
Computing Science Group

Proving The Unique Fixed-Point Principle Correct

An Adventure with Category Theory

Ralf T.W. Hinze, Daniel W.H. James

CS-RR-11-03

�

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT

AN ADVENTURE WITH CATEGORY THEORY

RALF T. W. HINZE AND DANIEL W. H. JAMES

Abstract. Say you want to prove something about an infinite data-structure,

such as a stream or an infinite tree, but you would rather not subject yourself

to coinduction. The unique fixed-point principle is an easy-to-use, calcula-
tional alternative. The proof technique rests on the fact that certain recursion

equations have unique solutions; if two elements of a coinductive type satisfy

the same equation of this kind, then they are equal. In this paper we precisely
characterize the conditions that guarantee a unique solution. Significantly, we

do so not with a syntactic criterion, but with a semantic one that stems from

the categorical notion of naturality. Our development is based on distributive
laws and bialgebras, and draws heavily on Turi and Plotkin’s pioneering work

on mathematical operational semantics. Along the way, we break down the

design space in two dimensions, leading to a total of nine points. Each gives
rise to varying degrees of expressiveness, and we will discuss three in depth.

Furthermore, our development is generic in the syntax of equations and in the
behaviour they encode—we are not caged in the world of streams.

1. Introduction

“Whence cometh this?” Our aim is to provide an elegant proof of correctness for
an elegant proof principle. Elegance comes, in large part, through simplicity, and
specifically we value the simplicity afforded by the notion of naturality and ini-
tial/final algebra/coalgebra semantics. The key component for correctness of the
unique fixed-point principle is a sound characterization of what gives a recursion
equation a unique solution.
“Why does uniqueness matter?” Uniqueness has two complementary perspectives:
programs and proofs. When read as a program, the unique solution implies that it
is well-defined. When the unicity is utilized in a proof, we are able to show that
two given solutions are equal—the unique fixed-point principle (UFP).
“Why not a syntactic criterion?” In prior work [Hinze, 2010] a simple syntactic
criterion, specific to stream equations, was proffered, but this is unsatisfactory. A
criterion must exclude all bad things and accept as many good things as possible.
As criteria are complicated to accept more good things, so is the understanding and
trust. Their syntactic nature makes them intrinsically fragile. Just as it is often
easy to satisfy a criterion by a program transformation, it is just as easy to lose the
satisfaction.
“Category complex” Our theoretical underpinnings, distributive laws and bialge-
bras, draw on Turi and Plotkin’s mathematical operational semantics [Turi and
Plotkin, 1997], and just as in theirs, the following pages contain plenty of category
theory. However, our concern throughout is making the theory accessible. We
do so by grounding it in an application, and targeting the categorical parlance to
readers who are familiar with the Algebra of Programming [Bird and De Moor,
1997]. This is the holy trinity of categories, functors and natural transformations,

2010 Mathematics Subject Classification. Primary 68Q55; Secondary 68N18 68Q60.
Key words and phrases. unique fixed-points, bialgebras, distributive laws.

1



2 R. T. W. HINZE AND D. W. H. JAMES

1/1

1/2

2/3

3/5

5/8
4/7

3/4

4/5
5/7

1/3

1/4

2/7
1/5

2/5

3/7
3/8

2/1

3/1

5/2

8/3
7/3

4/1

5/1
7/2

3/2

4/3

7/5
5/4

5/3

7/4
8/5

Figure 1. The Bird tree

along with algebras and coalgebras, which we will summarize. For the categorically
enlightened, we will note the more direct reasoning.
“Interpretation of categorical structures” We will introduce a selection of categorical
structures and discuss their interpretation in this domain. It is well known that
free monads can been seen as terms with variables and cofree comonads as labelled
trees, but we will see how these and two other structures influence the expressivity
of recursion equations, by the ‘language features’ they induce. These features are
positioned in two dimensions: one coupled to the expressiveness of terms on the
right-hand side of equations, and the other to the expressiveness of patterns on the
left-hand side. We will focus on the former initially and then introduce the latter
as the dual situation. Notably, we will consider what Niqui and Rutten [2010] calls
sampling functions, and what we would more loosely describe as stream operators
that consume more than they produce.
“Beauty and Elegance” We hope to showcase the beauty of the unique fixed-point
principle. Its elegance is due, in no small part, to its calculational style, a style
that proofs will follow throughout.

2. The Unique Fixed-Point Principle

2.1. Infinite Trees. In Figure 1 we can see the first four levels of the Bird Tree
[Hinze, 2009], an infinite tree in which you can find every positive rational num-
ber exactly once. It has several remarkable properties that come from its nature
as a fractal object—its subtrees are similar to the whole tree. The tree can be
transformed into its left subtree by incrementing and then taking the reciprocal of
every element; the right subtree is obtained by swapping these operations. This
description can be nicely captured by a corecursive definition (we will use Haskell
as a meta-language for the category of sets and total functions):

bird = Node 1 (1 / (bird + 1)) ((1 / bird) + 1) .

The picture suggests that taking the reciprocal of each element is the same as
mirroring the tree, mirror bird = 1 / bird , and this is indeed the case. We shall see
that we can prove this effortlessly using the unique fixed-point principle.

Before we get to the proof, we must introduce some definitions.

data Tree x = Node {root :: x , left :: Tree x , right :: Tree x }

The type Tree x is a so-called coinductive datatype. Its definition is similar to the
textbook definition of binary trees, except that there are no leaves, so we cannot
build a finite tree. And without leaves, mirror is a one-liner:

mirror (Node x l r) = Node x (mirror r) (mirror l) .



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 3

The definition of bird uses + and / lifted to trees. We obtain these liftings for
free as Tree is a so-called idiom [McBride and Paterson, 2008]:

class Idiom f where
pure :: x � f x
(�) :: f (x � y) � (f x � f y)

instance Idiom Tree where
pure x = t where t = Node x t t
t � u = Node (root t $ root u) (left t � left u) (right t � right u) .

The call pure x constructs an infinite tree of x s; idiomatic application � takes a
tree of functions and a tree of arguments to a tree of results. Using pure and �, we
can lift arithmetic operations generically to idioms.

instance (Idiom f ,Num x )⇒ Num (f x ) where
fromInteger n = pure (fromInteger n)
negate u = pure negate � u
u + v = pure (+) � u � v
u × v = pure (×) � u � v
u − v = pure (−) � u � v

Since the operations are defined pointwise, the familiar arithmetic laws also hold for
trees. Mirroring a tree preserves the idiomatic structure, the function mirror is an
idiom homomorphism: mirror (pure x ) = pure x and mirror (x � y) = mirror x �
mirror y . This implies, for instance, that mirror (u + v) = mirror u + mirror v .

Let us return to the promised proof and the unique fixed-point principle. Con-
sider the recursion equation x = Node y l r , where l and r possibly contain the
variable x , but not the expressions root x , left x or right x . Equations in this syn-
tactic form possess a unique solution. Uniqueness can be exploited to prove that
two infinite trees are equal: if they satisfy the same equation, then they are.

mirror bird

= { definitions of mirror and bird }
Node 1 (mirror ((1 / bird) + 1)) (mirror (1 / (bird + 1)))

= { mirror is an idiom homomorphism }
Node 1 ((1 /mirror bird) + 1) (1 / (mirror bird + 1))

∝ { x = Node 1 ((1 / x ) + 1) (1 / (x + 1)) has a unique solution }
Node 1 ((1 / (1 / bird)) + 1) (1 / ((1 / bird) + 1))

= { arithmetic }
1 /Node 1 (1 / (bird + 1)) ((1 / bird) + 1)

= { definition of bird }
1 / bird

The link ∝ indicates that the proof rests on the unique fixed-point principle; the
recursion equation is given within the curly braces. The upper part shows that
mirror bird satisfies the equation x = Node 1 ((1 / x ) + 1) (1 / (x + 1)); the lower
part establishes that 1 / bird satisfies the same equation. The symbol ∝ links the
two parts, effectively proving the equality of both expressions.

We mentioned that the Bird Tree contains every positive rational exactly once.
A proof that exclusively builds on the unique fixed-point principle can be found in
Hinze [2009].



4 R. T. W. HINZE AND D. W. H. JAMES

2.2. Streams. Let us consider a second coinductive type, one that will accompany
us for the rest of the paper: the type of streams, infinite sequences of elements.

data Stream x = Cons {head :: x , tail :: Stream x }
(≺) :: x � Stream x � Stream x
x ≺ s = Cons x s

Like the type of infinite trees, Stream is an idiom.

instance Idiom Stream where
pure x = s where s = x ≺ s
s � t = (head s $ head t) ≺ (tail s � tail t)

Using this vocabulary, we can define, for instance, the stream of Fibonacci num-
bers.

fib = 0 ≺ fib′

fib′ = 1 ≺ fib + fib′

The Fibonacci numbers satisfy a myriad of properties. For example, if we form the
stream of their partial sums and increment the result, we obtain fib′. Again, we
shall see that the UFP allows for a concise proof. But first, we have to capture
summation as a stream operator.

Σ s = 0 ≺ s + Σ s

Turning to the proof of Σ fib + 1 = fib′, we can either show that Σ fib + 1 satisfies
the defining equation of fib′, or that fib′−1 satisfies the recursion equation of Σ fib.
Both approaches work, here is the calculation for the former.

Σ fib + 1

= { definition of Σ }
(0 ≺ fib + Σ fib) + 1

= { arithmetic }
1 ≺ fib + Σ fib + 1

A related property is the following: if we sum the Fibonacci numbers at odd
positions, we obtain the Fibonacci numbers at even positions. The so-called sam-
pling functions [Niqui and Rutten, 2010] even and odd enjoy simple corecursive
definitions.

even s = head s ≺ odd (tail s)

odd s = even (tail s)

Turning to the proof of Σ (odd fib) = even fib, we reason:

Σ (odd fib)

= { definition of Σ }
0 ≺ odd fib + Σ (odd fib)

= { definition of odd }
0 ≺ even fib′ + Σ (odd fib)

∝ { x = 0 ≺ even fib′ + x }
0 ≺ even fib′ + even fib

= { even is an idiom homomorphism and arithmetic }
0 ≺ even (fib + fib′)

= { definitions of fib′ and odd }
0 ≺ odd fib′



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 5

= { definitions of fib and even }
even fib

This completes our short survey. The UFP is not only easy-to-use, but also
surprisingly powerful: in prior work [Hinze, 2010] we have shown how to redevelop
the theory of recurrences, finite calculus and generating functions using streams
and stream operators, building solely on the cornerstone of unique solutions.

What remains to be done? We have been somewhat vague about the syntactic
conditions that guarantee uniqueness. We shall see that systems of recursion equa-
tions can be classified along two dimensions, leading to a total of nine different point.
The system for fib falls into one (“consume one stream element, produce one”), the
system for even into another (“consume many, but don’t nest calls”). When defin-
ing streams we cannot mix styles. For instance, the equation x = 0 ≺ even x has
infinitely many solutions. We shall see that we can capture the conditions that
guarantee unicity semantically, using the categorical concept of naturality.

Furthermore, we abstract away from the type of infinite trees and streams. The
development is generic both in the syntax and in the behaviour—which operations
are defined and over which coinductive type. An appropriate setting is provided
by the categorical notion of algebras and coalgebras which we introduce next. The
resulting proofs are not only more general, they are also shorter than specific in-
stances that have appeared in the literature [Rutten, 2003, Silva and Rutten, 2010].

3. Warm-up

3.1. Initial Algebras and Final Coalgebras. We hope the reader has encoun-
tered the material of this section before, but we will reiterate it here as it serves
as a simple demonstration of the power of duality. We will invoke the power to
construct ‘the opposite thing’ time and time again.

