tasks to be executed
  - synthesise finite-memory strategies to construct plans/controllers
  - links to continuous-space planner



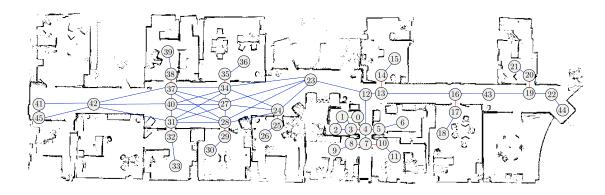




# Application: Robot navigation

### Navigation planning MDPs

- expected timed on edges + probabilities
- learnt using data from previous explorations

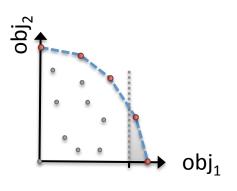



### LTL-based task specification

- expected time to satisfy (one or more) co-safe LTL formulas
- c.f. ad-hoc reward structures, e.g. with discounting
- also: efficient re-planning [IROS'14]; progress metric [IJCAI'15]

### Implementation

MetraLabs Scitos A5 robot + ROS module based on PRISM




### Overview

- Probabilistic model checking
  - verification vs. strategy synthesis
  - Markov decision processes (MDPs)
  - example: robot navigation
- Multi-objective probabilistic model checking
  - examples: power management/team–formation
- Stochastic (multi-player) games
  - example: energy management
- Permissive controller synthesis

# Multi-objective model checking

- Multi-objective probabilistic model checking
  - investigate trade-offs between conflicting objectives
  - in PRISM, objectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P<sub>>0.95</sub> [ F send ], R<sup>time</sup><sub>>10</sub> [ C ])
  - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P<sub>max=?</sub> [ F send ], R<sup>time</sup>>10 [ C ])
  - e.g. "maximum probability of message transmission, assuming expected battery life-time is > 10 hrs?"
- Pareto queries:
  - multi(P<sub>max=?</sub>[ F send], R<sup>time</sup><sub>max=?</sub>[ C])
  - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

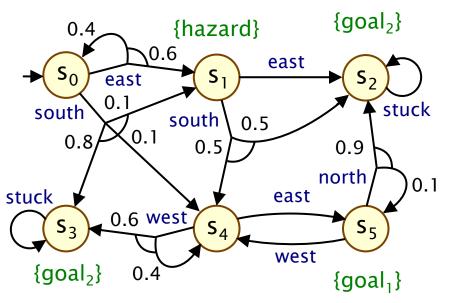


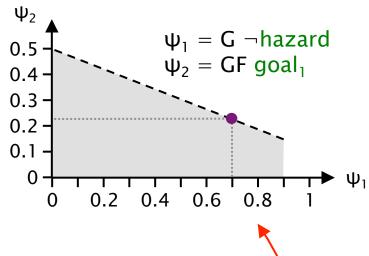
# Multi-objective model checking

- Multi-objective probabilistic model checking
  - investigate trade-offs between conflicting objectives
  - in PRISM, Djectives are probabilistic LTL or expected rewards
- Achievability queries: multi(P<sub>>0.95</sub> [ F send ], R<sup>time</sup><sub>>10</sub> [ C ])
  - e.g. "is there a strategy such that the probability of message transmission is > 0.95 and expected battery life > 10 hrs?"
- Numerical queries: multi(P<sub>max=?</sub> [ F sind ], R<sup>time</sup>>10 [ C ])
  - e.g. "maximum probability of mess et ransmission, assuming expected battery life-times > 10 hrs?"
- Pareto queries:
  - $multi(P_{max=?}[F]) \mapsto obj_1$
  - e.g. "Pareto curve for maximising probability of transmission and expected battery life-time"

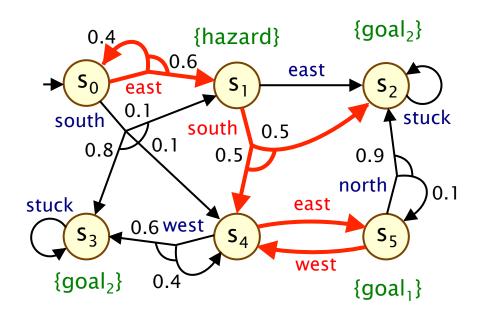
# Multi-objective model checking

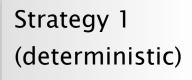
### Optimal strategies:


- usually finite-memory (e.g. when using LTL formulae)
- may also need to be randomised


### Computation:

- construct a product MDP (with several automata),
   then reduces to linear programming [TACAS'07,TACAS'11]
- can be approximated using iterative numerical methods,
   via approximation of the Pareto curve [ATVA'12]