Let F : C � C be an endofunctor. An F-algebra is a pair 〈A, a〉 consisting of an
object A : C and an arrow a : FA � A : C . We say that A is the carrier and a is
the action of the algebra; however, we often refer to the algebra simply by a as it
determines the carrier. An F-homomorphism between algebras 〈A, a〉 and 〈B, b〉 is
an arrow h : A � B : C such that h · a = b · F h.

FA
F h //

a
��

FB

b
��

A
h

// B

A characteristic of functors is that they preserve identity and composition; this
entails that F-homomorphisms compose and have an identity. Consequently, F-
algebras and F-homomorphisms form a category, called F-Alg(C ). If this category
has an initial object, it is called the initial F-algebra 〈µF, in〉. Initiality implies that
it has a unique F-homomorphism to any F-algebra 〈A, a〉, which is written ((a )) and
called fold. It satisfies the uniqueness property

(3.1) h = ((a )) ⇐⇒ h · in = a · F h .

We will now seize the opportunity to dualize these constructions to the opposite
things: F-coalgebras and unfolds. An F-coalgebra is a pair 〈C , c〉 of an object C : C
and an arrow c : C �FC : C . An F-homomorphism between coalgebras 〈C , c〉 and
〈D , d〉 is an arrow h : C � D : C such that F h · c = d · h. In the same way, we can
form a category F-Coalg(C ). If this category has a final object, it is called the final
F-coalgebra 〈νF, out〉. Being the final object, it has a unique F-homomorphism to



6 R. T. W. HINZE AND D. W. H. JAMES

it from any F-coalgebra 〈C , c〉, which is written [(c)] and called unfold. It satisfies
the following uniqueness property.

(3.2) h = [(c)] ⇐⇒ F h · c = out · h
In case you were wondering, final algebras and initial coalgebras are unexciting,

although we will find a use for them. The final algebra is 〈1, !F 1〉, and the initial
coalgebra is 〈0, ¡F 0〉.

FA
F !A //

a
��

F 1

!F 1
��

A
!A

// 1

0
¡C //

¡F 0
��

C

c
��

F 0
F ¡C
// FC

The diagrams commute as there is only one arrow from FA to 1 and only one arrow
from 0 to FC .

3.2. Initial into Final. The carriers of the initial algebra and final coalgebra
are usually distinct objects (cf. algebraically compact categories [Freyd, 1992]),
however, the former can be embedded into the latter.

(3.3) µF � νF

There are two options for defining this arrow. The embedding goes from µF so we
could express it as a fold; this dictates that we need an algebra with type F (νF)�νF.

out : νF � F (νF)
(final)

(functor)
F out : F (νF) � F (F (νF))

(unfold)
[(F out )] : F (νF) � νF

(fold)
(([(F out )])) : µF � νF

The embedding also goes to νF so we could express it as an unfold; this dictates
that we need a coalgebra with type µF � F (µF).

in : F (µF) � µF
(initial)

(functor)
F in : F (F (µF)) � F (µF)

(fold)
((F in )) : µF � F (µF)

(unfold)
[(((F in )))] : µF � νF

A key observation is that in and ((F in )) form an isomorphism.

in · ((F in )) = idµF

⇐⇒ { fold reflection (C.1) }
in · ((F in )) = ((in ))

⇐= { fold fusion (C.3) }
in · F in = in · F in

((F in )) · in = idF (µF)

⇐⇒ { fold computation (C.2) }
F in · F ((F in )) = id

⇐⇒ { F functor and other proof }
F id = id

And dually, out and [(F out )] also form an isomorphism.

[(F out )] · out = idνF

⇐⇒ { unfold reflection (D.1) }
[(F out )] · out = [(out )]

⇐= { unfold fusion (D.3) }
F out · out = F out · out

out · [(F out )] = idF (νF)

⇐⇒ { unfold computation (D.2) }
F [(F out )] · F out = id

⇐⇒ { F functor and other proof }
F id = id



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 7

Using these isomorphisms, along with the uniqueness of fold and unfold, we can
give a calculation proof that the embedding is unique.

[(((F in )))] = (([(F out )]))

⇐⇒ { uniqueness of fold (3.1) }
[(((F in )))] · in = [(F out )] · F [(((F in )))]

⇐⇒ { out isomorphism }
out · [(((F in )))] · in = F [(((F in )))]

⇐⇒ { unfold computation law (D.2) }
F [(((F in )))] · ((F in )) · in = F [(((F in )))]

⇐⇒ { in isomorphism }
F [(((F in )))] = F [(((F in )))]

There is, of course, a dual proof, which rests on the uniqueness of unfold. The two
forms of the unique arrow can be seen in the following diagram:

F (µF)

in ��

// F (νF)

[(F out )]
��

µF

µF

(([(F out )]))
//

[(((F in )))]
//

((F in ))

��

νF

νF
out

��
F (µF) // F (νF)

3.3. Natural Transformations of Algebras and Coalgebras. Let F,G : C �C
be endofunctors, and α : F ←̇ G a natural transformation. We can turn α into a
functor α-Alg : F-Alg � G-Alg between the categories of F- and G-algebras.

α-Alg 〈X , a : FX � X 〉 = 〈X , a · αX : GX � X 〉
α-Alg h = h

We must show that homomorphisms are preserved by α-Alg. For algebras a :
FX � X , b : FY � Y , and h : X � Y ,

h · α-Alg a = α-Alg b · G h ⇐= h · a = b · F h .

Proof.
h · α-Alg a

= { definition of α-Alg }
h · a · αX

= { assumption h · a = b · F h }
b · F h · αX

= { α : F ←̇ G is natural }
b · αY · G h

= { definition of α-Alg }
α-Alg b · G h �

We will see various instantiations of α-Alg later on, where its functor properties
will come in handy.



8 R. T. W. HINZE AND D. W. H. JAMES

Dually, let α : F →̇ G, then α-Coalg : F-Coalg � G-Coalg.

α-Coalg 〈X , c : X � FX 〉 = 〈X ,αX · c : X � GX 〉
α-Coalg h = h

4. Meet Iniga and Finn

Once upon a time a teacher had a pair of bright and capable students, who, for
better or worse, were hooked on category theory. The first, Iniga, was a go-getting
student with plenty of initiative. Interestingly, this was in stark contrast to Finn,
a reserved character who perceived the world with a sense of finality.

The teacher posed them the problem of showing that stream equations possess
unique solutions. Owing to their polar opposite outlooks, Iniga and Finn took diver-
gent approaches to tackling the problem, but as we will discover, their approaches
turned out to be two sides of the same coin.

The teacher started with a minimalistic example, asking them to consider the
following stream equations.

one = 1 ≺ one

plus (Cons m s,Cons n t) = m + n ≺ plus (s, t)

Streams of natural numbers are the resultant behaviour of these equations, so the
teacher provided the functor BX = N × X as the behaviour functor. We can give
this a Haskell rendering:

data B x = Cons (N, x ) .

For simplicity, the teacher fixed the element type of streams. An element of νB,
the carrier of the final coalgebra of the behaviour functor, is a stream of natural
numbers: νB ∼= StreamN.

The stream constant one and the stream operator plus in the example stream
equations are also modelled categorically with the functor SX = 1 + X ×X as the
syntax functor.

data S x = One | Plus (x , x )

An element of µS, the initial algebra carrier of the syntax functor, is a finite, closed
term, built from the syntax constructors of S.

Iniga (taking the initiative): Ok, given these definitions we can model the
stream equations by a simple function.

λ (One) = Cons (1,One)
λ (Plus (Cons (m, s),Cons (n, t))) = Cons (m + n,Plus (s, t))

Teacher: Observe that λ is really a natural transformation of type S◦B →̇B◦S.
This is crucial: the syntactic requirements on stream equations to ensure uniqueness
of solutions are captured by the naturality requirement on λ. Its type can be seen
as a promise that only the head of the incoming stream will be inspected and that
an element of the outgoing stream will be constructed. Can you see how the slogan
“consume one, produce one” translates?

Iniga: Yes! An interpretation of the syntax is then given by an S-algebra
a : S (νB)�νB whose carrier is the final B-coalgebra 〈νB, out〉. The algebra a takes
a level of syntax over a stream and turns it into a stream.

Teacher: How do we model that a respects the stream equations captured by λ?
Your algebra a has to satisfy the following law:

(4.1) out · a = B a · λ (νB) · S out : S (νB) � B (νB) .

The law states that unrolling the result of a is the same as unrolling the arguments
of the syntax, S out , applying the stream equations λ (νB), and then interpreting
the tail, B a.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 9

Iniga: Great, for our example I will rearrange the law to observe the Haskell
convention of definition by pattern matching, a · S out◦ = out◦ · B a · λ (νB). If I
instantiate this law to our running example, I obtain a definition of the algebra a:

a One
= Out◦ (Cons (1, a One))

a (Plus (Out◦ (Cons (m, s)),Out◦ (Cons (n, t))))
= Out◦ (Cons (m + n, a (Plus (s, t)))) .

With a, I can now define the semantic counterparts of One and Plus, the stream
constant one and the stream operator plus, underlined to emphasize that they are
semantic entities:

one = a One

plus (s, t) = a (Plus (s, t)) .

Teacher (interrupting): You are actually building upon the isomorphism
SX � X ∼= (1 � X ) × (X × X � X ) here: the pair of functions, one and plus,
is just another way of writing the algebra a.

Iniga: Using Cons a s and a ≺ s as shorthands for Out◦ (Cons (a, s)), the
definition of a is the same as,

one = 1 ≺ one

plus (Cons m s,Cons n t) = m + n ≺ plus (s, t) ,

that is one and plus satisfy the original stream equations. Again, the notation
makes clear that we have to read the stream operators semantically—one and plus
are the entities defined by the system.

Teacher: We can wrap this up by showing that the law (4.1) uniquely deter-
mines a:

out · a = B a · λ (νB) · S out

⇐⇒ { uniqueness of unfold (3.2) }
a = [(λ (νB) · S out )]

So [(λ (νB) · S out )] is the unique solution of the stream equations. Furthermore, the
fold ((a )) : µS� νB takes syntax to behaviour by evaluating a term. Finn, what are
your thoughts?

Finn: To start with, I would write the stream equations differently. I find
them too Haskell-like, and I prefer what Jan Rutten calls “behavioural differential
equations” [Rutten, 2003].

head one = 1
tail one = one

head (plus (s, t)) = head s + head t
tail (plus (s, t)) = plus (tail s, tail t)

A semantics is given by a B-coalgebra c : µS � B (µS) whose carrier is the initial
S-algebra 〈µS, in〉. The coalgebra c takes a term and produces the first number of
the defined stream, and a term to generate the rest of the stream.

Teacher: Just as for Iniga, your coalgebra c has to satisfy the following law:

(4.2) c · in = B in · λ (µS) · S c : S (µS) � B (µS) .

The law states that building a term and applying c is the same as giving a semantics
to the subterms, S c, applying the stream equations λ (µS), and building a term in
the tail of a stream, B in.



10 R. T. W. HINZE AND D. W. H. JAMES

Finn: I will follow Iniga’s lead and specialize the law to our example, obtaining
a definition of c:

c (In One)
= Cons (1, In One)

c (In (Plus (s, t)))
= Cons (head (c s) + head (c t), In (Plus (tail (c s), tail (c t)))) ,

where head (Cons (a, s)) = a and tail (Cons (a, s)) = s. Given a stream program,
my c gives the head of the stream and a stream program for the tail of the stream.
I can now define the semantic counterparts of head and tail :

head s = head (c s)

tail s = tail (c s) .

Teacher (interrupting): You are building upon the isomorphism X � BX ∼=
(X � N)× (X � X ) here: head and tail is just another way of writing c.

Finn: Using one as a shorthand for In One and plus (s, t) for In (Plus (s, t)),
the definition of c is the same as,

head one = 1
tail one = one

head (plus (s, t)) = head s + head t
tail (plus (s, t)) = plus (tail s, tail t) ,

that is, head and tail satisfy the original stream equations. The notation emphasizes
that we have to read the stream selectors semantically—head and tail are the entities
defined by the system.

Teacher: Again, we can show that the law (4.2) determines c:

c · in = B in · λ (µS) · S c

⇐⇒ { uniqueness of fold (3.1) }
c = ((B in · λ (µS)))

So ((B in · λ (µS))) is the unique solution of your stream equations. And the unfold
[(c)] : µS � νB takes syntax to behaviour by unrolling a complete stream.

Iniga and Finn, you should reconcile your two viewpoints. Your semantic func-
tions are of type µS � νB, so is the fold of Iniga’s algebra the same as the unfold
of Finn’s coalgebra: ((a )) = [(c)]? Did you notice that we made use of the naturality
of λ: Iniga used λ at type νB, while Finn required the µS instance? Of course, we
have only discussed a minimalistic example here, and we are not immediately able
to model stream equations such as the ones that define the Fibonacci stream.

It’s also important to note that your approaches are not perfectly symmetric:
Iniga can define one : νB and plus : νB × νB � νB, Finn can define head : µS � N
and tail : µS � µS, but not the other way round.

Finn: Hmm, to define plus, which takes two streams as an argument, I would
need a means to embed streams into terms.

plus (s, t) = evaluate (Plus (?s, ?t))

I have used ‘?’ as a placeholder for this shortcoming.
Teacher: We shall see that the free monad is the right structure.
Iniga: Also, what about device to label streams with terms?
Teacher: We shall see that the cofree comonad is the right structure.

Epilogue. Now that we have met Iniga and Finn and got a taste for the problem
that their teacher posed to them, we will move on to introduce the infrastructure
that is needed for the reconciliation.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 11

5. Bialgebras

Let S,B : C � C be functors. A bialgebra is a triple 〈X , a, c〉 consisting of an
object X : C , an arrow a : SX � X : C , and an arrow c : X � BX : C . It is an
S-algebra and a B-coalgebra with a common carrier. Let 〈X , a, c〉 and 〈Y , b, d〉 be
bialgebras and h : X � Y : C an arrow. Then h is a bialgebra homomorphism if it
is both an S-algebra homomorphism and a B-coalgebra homomorphism.

SX

a
��

S h // SY

b
��

X

c
��

h // Y

d
��

BX
B h

// BY

Identity is a bialgebra homomorphism and homomorphisms compose. Consequently,
bialgebras and their homomorphisms form a category, called Bialg(C ).

We are concerned with λ-bialgebras, which are bialgebras equipped with a so-
called distributive law λ : S◦B →̇ B◦S. This extra structure imposes a coherence
condition on bialgebras.

(5.1) c · a = B a · λX · S c

The condition is also called the pentagonal law.

(5.2) SX

a

��

S c
((
S (BX )

λX

��

X

c

��

B (SX )

B avv
BX

The category of bialgebras that satisfy the pentagonal law (5.2) is denoted λ-
Bialg(C ). It is a full subcategory of Bialg(C ).

6. Reheat

Let us revisit our warm-up example of the embedding µF� νF, but now we will
use λ-bialgebras. While this usage will be a degenerative case of the theory, it will
serve as an introduction to a recurring pattern that will soon emerge.

Instead of two functors, we have just one, F. Therefore, our natural transforma-
tion must have the type λ : F◦F →̇ F◦F. The identity idF◦F will do nicely.

The algebra 〈µF, in〉 is the initial F-algebra—the initial object in F-Alg. We
will now show that from this we can form the initial object in idF◦F-Bialg. We
showed earlier that in and ((F in )) form an isomorphism. Therefore, we will choose
〈µF, in, ((F in ))〉 as the initial bialgebra. This situation is illustrated in the following



12 R. T. W. HINZE AND D. W. H. JAMES

diagram.

F (µF)

in
��

F ((a ))
//



FX

a

��
µF

((F in ))
��

((a ))
//

®

¬ X

c

��
F (µF)

F ((a ))
// FX

A number of proof obligations now arise.
First, we must show that 〈µF, in, ((F in ))〉 is a λ-bialgebra (¬)—it has the right

types, but is must also satisfy (5.1). As λ is the identity, the coherence condition
simplifies to ((F in )) · in = F in · F ((F in )). This is exactly the computation law of fold
(C.2).

Second, the fact that ((a )) is an algebra homomorphism is by construction—the
top half of the diagram commutes (). Moreover, the uniqueness of this arrow also
comes for free.

All that remains is to prove that ((a )) is also a coalgebra homomorphism—that
the bottom half of the diagram commutes (®): c · ((a )) = F ((a )) · ((F in )). Before we
proceed to the proof, let us revisit the pentagonal law. As λ is the identity, we can
simplify and rearrange the diagram to show that c is a not only a coalgebra, but
also an algebra homomorphism: c : a � F a : F-Alg.

FX

a
��

F c // F (FX )

F a
��

X c
// FX

As a result, we can directly invoke the fusion law of fold (C.3) to state that c ·((a )) =
((F a )). Now we can proceed.

c · ((a )) = F ((a )) · ((F in ))

⇐⇒ { fold fusion (C.3) with c : a � F a : F-Alg }
((F a )) = F ((a )) · ((F in ))

⇐= { fold fusion (C.3) }
F ((a )) : F in � F a : F-Alg

⇐⇒ { F functor }
((a )) : in � a : F-Alg

Having discharged the necessary proof obligations, we can now state that 〈µF, in,
((F in ))〉 is indeed the initial λ-bialgebra. Furthermore, ((a )) is the unique homo-
morphism from the initial λ-bialgebra to any λ-bialgebra 〈X , a, c〉.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 13

We can dualize these results to state that: 〈νF, [(F out )], out〉 is the final λ-
bialgebra; and [(c)] is the unique homomorphism to any λ-bialgebra 〈X , a, c〉.

FX

a
��

F [(c)]
// F (νF)

[(F out )]
��

X

c
��

[(c)]
// νF

out
��

FX
F [(c)]

// F (νF)

Let us return to the embedding of µF in νF. The following diagram depicts
the homomorphism between initial and final λ-bialgebras. The embedding arrow
is unique, and we can give two justifications for it being so: namely that it is the
unique homomorphism both from the initial λ-bialgebra and to the final λ-bialgebra.
For the same two justifications, we can give two definitions of this arrow, and by
uniqueness they are equal.

F (µF)

in
��

// F (νF)

[(F out )]
��

µF

((F in ))
��

‖
(([(F out )]))

[(((F in )))]

// νF

out
��

F (µF) // F (νF)

Summary. We have implicitly set out a template here that will be used again and
again. In this case the two functors of the bialgebras were the same and the λ
was trivial, but we will gradually complicate matters by using distinct functors and
then adding more structure. This will be in the form of natural transformations
and the consequent coherence conditions.

7. Endofunctors over Endofunctors

We will now use λ-bialgebras to explicate Iniga and Finn’s conversation with
their teacher, and begin to reconcile their solutions.

Let S,B : C � C be functors, and λ : S◦B →̇ B◦S be a natural transformation.
We will read these to imply syntax and behaviour functors, and a distributive law
modelling a set of equations. Using λ-bialgebras, we will characterize the semantic
function from syntax to behaviour—the arrow from the least fixed-point of S to the
greatest fixed-point of B.

Before, we extended the initial object in F-Alg into the initial object in idF◦F-
Bialg, with the coalgebra ((F in )). Our new scenario is no longer so simple. If the
carrier of the initial λ-bialgebra has been fixed as µS, then the coalgebra will have
type µS � B (µS). This is exactly Finn’s coalgebra, and his teacher has derived
it: ((B in · λ (µS))). As one might guess, the laws the teacher provided came from
λ-bialgebras. Let us take a step back to re-examine λ and the pentagonal law.

7.1. Lifting Endofunctors to Algebras. The pentagonal law confers a useful
property both on the algebra and the coalgebra component of a λ-bialgebra. Let



14 R. T. W. HINZE AND D. W. H. JAMES

us illustrate this first for the coalgebra component by redrawing diagram (5.2).

SX

a

��

S c // S (BX )

λX
��

Bλ a

||

B(SX)

B a
��

X c
// BX

Here we can see that c is not only a B-coalgebra, but also an S-algebra homomorph-
ism from 〈X , a〉 to 〈BX ,B a · λX 〉.

We can characterize this situation as lifting the endofunctor B : C � C to a
functor on S-algebras; we will give it the name Bλ : S-Alg(C ) � S-Alg(C ), and
define it as,

Bλ 〈X , a : SX � X 〉 = 〈BX ,B a · λX : S (BX ) � BX 〉 ,(7.1)

Bλ h = B h .(7.2)

We shall usually omit the object part of the algebra and apply Bλ only to the arrow
part. We need to show that Bλ is functorial. As B is a functor and Bλ h = B h, it
preserves composition and the identity. Additionally we must show that it preserves
S-algebra homomorphisms.

(7.3) B h : Bλ a � Bλ b : S-Alg ⇐= h : a � b : S-Alg

Proof.
B h · Bλ a

= { definition of Bλ }
B h · B a · λX

= { B functor and assumption h : a � b : S-Alg }
B b · B (S h) · λX

= { λ : S◦B →̇ B◦S is natural }
B b · λX · S (B h)

= { definition of Bλ }
Bλ b · S (B h) �

Therefore, we can give c, viewed as an algebra homomorphism, the more succinct
type c : a � Bλ a : S-Alg.

Dually, a is both an S-algebra and a B-coalgebra homomorphism,

SX
a //

S c
��

Sλ c

""

X

c

��

S (BX )

λX
��

B (SX )
G a

// BX



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 15

with the type a : Sλ c �c : B-Coalg, where the lifted functor Sλ : B-Coalg(C )�B-
Coalg(C ) is defined as,

Sλ 〈X , c : X � BX 〉 = 〈SX , λX · S c : SX � B (SX )〉 ,(7.4)

Sλ h = S h .(7.5)

Again, Sλ preserves composition and the identity as Sλ h = S h. It remains to show
that Sλ preserves coalgebra homomorphisms.

(7.6) S h : Sλ c � Sλ d : B-Coalg ⇐= h : c � d : B-Coalg

The proof is simply the dual of that for (7.3).

Summary. The functors Bλ and Sλ are liftings. We can see this in following dia-
grams, where U is the forgetful functor to the underlying category.

S-Alg(C )

U
��

Bλ // S-Alg(C )

U
��

C
B

// C

B-Coalg(C )

U
��

Sλ // B-Coalg(C )

U
��

C
S

// C

7.2. Initial Object and Final Object. Our initial λ-bialgebra will be 〈µS, in,
((Bλ in ))〉, as depicted below.

S (µS)

in
��

S ((a ))
//



SX

a

��
µS

((Bλ in ))
��

((a ))
//

®

¬ X

c

��
B (µS)

B ((a ))
// BX

We have three proof obligations. First we must show that the triple 〈µS, in, ((Bλ in ))〉
is indeed a λ-bialgebra (¬)—it has the right types, but it must also satisfy (5.1).