### Extensions [ATVA'12]


- arbitrary Boolean combinations of objectives
  - e.g.  $\psi_1 \Rightarrow \psi_2$  (all strategies satisfying  $\psi_1$  also satisfy  $\psi_2$ )
  - · (e.g. for assume-guarantee reasoning)
- time-bounded (finite-horizon) properties



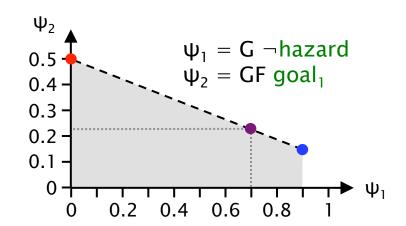


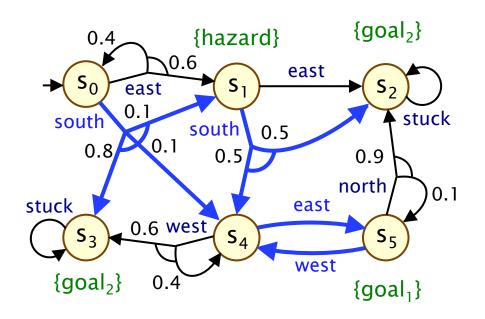
- Achievability query
  - $-P_{\geq 0.7}$  [ G  $\neg$ hazard ]  $\wedge P_{\geq 0.2}$  [ GF goal<sub>1</sub> ] ? True (achievable)
- Numerical query
  - $-P_{max=?}$  [ GF goal<sub>1</sub> ] such that  $P_{\geq 0.7}$  [ G  $\neg$ hazard ]? ~0.2278
- Pareto query
  - for  $P_{max=?}$  [ G ¬hazard ]  $\land$   $P_{max=?}$  [ GF goal<sub>1</sub> ]?

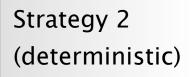




s<sub>0</sub>: east


 $s_1$ : south


**S**<sub>2</sub>: -


**S**<sub>3</sub>: -

s<sub>4</sub>: east

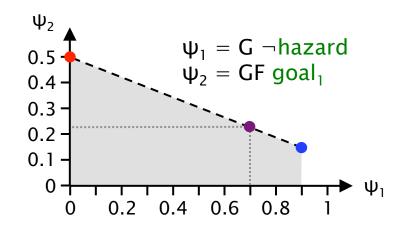
s<sub>5</sub>: west

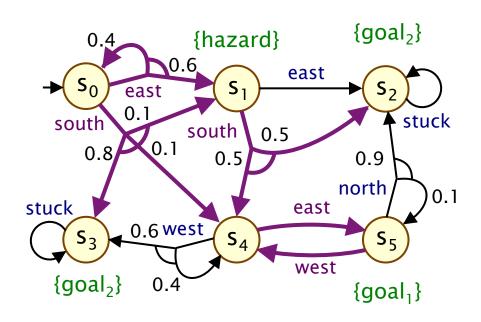


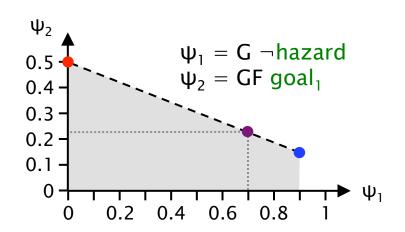




s<sub>0</sub>: south


 $s_1$ : south


**S**<sub>2</sub>: -


**S**<sub>3</sub>: -

s<sub>4</sub>: east

s<sub>5</sub>: west







# Optimal strategy: (randomised)

 $s_0$ : 0.3226 : east

0.6774: south

 $s_1 : 1.0 : south$ 

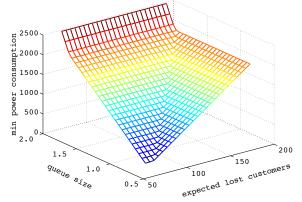
 $S_2$ : -

**S**<sub>3</sub>: -

**s**<sub>4</sub> : 1.0 : east

 $s_5$ : 1.0 : west

# Multi-objective: Applications

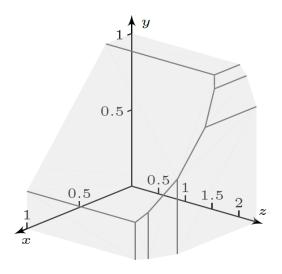

# Synthesis of controllers for dynamic power management [TACAS'11]

### IBM TravelStar VP disk drive

- switches between power modes:
- active/idle/idlelp/stby/sleep

### MDP model in PRISM:

- power manager
- disk requests
- request queue
- power usage




### Multi-objective:

"minimise energy consumption, subject to constraints on:

- (i) expected job queue size;
- (ii) expected number of lost jobs

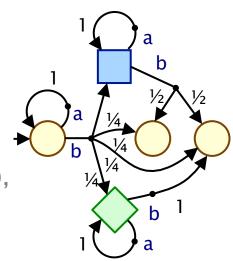
Synthesis of team formation strategies [CLIMA'11, ATVA'12]



### Pareto curve:

x="probability of
completing task 1";
y="probability of
completing task 2";
z="expected size of
successful team"

32

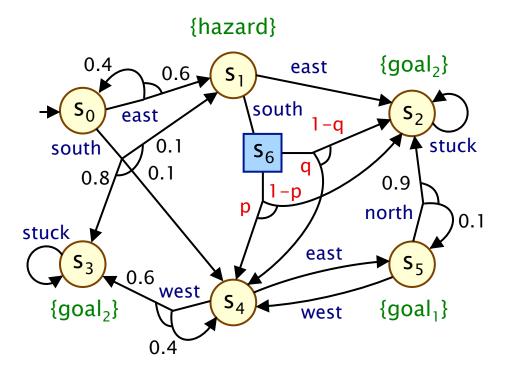

### Overview

- Probabilistic model checking
  - verification vs. strategy synthesis
  - Markov decision processes (MDPs)
  - example: robot navigation
- Multi-objective probabilistic model checking
  - examples: power management/team-formation
- Stochastic (multi-player) games
  - example: energy management
- Permissive controller synthesis

# Stochastic multi-player games (SMGs)

### Stochastic multi-player games

- players control states; choose actions
- models competitive/collaborative behaviour
- applications: security (system vs. attacker),
   controller synthesis (controller vs. environment),
   distributed algorithms/protocols, ...

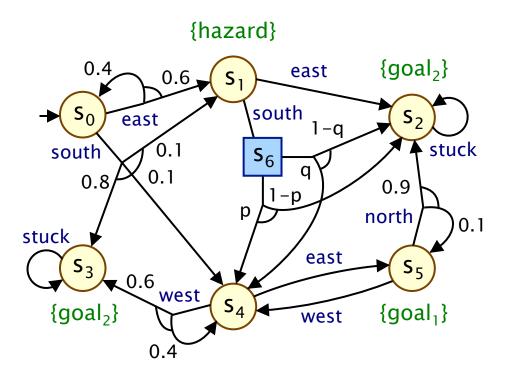



### Property specifications: rPATL

- $-\langle\langle\{1,2\}\rangle\rangle$   $P_{\geq 0.95}$  [  $F^{\leq 45}$  done ] : "can nodes 1,2 collaborate so that the probability of the protocol terminating within 45 seconds is at least 0.95, whatever nodes 3,4 do?"
- formally:  $\langle\langle C \rangle\rangle\psi$ : do there exist strategies for players in C such that, for all strategies of other players, property ψ holds?
- Model checking [TACAS'12,FMSD'13]
  - zero sum properties: analysis reduces to 2-player games
  - PRISM-games: <u>www.prismmodelchecker.org/games</u>

# Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
  - probability of  $s_1$ -south $\rightarrow s_4$  is in [p,q] =  $[0.5-\Delta, 0.5+\Delta]$




S<sub>i</sub> Player 1

s<sub>j</sub> Player 2

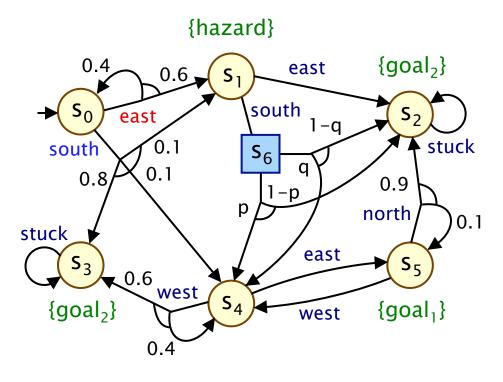
# Example - Stochastic games

- Two players: 1 (robot controller), 2 (environment)
  - probability of  $s_1$ -south $\rightarrow s_4$  is in  $[p,q] = [0.5-\Delta, 0.5+\Delta]$



rPATL:  $\langle\langle\{1\}\rangle\rangle$  P<sub>max=?</sub> [ F goal<sub>1</sub> ]

Optimal strategies: memoryless and deterministic


Computation: graph analysis & numerical approximation

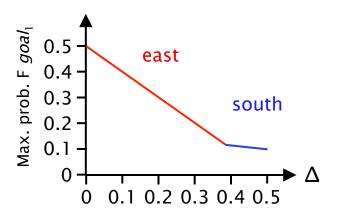
S<sub>i</sub> Player 1

s<sub>j</sub> Player 2

# Example - Stochastic games

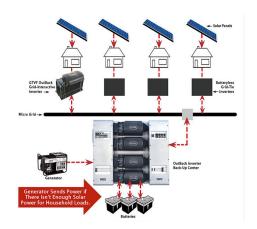
- Two players: 1 (robot controller), 2 (environment)
  - probability of  $s_1$ -south $\rightarrow s_4$  is in  $[p,q] = [0.5-\Delta, 0.5+\Delta]$