((Bλ in )) · in
= { fold computation (C.2) }

Bλ in · S ((Bλ in ))

= { definition of Bλ (7.1) }
B in · λ (µS) · S ((Bλ in ))

The second obligation, that ((a )) is an S-algebra homomorphism is by construction—
the top half of the diagram commutes (). Moreover, the uniqueness of this arrow



16 R. T. W. HINZE AND D. W. H. JAMES

comes for free. Finally, we must show that ((a )) is also a B-coalgebra homomorphism—
that the bottom half of the diagram commutes (®).

c · ((a )) = B ((a )) · ((Bλ in ))

⇐⇒ { fold fusion (C.3) with c : a � Bλ a : S-Alg }
((Bλ a )) = B ((a )) · ((Bλ in ))

⇐= { fold fusion (C.3) }
B ((a )) : Bλ in � Bλ a : S-Alg

⇐= { Bλ functor (7.3) }
((a )) : in � a : S-Alg

We can dualize the results above. We have just used Finn’s coalgebra to construct
the initial λ-bialgebra, so naturally we will use Iniga’s algebra to construct the final
λ-bialgebra. Indeed, 〈νB, [(Sλ out )], out〉 is the final λ-bialgebra; and [(c)] is the unique
homomorphism from any λ-bialgebra 〈X , a, c〉 to the final λ-bialgebra. The duality
extends to the satisfaction of the proof obligations.

We have defined the initial and final λ-bialgebras, and we are now in a position
to state the homomorphism between them—the semantic function from syntax to
behaviour µS � νB.

S (µS)

in
��

// S (νB)

[(Sλ out )]
��

µS

((Bλ in ))
��

‖
(([(Sλ out )]))

[(((Bλ in )))]

// νB

out
��

B (µS) // B (νB)

The similarities to Section 6 should be plainly clear to the reader. We have two
constructions for the λ-bialgebra homomorphism of type µS�νB, and by uniqueness
properties attributed to initial and final objects, these constructions are equal. And
just like that, we have the basic resolution of Iniga and Finn’s seemingly opposing
points of view.

In a manner of speaking, Iniga and Finn’s personalities would appear to be
entwined. Iniga thought in terms of initial algebras and folds, but ended up con-
structing the final λ-bialgebra, and vice versa for Finn. This is not a coincidence as
the category of bialgebras is isomorphic to a category of algebras over coalgebras.

〈X , a, c〉 : λ-Bialg(C )

⇐⇒ { definition of λ-bialgebra }
c · a = B a · λX · S c

⇐⇒ { definition of Sλ (7.4) }
c · a = B a · Sλ c

⇐⇒ { definition of B-coalgebra homomorphism }
a : Sλ 〈X , c〉� 〈X , c〉 : B-Coalg(C )

⇐⇒ { definition of an Sλ-algebra }
〈〈X , c〉, a〉 : Sλ-Alg(B-Coalg(C ))



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 17

The proof shows that the objects are in one-to-one correspondence. A similar
calculation establishes a bijection between arrows.

h : 〈X1, a1, c1〉� 〈X2, a2, c2〉
⇐⇒ { definition of λ-bialgebra homomorphism }

h · a1 = a2 · S h ∧ B h · c1 = c2 · h
⇐⇒ { definition of B-coalgebra homomorphism }

h · a1 = a2 · S h ∧ h : 〈X1, c1〉� 〈X2, c2〉 : B-Coalg(C )

⇐⇒ { definition of Sλ-algebra homomorphism }
h : 〈〈X1, c1〉, a1〉� 〈〈X2, c2〉, a2〉 : Sλ-Alg(B-Coalg(C ))

As a summary of our construction above, for the categorically enlightened, the final
λ-bialgebra is determined by the final Sλ-algebra. Recall that the final S-algebra
is 〈1, !S 1〉. Consequently, the final Sλ-algebra is 〈1, !Sλ 1〉 = 〈〈νB, out〉, [(Sλ out )]〉 as
〈νB, out〉 is the final object in B-Coalg(C ).

Dually, the category of bialgebras is isomorphic to a category of coalgebras over
algebras. We can see this again for objects.

〈X , a, c〉 : λ-Bialg(C )

⇐⇒ { definition of λ-bialgebra }
c · a = B a · λX · S c

⇐⇒ { definition of Bλ }
c · a = Bλ a · S c

⇐⇒ { definition of algebra homomorphism }
c : a � Bλ a : S-Alg(C )

⇐⇒ { definition of coalgebra }
〈〈X , a〉, c〉 : Bλ-Coalg(S-Alg(C ))

A similar calculation again establishes a bijection between arrows.

h : 〈X1, a1, c1〉� 〈X2, a2, c2〉
⇐⇒ { definition of λ-bialgebra homomorphism }

h · a1 = a2 · S h ∧ B h · c1 = c2 · h
⇐⇒ { definition of S-algebra homomorphism }

h : 〈X1, a1〉� 〈X2, a2〉 ∧ B h · c1 = c2 · h
⇐⇒ { definition of Bλ-coalgebra homomorphism }

h : 〈〈X1, a1〉, c1〉� 〈〈X2, a2〉, c2〉 : Bλ-Coalg(S-Alg(C ))

As one might expect, the initial λ-bialgebra is determined by the initial Bλ-coalgebra.
Therefore, we have a double isomorphism with respect to the category of bialgebras.

(7.7) λ-Bialg(C ) ∼=

{
Sλ-Alg(B-Coalg(C ))

Bλ-Coalg(S-Alg(C ))

The double isomorphism says that there are actually two ways to determine initial
and final objects in λ-Bialg(C ). The reader is encouraged to work out the details.

8. Pointed Functors over Endofunctors

Remember that Finn remarked that in order to define plus, the semantic counter-
part to the syntax Plus, he needed to embed streams into terms: he required some
facility for variables. Iniga and Finn were using distributive laws of type S◦B→̇B◦S



18 R. T. W. HINZE AND D. W. H. JAMES

and these are not sufficiently expressive to model the recursion equations such as
bird and fib as their right-hand sides consist of more than one layer of syntax. In
general, to address the lack of variables and layers of syntax, we need terms. As
Iniga and Finn’s teacher hinted at, the free monad is the right structure to provide
this. However, rather than making a beeline for free monads, we will visit pointed
functors as a stepping stone. This is an adventure with category theory after all,
and the fun is in the journey.

Example 8.1. Suspend your disbelief and suppose that you need the identity
operator on streams, defined by the equation,

id (Cons m s) = m ≺ s .

A system containing this equation cannot be turned into a distributive law λ :
S◦B→̇B◦S as the stream s is not an element of the syntax functor S. To solve this,
we can allow for variables or constructors of S.

data P x = Var x | Con (S x )

data S x = Id x | One | . . .
A system of recursion equations is now captured by a natural transformation ρ of
type S◦B →̇ B◦P.

ρ (Id (Cons (m, s))) = Cons (m,Var s)
ρ (One) = Cons (1, Con One) . . .

Note that we have only replaced S on the right-hand side, where there is a need.
We shall later restore symmetry and show how to turn ρ into a distributive law
(Section 8.3). Furthermore, this is a very limited introduction of variables: one can
either have a variable, or a constructor, but no variables as arguments. �

The Haskell type P is the so-called free pointed functor of S. We will discuss
pointed functors in general and then return to the free construction in Section 8.1.

Definition 8.2. We say that S is pointed if it is equipped with a natural transfor-
mation η : Id →̇ S.

We are going to build on the picture we laid out in the previous section by
replacing the plain endofunctor with a pointed functor. The extra structure that we
have introduced with η has two implications: first with regards to the distributive
law λ and second with regards to constructing algebras of pointed functors.

Condition 8.3. A distributive law λ : S◦B →̇ B◦S for a pointed functor S has an
additional coherence condition to satisfy:

(8.1) λ · η◦B = B◦η , S◦B λ // B◦S

B

η◦B

[[

B◦η

CC .

The condition says that there are two ways to construct an arrow from behaviour
to behaviour over syntax, and that these must be equal.

Condition 8.4. If we construct an algebra 〈X , a : SX �X 〉 of a pointed functor S,
then it must respect η:

(8.2) a · ηX = idX , SX

a

��
X

ηX 88

idX
&&
X

.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 19

For full specificity we will say that (S,η)-Alg(C ) is the category of S-algebras
that respect η. This is a full subcategory of S-Alg(C ). Henceforth, we will be
working with λ-bialgebras based on (S,η)-algebras and B-coalgebras.

The double isomorphism (7.7) succinctly tells the story of initial and final objects
in λ-Bialg. In a sense, Conditions 8.3 and 8.4 ensure that we can establish an
analogous isomorphism for pointed functors. The following two properties prepare
the ground.

Property 8.5. Let c : X � BX be a B-coalgebra, then

(8.3) ηX : c � Sλ c : B-Coalg(C ) ,

is the lifting of η to a B-coalgebra homomorphism.

Proof.
Sλ c · ηX

= { definition of Sλ (7.4) }
λX · S c · ηX

= { η : Id →̇ S is natural }
λX · η(BX ) · c

= { coherence of λ with η (8.1) }
B (ηX ) · c �

In other words, the lifted functor Sλ is pointed as well and we can form (Sλ,η)-
Alg(B-Coalg(C )).

Property 8.6. The functor Bλ preserves respect for η.

(8.4) Bλ a · η(BX ) = idBX ⇐= a · ηX = idX

Proof.
Bλ a · η(BX )

= { definition of Bλ (7.1) }
B a · λX · η(BX )

= { coherence of λ with η (8.1) }
B a · B (ηX )

= { B functor and assumption a · ηX = idX }
idBX �

In other words, Bλ is an endofunctor on (S,η)-Alg(C ) and we can form Bλ-
Coalg((S,η)-Alg(C )).

Summary. Properties 8.5 and 8.6 imply that the double isomorphism (7.7) carries
over to the new setting.

(8.5) λ-Bialg(C ) ∼=

{
(Sλ,η)-Alg(B-Coalg(C ))

Bλ-Coalg((S,η)-Alg(C ))

8.1. Free Pointed Functor. Let S : C �C be an endofunctor. There is a canonical
pointed functor, with pleasant properties, that we can construct from S. This is
the free pointed functor of S, the categorical version of the Haskell type P we saw
in Example 8.1,

(8.6) PX = X + SX .



20 R. T. W. HINZE AND D. W. H. JAMES

The natural transformation η : Id→̇P that equips the free pointed functor is simply
η = inl . Our λ-bialgebras now have P-algebras, but what about all the S-algebras
that we have used previously? All is not lost, in fact far from it.

Theorem 8.1. The category of algebras for the free pointed functor is isomorphic
to the category of S-algebras:

(P,η)-Alg(C ) ∼= S-Alg(C ) .

The following definitions are the witnesses to this isomorphism.

d〈X , a : SX � X 〉e = 〈X , idX O a : PX � X 〉 dhe = h(8.7)

b〈X , b : PX � X 〉c = 〈X , b · inr : SX � X 〉 bhc = h(8.8)

In particular, d−e preserves and reflects homomorphisms.

(8.9) h : dae� dbe : (P,η)-Alg(C ) ⇐⇒ h : a � b : S-Alg(C )

Proof.

(i) Given an S-algebra a, we can cast it up to a P-algebra dae. Likewise, we
can cast a P-algebra b down to an S-algebra bbc. The following proves both
directions of the isomorphism.

bdaec
= { definition of d−e }
bidX O ac

= { definition of b−c }
(idX O a) · inr

= { join computation (B.3b) }
a

dbbce
= { definitions of b−c and d−e }

idX O b · inr

= { b respects η (8.2) }
b · inl O b · inr

= { join fusion (B.4) }
b · (inl O inr)

= { join reflection (B.2) }
b

(ii) b−c is functorial—it maps P-homomorphisms to S-homomorphisms—as
inr : S →̇ P is natural and b−c = inr -Alg (cf. Section 3.3).

(iii) d−e maps S-homomorphisms to P-homomorphisms.

h · dae
= { definition of d−e (8.7) }

h · (id O a)

= { join fusion (B.4) }
h · id O h · a

= { identity and assumption h : a � b : S-Alg }
id · h O b · S h

= { join functor fusion (B.5) }
(id O b) · (h + S h)

= { definitions of d−e (8.7) and P (8.6) }
dbe · P h



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 21

(iv) Finally, d〈X , a〉e has to be an algebra for the pointed functor—it must
respect η (8.2).

dae · ηX

= { definitions of d−e (8.7) and η }
(idX O a) · inl

= { join computation (B.3a) }
idX �

Summary. We can think of b−c and d−e as casting operators between (P,η)-
algebras and S-algebras—they are functors that form an isomorphism of categories.

(P,η)-Alg

b−c
��

∼=

S-Alg

d−e
OO

8.2. Initial Object and Final Object. The double isomorphism (8.5) immedi-
ately suggests how to define initial and final objects in the new setting. Nonetheless,
we will slow down a bit and go through the construction step by step.

In Section 7 we explored λ-bialgebras over S and B, the functors representing
syntax and behaviour, respectively. Despite the fact that we are now using the free
pointed functor of S, the carrier of the initial λ-bialgebra will remain the same, as we
are not changing our objects of syntax. Instead, we are generalizing the evaluation
of our syntax. The initial λ-bialgebra will be 〈µS, a : P (µS) � µS, c : µS � B (µS)〉,
for some a and c that we will now determine.

Previously the algebra component of the initial λ-bialgebra was simply in :
S (µS) � µS. This can no longer be the case; we need an algebra a : P (µS) � µS.
However, now that we can freely cast between S and (P,η)-algebras, we can use
dine : P (µS) � µS.

The previous coalgebra component was ((Bλ in )), and this also no longer has the
right type, as our λ has changed. Now Bλ lifts the functor B to a functor on (P,η)-
algebras, not S-algebras; ((−)) expects an S-algebra, and in is an S-algebra. We can
satisfy these expectations with selective usage of casting: we can cast in up to a
(P,η)-algebra so that we can apply Bλ, and furthermore, we can cast the image of
Bλ dine down so that it is an S-algebra that we can fold. We see all this information
in the following diagram.

P (µS)

dine
��

P ((bac))
//



PX

a

��
µS

((bBλ dinec))
��

¬
((bac))

//

®

X

c

��
B (µS)

B ((bac))
// BX

The claim is that 〈µS, dine, ((bBλ dinec))〉 is the initial λ-bialgebra and ((bac)) is the
unique homomorphism to any λ-bialgebra 〈X , a, c〉. There are the three usual proof
obligations we must satisfy. For reasons that will become clear, we will start by
showing that ((bac)) is (P,η)-algebra homomorphism ().

(8.10) ((bac)) : dine� a : (P,η)-Alg



22 R. T. W. HINZE AND D. W. H. JAMES

This is a direct consequence of Theorem 8.1.

((bac)) : dine� a : (P,η)-Alg

⇐⇒ { isomorphism (P,η)-Alg ∼= S-Alg (8.9) }
((bac)) : in � bac : S-Alg

Next we will show that 〈µS, dine, ((bBλ dinec))〉 is indeed a λ-bialgebra, in that it
satisfies the pentagonal law (5.1) (¬).

((bBλ dinec)) · dine
= { ((bBλ dinec)) : dine� Bλ dine : (P,η)-Alg (8.10) }

Bλ dine · P ((bBλ dinec))

= { definition of Bλ (7.1) }
B dine · λ (µS) · P ((bBλ dinec))

Furthermore, (8.2) is satisfied since d−e creates such an algebra.
Finally, we will show that ((bac)) is a B-coalgebra homomorphism (®). We know

from the pentagonal law that c is a (P,η)-algebra homomorphism, c : a � Bλ a :
(P,η)-Alg. By (8.9) c is also an S-algebra homomorphism, c : bac � bBλ ac : S-
Alg, and as a direct consequence of fold fusion (C.3), c · ((bac)) = ((bBλ ac)).

c · ((bac)) = B ((bac)) · ((bBλ dinec))

⇐⇒ { fold fusion (C.3) with c : bac� bBλ ac : S-Alg }
((bBλ ac)) = B ((bac)) · ((bBλ dinec))

⇐= { fold fusion (C.3) }
B ((bac)) : bBλ dinec� bBλ ac : S-Alg

⇐⇒ { isomorphism (P,η)-Alg ∼= S-Alg (8.9) }
B ((bac)) : Bλ dine� Bλ a : (P,η)-Alg

⇐= { Bλ functor (7.3) }
((bac)) : dine� a : (P,η)-Alg

We have already shown that the last statement holds (8.10).
As before, the final λ-bialgebra is 〈νB, [(Pλ out )], out〉. The unique λ-bialgebra

homomorphism to the final λ-bialgebra from any λ-bialgebra 〈X , a, c〉 is [(c)].

PX

a
��

P [(c)]
// P (νB)

[(Pλ out )]
��

X

c
��

[(c)]
// νB

out
��

BX
B [(c)]

// B (νB)

There is one final proof obligation: we have to show that [(Pλ out )] respects η (8.2).

[(Pλ out )] · η(νB) = idνB

⇐⇒ { unfold reflection (D.1) }
[(Pλ out )] · η(νB) = [(out )]

⇐= { unfold fusion (D.3) }
η(νB) : out � Pλ out



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 23

The last statement holds as Pλ is pointed (8.3).
Putting things together, we can give a new statement of the semantic function

µS � νB.

P (µS)

dine
��

// P (νB)

[(Pλ out )]
��

µS

((bBλ dinec))
��

‖
((b[(Pλ out )]c))

[(((bBλ dinec)))]

// νB

out
��

B (µS) // B (νB)

We are in a more expressive setting, yet thanks to Theorem 8.1, we can hold on to
our resolution of Iniga and Finn’s viewpoints.

8.3. Creating a Distributive Law. In Section 7 we modelled a stream program
by a distributive law of type S◦B →̇B◦S. With the introduction of the free pointed
functor, stream equations have become slightly more expressive. A program, such
as in Example 8.1, now gives rise to a natural transformation ρ : S◦B →̇ B◦P. The
pointed functor appears only on the right. On the left we keep S, as a stream
equation defines a constructor of S, not a variable. From ρ : S◦B →̇B◦P we seek to
construct a distributive law λ : P◦B →̇ B◦P such that

(8.11) c · dae = B dae · λX · P c ⇐⇒ c · a = B dae · ρX · S c .

Since P is a coproduct, λ has to be defined by a case analysis. Though obvious, we
will calculate λ from the specification above as this will serve nicely as a blueprint
for the more demanding constructions ahead.

c · a = B dae · ρX · S c

⇐⇒ { equality of joins }
c O c · a = c O B dae · ρX · S c

⇐⇒ { dae respects η (8.2) and B functor }
c O c · a = B dae · B (ηX ) · c O B dae · ρX · S c

⇐⇒ { join fusion (B.4) and functor fusion (B.5) }
c · (id O a) = B dae · (B (ηX ) O ρX ) · (c + S c)

⇐⇒ { definitions of d−e (8.7) and P (8.6) }
c · dae = B dae · (B (ηX ) O ρX ) · P c

The specification (8.11) can be satisfied if we set λ = B◦η O ρ, which is easily seen
to satisfy the coherence condition (8.1).

9. Monads over Endofunctors

With pointed functors we made a limited introduction of variables. The teacher
told Finn that the free monad would enable him to embed streams in his terms. In
this section we are going to build on our picture of λ-bialgebras again, augmenting
pointed functors to monads.

Example 9.1. Let us look at an example comparable to those of Section 2. Here
is a stream equation for the natural numbers.

nat = 0 ≺ nat + 1



24 R. T. W. HINZE AND D. W. H. JAMES

We need more than a single syntax constructor to represent nat + 1. To solve this,
we build terms with variables and constructors of S.

data M x = Var x | Com (S (M x ))

data S x = One | Plus (x , x ) | Nat

A system of recursion equations is now captured by a natural transformation ρ of
type S◦B →̇ B◦M.

ρ One
= Cons (1,Com One)

ρ (Plus (Cons (m, s),Cons (n, t)))
= Cons (m + n,Com (Plus (Var s,Var t)))

ρ Nat
= Cons (0,Com (Plus (Com Nat ,Com One)))

Note that we only have terms on the right-hand side. Arguments of Cons on the
left can be embedded into variables on the right, and as shown in the case of Nat ,
we can use more than one level of syntax. Again, we shall restore symmetry later,
showing how to derive a distributive law from ρ (Section 9.3). �

The Haskell type M is the so-called free monad of S. We will discuss monads in
general and then return to the free construction in Section 9.1.

Definition 9.2. We say that S is a monad if it is equipped with natural transfor-
mations η : Id →̇ S and µ : S◦S →̇ S such that

µ · η◦S = idS ,(9.1a)

µ · S◦η = idS ,(9.1b)

µ · µ◦S = µ · S◦µ .(9.1c)

S
η◦S //

idS ""

S◦S

µ
��

S
S◦ηoo

idS||
S

S◦S◦S
S◦µ //

µ◦S
��

S◦S

µ
��

S◦S
µ

// S

A monad extends a pointed functor with a second natural transformation µ :
S◦S→̇S. In the previous section we saw that η must be respected when constructing
algebras and also by the distributive law of the λ-bialgebra; these same conditions
extend to µ.

Condition 9.3. The following are the necessary coherence conditions for a dis-
tributive law λ : S◦B →̇ B◦S over a monad S:

λ · η◦B = B◦η ,(9.2a)

λ · µ◦B = B◦µ · λ◦S · S◦λ .(9.2b)

S◦B λ // B◦S

B

η◦B

[[

B◦η

CC S◦B λ // B◦S

S◦S◦B

µ◦B
OO

S◦λ
// S◦B◦S

λ◦S
// B◦S◦S

B◦µ
OO

The first condition has carried over from the previous section. The second condition
says that there are two ways to construct an arrow from S◦S◦B to B◦S, and that
these must be equal.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 25

Condition 9.4. If we construct an algebra 〈X , a : SX � X 〉 of a monad S, then it
must respect both η and µ.

a · ηX = idX ,(9.3a)

a · µX = a · S a .(9.3b)

SX

a

��
X

ηXff

idX
xx

X

S (SX )
µX //

S a
��

SX

a
��

SX a
// X

In the same manner as for pointed functors, we will say that (S,η,µ)-Alg(C ) is
the category of S-algebras that respect η and µ, a full subcategory of S-Alg(C ).
Henceforth, we will be working with λ-bialgebras based on (S,η,µ)-algebras and
B-coalgebras.

As in Section 8, the additional conditions ensure that the double isomorph-
ism (7.7) is maintained. We have shown previously that η can be lifted to a B-
coalgebra homomorphism (8.3). There is an analogous property for µ:

Property 9.5. Let c : X � BX be a B-coalgebra, then

(9.4) µX : Sλ (Sλ c) � Sλ c : B-Coalg(C ) ,

is the lifting of µ to a B-coalgebra homomorphism.

Proof.
Sλ c · µX

= { definition of Sλ (7.4) }
λX · S c · µX

= { µ : S◦S →̇ S is natural }
λX · µ(BX ) · S (S c)

= { coherence of λ with µ (9.2b) }
B (µX ) · λ (SX ) · S (λX ) · S (S c)

= { S functor and definition of Sλ (7.4) }
B (µX ) · λ (SX ) · S (Sλ c)

= { definition of Sλ (7.4) }
B (µX ) · Sλ (Sλ c) �

In other words, the lifted functor Sλ is a monad as well and we can form (Sλ,η,µ)-
Alg(B-Coalg(C )).

We also have shown that Bλ preserves respect for η (8.4). Again, there is an
analogous property for µ:

Property 9.6. The lifted functor Bλ preserves respect for µ.