<mark>(s<sub>i</sub>)</mark> Player 1

Player 2

rPATL:  $\langle\langle\{1\}\rangle\rangle$   $P_{max=?}[Fgoal_1]$ 


Optimal strategies: memoryless and deterministic

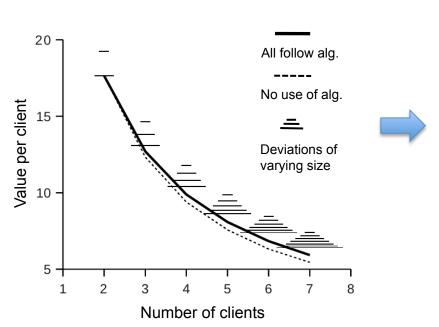

Computation: graph analysis & numerical approximation



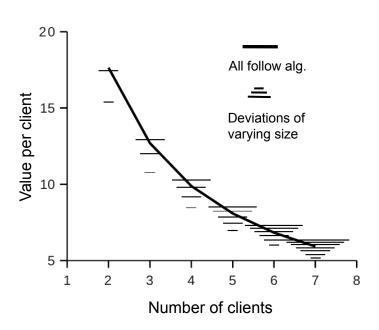
# Example: Energy management

- Energy management protocol for Microgrid
  - Microgrid: local energy management
  - randomised demand management protocol
  - random back-off when demand is high
- Original analysis [Hildmann/Saffre'11]
  - protocol increases "value" for clients
  - simulation-based, clients are honest
- Our analysis
  - stochastic multi-player game model
  - clients can cheat (and cooperate)
  - model checking: PRISM-games






# Example: Energy management


- Exposes protocol weakness
  - incentive for clients to act selfishly

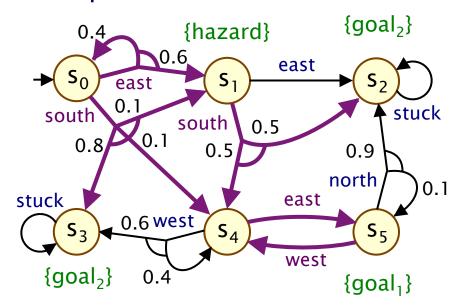
- We propose a simple fix (and verify it)
  - clients can be punished

Value per client



Value per client, with fix




### Overview

- Probabilistic model checking
  - verification vs. strategy synthesis
  - Markov decision processes (MDPs)
  - example: robot navigation
- Multi-objective probabilistic model checking
  - examples: power management/team-formation
- Stochastic (multi-player) games
  - example: energy management
- Permissive controller synthesis

# Permissive controller synthesis

- Multi-strategy synthesis [TACAS'14]
  - for Markov decision processes and stochastic games
  - choose sets of actions to take in each state
  - controller is free to choose any action at runtime
  - flexible/robust (e.g. actions become unavailable or goals change)

### Example



# Multi-strategy: s<sub>0</sub>: east or south s<sub>1</sub>: south s<sub>2</sub>: s<sub>3</sub>: s<sub>4</sub>: east s<sub>5</sub>: west

# Permissive controller synthesis

- Multi-strategies and temporal logic
  - multi-strategy  $\Theta$  satisfies a property  $P_{>p}$  [ F goal ] iff any strategy  $\sigma$  that adheres to  $\Theta$  satisfies  $P_{>p}$  [ F goal ]
- We quantify the permissivity of multi-strategies
  - by assigning penalties to each action in each state
  - a multi-strategy is penalised for every action it blocks
  - static and dynamic (expected) penalty schemes
- Permissive controller synthesis
  - $\exists$  a multi-strategy satisfying  $P_{\leq 0.6}$  [ F goal<sub>1</sub> ] with penalty < c?
  - what is the multi-strategy with optimum permissivity?
  - reduction to mixed-integer LP problems
  - applications: energy management, cloud scheduling, ...

### Conclusion

- Probabilistic model checking
  - verification vs. controller synthesis
  - Markov decision processes, temporal logic, applications
- Recent directions and extensions
  - multi-objective probabilistic model checking
  - model checking for stochastic games
  - permissive controller synthesis

### Challenges

- stochastic games: multi-objective, equilibria, richer logics
- partial information/observability
- probabilistic models with continuous time (or space)
- scalability, e.g. symbolic methods, abstraction

# Thanks for your attention

More info here:

www.prismmodelchecker.org/lectures/avacs15/