(9.5) Bλ a · µ(BX ) = Bλ a · S (Bλ a) ⇐= a · µX = a · S a



26 R. T. W. HINZE AND D. W. H. JAMES

Proof.
Bλ a · µ(BX )

= { definition of Bλ (7.1) }
B a · λX · µ(BX )

= { coherence of λ with µ (9.2b) }
B a · B (µX ) · λ (SX ) · S (λX )

= { B functor and assumption a · µX = a · S a }
B a · B (SX ) · λ (SX ) · S (λX )

= { λ : S◦B →̇ B◦S is natural }
B a · λX · S (BX ) · S (λX )

= { S functor and definition of Bλ (7.1) }
Bλ a · SBλ a �

Thus, Bλ is an endofunctor on (S,η,µ)-Alg(C ) and we can form Bλ-Coalg((S,η,µ)-
Alg(C )).

Summary. As before the category of bialgebras can be seen as a category of algebras
over coalgebras or as a category of coalgebras over algebras.

(9.6) λ-Bialg(C ) ∼=

{
(Sλ,η,µ)-Alg(B-Coalg(C ))

Bλ-Coalg((S,η,µ)-Alg(C ))

9.1. Free Monad. Let S : C �C be an endofunctor representing our syntax. There
is a canonical monad, with pleasant properties, that we can construct from S. To
do so we will first describe the free S-algebra.

The free S-algebra over X is an algebra 〈MX , com〉 equipped with an arrow
var : X � MX . We think of elements of MX as terms built from our syntax
functor S and variables drawn from X . There are two ways to construct a term:
var embeds a variable into a term; and com : S (MX )�MX constructs a composite
term from a level of syntax over subterms.

If we have an algebra a : SX � X , we can evaluate a term with (((a))) : MX �
X (pronounce “eval”). Given an arrow g : Y � X to evaluate variables and an
S-algebra a to evaluate composites, evaluation of terms is characterized by the
uniqueness property,

(9.7) f = (((a))) ·M g ⇐⇒ f · var = g ∧ f · com = a · S f ,

for all f : MY � X . The equivalence states that a compositional evaluation of
a term, second conjunct, is uniquely defined by an evaluation of variables, first
conjunct. (For the clued-in reader, all of this information comes from the adjunction
of the free and forgetful functors between S-Alg(C ) and C .)

The initial algebra emerges as a special case: µS ∼= M 0. It represents the closed
terms. Modulo this isomorphism, we have in = com0 and ((a )) = (((a))) ·M ¡A. (Again,
this relation is induced by the aforementioned adjunction.)

There are two simple consequences of the uniqueness property. If we set the
evaluation of variables to the identity (g = id), we get the computation laws:

(((a))) · var = id ,(9.8a)

(((a))) · com = a · S (((a))) .(9.8b)

As var and com are the constructors of terms, we can read these as defining equa-
tions of (((−))). The uniqueness property also implies that var and com are natural



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 27

in X and that (((−))) preserves naturality.

(((α))) : M◦G →̇ G ⇐= α : S◦G →̇ G

(Here (((α))) is shorthand for φA = (((αA))).)

Proof. Let h : A � B , then

G h · (((αA))) = (((αB ))) ·M (G h)

⇐⇒ { uniqueness of eval (9.7) }
G h · (((αA))) · var = G h ∧ G h · (((αA))) · com = αB · S (G h · (((αA))))

The first conjunct is an immediate consequence of (9.8a). For the second conjunct
we reason:

G h · (((αA))) · com

= { eval computation (9.8b) }
G h · αA · S (((αA)))

= { assumption: α : S◦G →̇ G is natural }
αB · S (G h) · S (((αA)))

= { S functor }
αB · S (G h · (((αA)))) �

Now that we have established the naturality of var , com and (((−))), we can use
these to define a monad.

Definition 9.7. The free monad of the functor S is 〈M,η,µ〉, where η = var and
µ = (((com))).

The µ : M◦M →̇M of the monad flattens a term whose variables are terms. It
does so by evaluating the term with the composite constructor—the action of the
free algebra.

Theorem 9.1. The category of algebras for the free monad of S is isomorphic to
the category of S-algebras:

(M,η,µ)-Alg(C ) ∼= S-Alg(C ) .

The following definitions are the witnesses to this isomorphism.

d〈X , a : SX � X 〉e = 〈X , (((a))) : MX � X 〉 dhe = h ,(9.9)

b〈X , b : MX � X 〉c = 〈X , b · θX : SX � X 〉 bhc = h ,(9.10)

where θ = com · S◦η : S →̇M, which turns a level of syntax into a term. (Note that
we are overloading the notation d−e and b−c.) The map d−e preserves and reflects
homomorphisms.

(9.11) h : dae � dbe : (M,η,µ)-Alg(C ) ⇐⇒ h : a � b : S-Alg(C )

Proof.



28 R. T. W. HINZE AND D. W. H. JAMES

(i) bd〈X , a〉ec = 〈X , a〉:

bdaec
= { definitions of d−e (9.9) and b−c (9.10) }

(((a))) · θX

= { definition of θ }
(((a))) · com · S (ηX )

= { eval computation (9.8b) }
a · S (((a))) · S (ηX )

= { S functor }
a · S ((((a))) · ηX )

= { eval computation (9.8a) }
a · S id

= { S functor }
a

An instance of this property is comX = bdcomX ec = (((comX )))·θ(MX ). This
says that the composite constructor com is equal to embedding the subterm
arguments to the syntax constructor as variables and then flattening the
term of terms.

In the opposite direction, db〈X , b〉ce = 〈X , b〉:

dbbce = b

⇐⇒ { definitions of d−e (9.9) and b−c (9.10) }
(((b · θX ))) = b

⇐⇒ { uniqueness of eval (9.7) }
b · ηX = id ∧ b · com = b · θX · S b

The first conjunct follows from the fact that b respects η (9.3a). For the
second conjunct we reason:

b · θX · S b

= { θ : S →̇M is natural }
b ·M b · θ(MX )

= { b respects µ (9.3b) }
b · µX · θ(MX )

= { µX · θ(MX ) = com, see above }
b · com .

(ii) b−c is functorial—it maps as M-homomorphisms to S-homomorphisms—as
θ : S � M is natural and b−c = θ-Alg (cf. Section 3.3).

(iii) d−e maps S-homomorphisms to M-homomorphisms.

h · (((a))) = (((b))) ·M h

⇐⇒ { uniqueness of eval (9.7) }
h · (((a))) · ηX = h ∧ h · (((a))) · com = b · S (h · (((a))))



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 29

The first conjunct is a direct consequence of computation (9.8a). For the
second conjunct we reason:

h · (((a))) · com

= { eval computation (9.8b) }
h · a · S (((a)))

= { assumption h : a � b : S-Alg }
b · S h · S (((a)))

= { S functor }
b · S (h · (((a))))

(iv) Finally, d〈A, a〉e is an algebra for the monad. That dae respects η (9.3a),
unfolds to, (((a))) · ηX = id , which is the first computation law (9.8a). That
dae respects µ (9.3b), unfolds to, (((a))) · µX = (((a))) ·M (((a))), and this follows
from part (iii)

(((a))) · µX = (((a))) ·M (((a)))

⇐= { d−e maps S- to M-homomorphisms and µ = (((com))) }
(((a))) · com = a · S (((a)))

and the second computation law (9.8b). �

Summary. Taking Theorems 8.1 and 9.1 together, b−c and d−e are now casting
operators between (M,η,µ)-algebras, (P,η)-algebras and S-algebras—all three cat-
egories are isomorphic.

(P,η)-Alg

b−c
��

∼=

S-Alg

d−e
OO

(M,η,µ)-Alg

b−c
��

∼=

S-Alg

d−e
OO

9.2. Initial Object and Final Object. Now that we have completed another
round of generalization, from free pointed functors to free monads, it is appropriate
to examine what the new initial and final λ-bialgebras are. Again, they can be
derived from the double isomorphism (9.6), and again, we will highlight the salient
details.

Superficially, the initial λ-bialgebra has not changed: it remains 〈µS, dine, ((bBλ dinec))〉.
What has changed are the definitions of d−e and b−c.

M (µS)
M ((bac))

//

dine
��



MX

a

��
µS

((bac))
//

((bBλ dinec))
��

¬

®

X

c

��
B (µS)

B ((bac))
// BX

The usual three proof obligations are all discharged by the proofs provided in pre-
vious section. All of the proof steps have analogues in this section—in particular,
Theorem 8.1 has been succeeded by Theorem 9.1.

The final λ-bialgebra is 〈νB, [(Mλ out )], out〉; the single change is replacing Pλ

with Mλ. The unique λ-bialgebra homomorphism to the final λ-bialgebra from



30 R. T. W. HINZE AND D. W. H. JAMES

any λ-bialgebra 〈X , a,C 〉 is still [(c)]. Just as in Section 8.2, there is one final
proof obligation: we have to show that [(Mλ out )] is an algebra for M. Previously
we showed that [(Pλ out )] respects η, and this proof suffices to show the same of
[(Mλ out )] (9.3a). It remains to show that µ is respected (9.3b): we show that both
sides of equation (9.3b) simplify to [(Mλ (Mλ out))].

[(Mλ (Mλ out))] = [(Mλ out )] · µ(νB)

⇐= { unfold fusion (D.3) }
µ(νB) : Mλ (Mλ out) � Mλ out

⇐⇒ { Mλ is a monad (9.4) }
true

[(Mλ (Mλ out))] = [(Mλ out )] ·M [(Mλ out )]

⇐= { unfold fusion (D.3) }
M [(Mλ out )] : Mλ (Mλ out) � Mλ out

⇐= { Mλ functor (7.6) }
[(Mλ out )] : Mλ out � out

⇐= { type of [(−)] }
true

Finally, we can give another statement of the semantic function µS� νB, in the
setting of λ : M◦B →̇ B◦M.

M (µS)

dine
��

// M (νB)

[(Mλ out )]
��

µS

((bBλ dinec))
��

‖
((b[(Mλ out )]c))

[(((bBλ dinec)))]

// νB

out
��

B (µS) // B (νB)

We have upgraded pointed functors to monads and Theorem 9.1 ensures that Iniga
and Finn still see eye to eye. However, we will need to repeat the exercise of
Section 8.3.

9.3. Creating a Distributive Law. Given a program that is modelled by a nat-
ural transformation of type ρ : S◦B →̇ B◦M, we seek to derive a distributive law
λ : M◦B →̇ B◦M such that

(9.12) c · dae = B dae · λX ·M c ⇐⇒ c · a = B dae · ρX · S c .

Let us calculate.

c · a = B dae · ρX · S c

⇐⇒ { isomorphism (M,η,µ)-Alg ∼= S-Alg (9.11) }
c · dae = dB dae · ρX e ·M c

⇐⇒ { see below }
c · dae = Bλ dae ·M c

⇐⇒ { definition of Bλ (7.1) }
c · dae = B dae · λX ·M c

The specification (9.12) holds if Bλ dae = dB dae · ρX e. To turn this property into
a definition for λ, we have to delve a bit deeper into the theory. Applegate [1965]
discovered that distributive laws λ : M◦B →̇B◦M are in one-to-one correspondence
to lifted functors B̄ : (M,η,µ)-Alg�(M,η,µ)-Alg, where a functor B̄ is a lifting of B
if its action on carriers and homomorphisms is given by B, that is, U◦B̄ = B◦U.1 It

1The result is actually more general, but this extra generality is not needed.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 31

is useful to make explicit what it means for B̄ to preserve algebra homomorphisms.2

(9.13) B h · B̄ a = B̄ b ·M (B h) ⇐= h · a = b ·M h

This property immediately implies that B̄ takes natural algebras of type M◦F →̇ F
to natural algebras of type M◦B◦F →̇ B◦F.

Looking back, we note that we have already made extensive use of the corre-
spondence in one direction, turning a distributive law into a lifting Bλ; now we
need the opposite direction. Given a lifting B̄, we can construct a distributive
law as follows. The uniqueness property (9.7) states that homomorphisms of type
MX � A are in one-to-one correspondence to arrows of type X � A. We aim to
construct λ : M◦B →̇ B◦M, so we need a natural transformation of type B →̇ B◦M.
The composition B◦η will do nicely. We obtain:

(9.14) λB̄ = B̄µ ·M◦B◦η ,

where B̄µ : M◦B◦M →̇ B◦M is the M-algebra for the carrier B◦M. We must show
that λB̄ coheres with η and µ per equations (9.2a) and (9.2b). To reduce clutter we
set α = B̄µ. For the first coherence condition (9.2a) we reason:

λB̄ · η◦B
= { definition of λB̄ (9.14) }

α ·M◦B◦η · η◦B
= { interchange law: η : Id →̇M }

α · η◦B◦M · B◦η
= { α respects η (9.3a) }

B◦η .

Turning to the second coherence condition (9.2b), the following observation is use-
ful. If we apply the lifting property (9.13) to the third monad law (9.1c), we obtain:

(9.15) B◦µ · α◦M = α ·M◦B◦µ .

The calculation below simplifies both sides of (9.2b) to α ·M◦λB̄.

λB̄ · µ◦B
= { definition of λB̄ (9.14) }

α ·M◦B◦η · µ◦B
= { interchange law: η : Id →̇M and µ : M◦M →̇M }

α · µ◦B◦M ·M◦M◦B◦η
= { α respects µ (9.3b) }

α ·M◦α ·M◦M◦B◦η
= { M◦− functor }

α ·M◦(α ·M◦B◦η)

= { definition of λB̄ (9.14) }
α ·M◦λB̄

= { first monad law (9.1a) }
α ·M◦B◦µ ·M◦B◦η◦M ·M◦λB̄

= { (9.15) }
B◦µ · α◦M ·M◦B◦η◦M ·M◦λB̄

2The notation is potentially misleading: B̄ is applied to the action of an algebra. It sends
a : MX � X to B̄ a : M (BX ) � BX . It is not the application of a functor to an arrow.



32 R. T. W. HINZE AND D. W. H. JAMES

= { definition of λB̄ (9.14) }
B◦µ · λB̄◦M ·M◦λB̄

The mappings λ 7→ Bλ and B̄ 7→ λB̄ then establish the one-to-one correspondence
between distributive laws and lifted functors.

λ = λBλ
:

λBλ

= { definitions of Bλ (7.1) and λB̄ (9.14) }
B◦µ · λ◦M ·M◦B◦η

= { λ : M◦B →̇ B◦M is natural }
B◦µ · B◦M◦η · λ

= { B functor and second monad law (9.1b) }
λ

B̄ = BλB̄
:

BλB̄
a

= { definitions of λB̄ (9.14) and Bλ (7.1) }
B a · B̄ (µA) ·M (B (ηA))

= { (9.13) applied to a · µA = a ·M a—a respects µ (9.3b) }
B̄ a ·M (B a) ·M (B (ηA))

= { M and B functor, and a respects η (9.3a) }
B̄ a

Returning to the task at hand, constructing a distributive law from ρ, we use
the property Bλ dae = dB dae · ρX e to define:

B̄ 〈X , b : MX � X 〉 = 〈BX , dB b · ρX e : M (BX ) � BX 〉 ,
B̄ h = B h .

This defines a lifting because d−e = (((−))) is one. Putting things together, the
distributive law λ = λB̄ expressed as a composition of natural transformations is:

(9.16) λ = (((B◦µ · ρ◦M))) ·M◦B◦η .

9.4. Semantics of Open Terms. Before we left Iniga and Finn, we heard that
Finn could define head : µS � N and tail : µS � µS, but he had a problem defining
the function plus : νB×νB�νB, the semantic counterpart to the syntax constructor
Plus, as he had no means to embed streams in terms. The teacher promised that
the free monad was the right structure to address this, and we have seen that now.
So let us specifically address Finn’s problem; his plus is defined as,

plus (s, t) = evaluate (Plus (Var s,Var t)) ,

where evaluate : M (νB) � νB.
To give a definition to stream operators such as plus, we need to define an

evaluation function for open terms, that is, an arrow of type M (νB) � νB. The
task is clear: we need to define a bialgebra structure on M (νB). Here is a handy
lemma:

Lemma 9.2. If 〈X , d〉 is a B-coalgebra, then 〈MX ,µX ,Mλ d〉 is a λ-bialgebra.
(cf. Theorem 7.2, Turi and Plotkin [1997])

Proof. We have three proof obligations.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 33

(i) 〈MX ,µX 〉 has to be an algebra for the monad M. This is immediate as the
instantiated coherence properties for the algebra, (9.3a) and (9.3b), become
the monad laws (9.1b) and (9.1c).

(ii) That 〈MX ,Mλ d〉 is a coalgebra for the endofunctor B follows from the
definition of Mλ.

(iii) Finally, the pentagonal law (5.1) is satisfied:

B (µX ) · λ (MX ) ·M (Mλ d)

= { definition of Mλ d }
B (µX ) · λ (MX ) ·M (λX ·M d)

= { M functor }
B (µX ) · λ (MX ) ·M (λX ) ·M (M d)

= { coherence property of λ with µ (9.2b) }
λX · µ(BX ) ·M (M d)

= { µ : M◦M →̇M is natural }
λX ·M d · µX

= { definition of Mλ d }
Mλ d · µX �

Returning to the original problem of giving a semantics to open terms, we can use
the λ-bialgebra 〈M (νB),µ(νB),Mλ out〉 and the evaluation function is [(Mλ out )] :
M (νB) � νB.

9.5. Embedding Behaviour into Syntax. In this section we need to construct
the free monad for different syntax functors S, so we replace the notation M by the
more informative S∗. The mapping (−)∗ is actually a higher-order functor whose
arrow part takes a natural transformation α : S →̇ T to a natural transformation
α∗ : S∗ →̇ T∗. (The action on arrows is defined α∗ = (((α-Alg comT)))S · S∗ varT.)
Think of α∗ as a term converter.

Example 9.8. Consider the following alternative definition of fib.

fib = 0 ≺ (1 ≺ fib) + fib

Note is that there is a nested occurrence of ≺. �

We can support nested stream constructors if we embed behaviour into syntax.
The new syntax-with-behaviour functor is TX = BX + SX , or in Haskell,

data T x = FBy (N, x ) | . . . ,
where FBy is pronounced “followed by”, and is the syntactic counterpart of the
semantic Cons. Given a system of recursion equations ρ : S◦B →̇ B◦T∗, we can
construct a symmetric system σ as,

σ = B◦inl∗ · B◦θ O ρ = B◦(θ · inl) O ρ : T◦B →̇ B◦T∗ ,
where inl : B →̇T and θ : T →̇T∗. A distributive law λ : T∗◦B →̇B◦T∗ can then be
created following the recipe of Section 9.3.

Embedding behaviour into syntax is a special case of extending a system of
recursion equations. Specifically, given a base system ρ1 : S1◦B →̇ B◦S∗1 and an
extension ρ2 : S2◦B →̇ B◦S∗, where SX = S1 X + S2 X , we can form a combined
system as follows:

ρ = B◦inl∗ · ρ1 O ρ2 : S◦B →̇ B◦S∗ .
The idea is that ρ2 can use the operators of S1 and S2 to define the operators of S2.
Setting S1 = B and ρ1 = B◦θ the embedding above emerges as a special case.



34 R. T. W. HINZE AND D. W. H. JAMES

A minor, but perhaps less interesting variation is the merge of two independent
systems of recursion equations,

ρ = B◦inl∗ · ρ1 O B◦inr∗ · ρ2 ,

where ρ1 : S1◦B →̇ B◦S∗1 and ρ2 : S2◦B →̇ B◦S∗2.
The embedding makes the constructors of B available in the syntax. Often, one

also wishes to embed an element of νB: consider the equation x = 0 ≺ even fib′+ x
of Section 2. The stream even fib′ is defined by a previous system, in fact, two
systems; we wish to reuse it at this point. This can be accommodated by setting
S1 X = νB and ρ1 = B◦com · out . Here S1 is a constant functor—elements of νB
are embedded as constants. On a final note, merging the systems for fib′, even and
x is not an option as even uses a different definitional style and, as we have pointed
out, we cannot mix styles. Of course, we have to show that even is uniquely defined
and this is what we do in Section 13.

9.6. Proving The Unique Fixed-Point Principle Correct. Let us now return
to our original problem of proving the unique fixed-point principle correct. Also, a
brief summary is perhaps not amiss. A system of recursion equations is modelled
by a natural transformation ρ : S◦B →̇ B◦S∗, where S is the syntax functor and B
the behaviour functor. The type of ρ captures the slogan consume at most one,
produce at least one. Using the trick of embedding behaviour into syntax we can
consume nothing (the argument is reassembled on the right) and we can produce
more than one. Systems of this form are quite liberal; most, but not all of the
examples in the literature satisfy the restrictions.

A solution of a system modelled by ρ consists of an S-algebra and a B-coalgebra
over a common carrier that satisfies:

c · a = B dae · ρX · S c .

We can now replay the calculations of Section 4. If the coalgebra is final, then a is
uniquely determined, which establishes the UFP:

out · a = B dae · ρ (νB) · S out

⇐⇒ { λ given by (9.16) which satisfies (9.12) }
out · dae = B dae · λ (νB) ·M out

⇐⇒ { definition of Mλ }
out · dae = B dae ·Mλ out

⇐⇒ { uniqueness of unfold (3.2) }
dae = [(Mλ out )]

⇐⇒ { isomorphism (M,η,µ)-Alg ∼= S-Alg (9.1) }
a = b[(Mλ out )]c .

Conversely, if the algebra is initial, then c is fixed: c = ((bBλ dinec)). Since the data
defines initial and final objects in λ-Bialg(C ), we can furthermore conclude that
the two ways of defining the semantic function of type µS�νB coincide: ((a )) = [(c)].

10. Endofunctors over Copointed Functors

In Section 9.5 we demonstrated how to embed behaviour into syntax, which en-
abled us to syntactically construct behaviour on the right-hand side of a stream
equation. In the case of Example 9.8 we defined a stream constant and needed a



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 35

nested occurrence of ≺. However, often we wish to construct behaviour on right-
hand side because we in fact need to reconstruct behaviour that we have decon-
structed on the left-hand side. In essence, we want to use a whole stream, not its
tail.

Example 10.1. Let us first consider the stream operator that alternates between
two streams:

alternate (Cons m s) (Cons t) = m ≺ alternate t s .

For all streams s, alternate s s = s. In this definition it is the tails of the input
streams that are used in the recursive call. Now consider the stream operator that
interleaves two streams:

interleave (Cons m s) (Cons n t) = m ≺ interleave (n ≺ t) s .

The result of interleave (0 2 4 . . .) (1 3 5 . . .) is 0 1 2 3 . . ., the natural numbers.
In this definition we are unnecessarily deconstructing the second parameter into its
head and tail, we simply need the whole stream. A more natural definition is:

interleave (Cons m s) t = m ≺ interleave t s .

A related issue is that sometimes we want the head, tail, and the whole stream.
Consider the stream operator that performs an ordered merge of two streams:

merge s@(Cons m s ′) t@(Cons n t ′)
= if m 6 n then m ≺ merge s ′ t else n ≺ merge s t ′ .

This definition uses Haskell’s as-patterns, where var@pat gives the name var to the
value being matched by pat . We can model as-patterns in our categorical setting
with copointed functors.

data C x = As x (B x )

Revisiting our natural transformations of type S◦B →̇ B◦S, if we replace B on the
left-hand side with C, then we are able to construct a natural transformation to
model interleave and merge without the need to reconstruct behaviour on the right-
hand side.

ρ :: S (C x ) � B (S x )
ρ (Interleave (As (Cons (m, s)),As t ))

= Cons (m, Interleave (t , s))
ρ (Merge (As s (Cons (m, s ′)),As t (Cons (n, t ′))))

= Cons (if m 6 n then m else n,
Merge (if m 6 n then s ′ else s,

if m 6 n then t else t ′))

Our model of interleave is using a degenerative form of the as-pattern, as we have
no need to pattern match. We have not generalized the B on the right-hand side:
it would not make sense to label the produced behaviour. Copointed functors give
us flexibility: before we could only say that a stream equation “consumes exactly
one”, now we can say that a stream equation “consumes at most one”. �

The Haskell type C is the so-called cofree copointed functor of B. We will dis-
cuss copointed functors in general and then return to the cofree construction in
Section 10.1.

Definition 10.2. We say that B is copointed if it is equipped with a natural
transformation ε : B →̇ Id.

We are going to build on the picture laid out in Section 7 by replacing plain
endofunctor B with a copointed functor. The extra structure that we have intro-
duced with ε has two implications: first with regards to the distributive law λ, and
second with regards to constructing coalgebras of copointed functors.



36 R. T. W. HINZE AND D. W. H. JAMES

Condition 10.3. A distributive law λ : S◦B →̇B◦S for a pointed functor B has an
additional coherence condition to satisfy:

(10.1) ε◦S · λ = S◦ε , S◦B λ //

S◦ε ��

B◦S

ε◦S��
S

.

The condition says that there are two ways to construct an arrow from syntax over
behaviour to syntax, and that these must be equal.

Condition 10.4. If we construct a coalgebra 〈X , c : X � BX 〉 of a copointed
functor B, then it must respect ε:

(10.2) εX · c = idX , X

c

��

idX

''
X

BX εX

77

.

For full specificity we will say that (B, ε)-Coalg(C ) is the category of B-coalgebras
that respect ε (a full subcategory of B-Coalg(C )). Henceforth, we will be working
with λ-bialgebras based on S-algebras and (B, ε)-coalgebras.

Just as in Sections 8 and 9, the additional conditions 10.3 and 10.4 ensure that
the double isomorphism (7.7) is maintained for copointed functors. In Section 8 we
saw that η could be lifted to a B-coalgebra homomorphism, there is a dual property
for ε.

Property 10.5. Let a : SX � X be an S-algebra, then

(10.3) εX : Bλ a � a : S-Alg(C ) ,

is the lifting of ε to a S-algebra homomorphism. In other words, the lifted functor
Bλ is copointed and we can form (Bλ, ε)-Coalg(S-Alg(C )).

Property 10.6. We have shown previously that Sλ preserves composition, the
identity, and homomorphisms (7.6). Now, Sλ as an endofunctor on (B, ε)-Coalg(C )
must preserve respect for ε.

(10.4) ε(SX ) · Sλ c = idSX ⇐= εX · c = idX

In other words, we can form Sλ-Alg((B, ε)-Coalg(C )).

Summary. Properties 10.5 and 10.6 imply that the double isomorphism (7.7) con-
tinues to hold in this new setting.

(10.5) λ-Bialg(C ) ∼=

{
Sλ-Alg((B, ε)-Coalg(C ))

(Bλ, ε)-Coalg(S-Alg(C ))

10.1. Cofree Copointed Functor. Let B : C � C be an endofunctor. There is a
canonical copointed functor, with pleasant properties, that we can construct from
B. This is the cofree copointed functor of B, the categorical version of the Haskell
type C we saw in Example 10.1,

(10.6) CX = X × BX .

The natural transformation ε : C →̇ Id that equips the cofree copointed functor is
simply ε = outl .

Just as when we introduced the free pointed functor P of S, our λ-bialgebras now
have C-coalgebras, and these coalgebras are isomorphic to the B-coalgebras.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 37

Theorem 10.1. The category of coalgebras for the cofree copointed functor is iso-
morphic to the category of B-coalgebras:

(C, ε)-Coalg(C ) ∼= B-Coalg(C ) .

The following definitions are the witnesses to this isomorphism.

d〈X , c : X � BX 〉e = 〈X , id M c : X � CX 〉 dhe = h(10.7)

b〈X , d : X � CX 〉c = 〈X , outr · d : X � BX 〉 bhc = h(10.8)

In particular, d−e preserves and reflects homomorphisms.

(10.9) h : dce� dde : (C, ε)-Coalg(C ) ⇐⇒ h : c � d : B-Coalg(C )

Proof Outline. The proof is the dual of that for Theorem 8.1. We will simply
highlight the four components of the proof.

(i) bd〈X , c〉ec = 〈X , c〉 and db〈X , d〉ce = 〈X , d〉.
(ii) b−c is functorial—it maps C-homomorphisms to B-homomorphisms—as

outr : C →̇ B is natural and b−c = outr -Coalg (cf. Section 3.3).
(iii) Furthermore, d−e maps B-homomorphisms to C-homomorphisms.
(iv) d〈X , c〉e is a coalgebra for the copointed functor (10.2). �

Summary. Theorem 8.1 established the isomorphism between (P,η)-algebras and
S-algebras. Dually, Theorem 10.1 has established the isomorphism between (C, ε)-
coalgebras and B-coalgebras, with b−c and d−e as the (overloaded) casting opera-
tors between them.

(C, ε)-Coalg

b−c
��

∼=

B-Coalg

d−e
OO

10.2. Initial Object and Final Object. We have begun to explore the spine of
the second dimension of our design space: we have moved from an endofunctor
B to the cofree copointed functor. At this point we should examine what the
new initial and final λ-bialgebras are. The objects can be derived from the double
isomorphism (10.5), and here we will only provide the dual statements of Section 8.2.

The initial λ-bialgebra is 〈µS, in, ((Cλ in ))〉. The unique λ-bialgebra homomorph-
ism from the initial λ-bialgebra to any λ-bialgebra 〈X , a, c〉 is ((a )).

S (µS)

in
��

S ((a ))
// SX

a

��
µS

((Cλ in ))
��

((a ))
// X

c

��
C (µS)

C ((a ))
// CX

There is one proof obligation: we have to show that ((Cλ in )) is a coalgebra for C,
that is, it respects ε (10.4). This is simply the dual proof of the dual obligation
found in Section 8.2, following from Property 10.5.



38 R. T. W. HINZE AND D. W. H. JAMES

The final λ-bialgebra is 〈νB, [(bSλ doutec)], doute〉. The unique λ-bialgebra homo-
morphism to the final λ-bialgebra from any λ-bialgebra 〈X , a, c〉 is [(bcc)].

SX

a

��

S [(bcc)]
//



S (νB)

[(bSλ doutec)]
��

X

c

��

[(bcc)]
//

®

νB

doute
��

¬

CX
C [(bcc)]

// C (νB)

There are three proof obligations.

¬ 〈νB, [(bSλ doutec)], doute〉 is a λ-bialgebra, in that it satisfies the pentagonal
law (5.1).

doute · [(bSλ doutec)] = C [(bSλ doutec)] · λ (νB) · S doute

 [(bcc)] is a S-algebra homomorphism.

[(bcc)] : a � [(bSλ doutec)] : S-Alg

® [(bcc)] is a C-coalgebra homomorphism.

[(bcc)] : c � doute : C-Coalg

Again, these obligations are dispatched by the dual proofs of those in Section 8.2.

S (µS)

in
��

// S (νB)

[(bSλ doutec)]
��

µS

((Cλ in ))
��

‖
(([(bSλ doutec)]))

[(b((Cλ in ))c)]

// νB

doute
��

C (µS) // C (νB)

Theorem 10.1, like Theorems 8.1 and 9.1, continues to preserve the resolution of
Iniga and Finn’s viewpoints. This section has been the dual of Section 8. In
Sections 8 and 9 we explored a single dimension of the design space—augmenting the
syntax functor S. In this section we have made a first step in a second dimension—
augmenting the behaviour functor B. Like the sections before, we now need to
create a distributive law.

10.3. Creating a Distributive Law. A program, such as in Example 10.1, gives
rise to a natural transformation ρ : S◦C→̇B◦S, where the copointed functor appears
only on the left, as that is where pattern matching is confined to. From ρ we must
create a distributive law λ : S◦C →̇ C◦S such that

(10.10) dce · a = C a · λX · S dce ⇐⇒ c · a = B a · ρX · S dce .

This is the dual situation to that of Section 8.3, where λ = B◦η O ρ; here this
becomes λ = S◦ε M ρ, and satisfies Condition 10.3 by the dual reasoning.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 39

11. Pointed Functors over Copointed Functors

In this section we will briefly combine pointed and copointed functors from Sec-
tion 8 and 10. Let us begin with an example.

Example 11.1. The following is the definition of the stream operator that dupli-
cates the head of a stream.

dup s@(Cons m ) = m ≺ s

While a simple definition, it makes use of the features that (co)free (co)pointed
functors introduce. Thus, the dup recursion equation is captured by a natural
transformation:

ρ :: S (C x ) � B (P x )
ρ (Dup (As s (Cons (m, )))) = Cons (m,Var s) �

Properties 8.6 and 10.6 show that Bλ preserves η and Sλ preserves ε. Taken
together, Properties 8.5 and 10.6 say that η lifts to a (B, ε)-coalgebra homomorph-
ism. Likewise, Properties 10.5 and 8.6 say that ε lifts to an (S,η)-algebra homo-
morphism. Therefore all four properties conspire to preserve the desired double
isomorphism.

(11.1) λ-Bialg(C ) ∼=

{
(Sλ,η)-Alg((B, ε)-Coalg(C ))

(Bλ, ε)-Coalg((S,η)-Alg(C ))

11.1. Initial and Final Objects. In the following diagram we can see the initial
and final λ-bialgebras in our new setting where λ : P◦C →̇ C◦P, and also the dual
solutions to the unique semantic function.

P (µS) //

dine
��

P (νB)

[(bPλ doutec)]

��
µS ‖

((b[(bPλ doutec)]c))

[(b((bCλ dinec))c)]

//

((bCλ dinec))
��

νB

doute
��

C (µS) // C (νB)

It is important to note that the casting operators b−c and d−e are overloaded in
this diagram. On the left-hand side of the diagram we are casting between (P,η)-
algebras and S-algebras (Theorem 8.1), and on the right-hand side, (C, ε)-coalgebras
and B-coalgebras (Theorem 10.1).

11.2. Creating a Distributive Law. A program, such as in Example 11.1, gives
rise to a natural transformation ρ : S◦C→̇B◦P, where the copointed functor appears
only the left and the pointed functor only on the right. Given ρ we must create a
distributive law λ : P◦C →̇ C◦P. We can do so by combining Sections 8.3 and 10.3.
As there are two orderings by which we can combine these, there are two different
formulations of λ, and thus two different intermediate steps. From ρ : S◦C →̇ B◦P
we can either create ρP : P◦C →̇ B◦P, following Section 8.3, or ρC : S◦C →̇ C◦P,
following Section 10.3. Let us take the former. The natural transformation ρP is
related to ρ by the equivalence:

(11.2) c · dae = B dae · ρP X · P dce ⇐⇒ c · a = B dae · ρX · S dce .

The calculation of ρP is not completely identical to that in Section 8.3, as there is
now an occurrence of C on the left-hand side, so there is (literally) an extra step.



40 R. T. W. HINZE AND D. W. H. JAMES

Let us replay the calculation.

c · a = B dae · ρX · S dce
= { equality of joins }

c O c · a = c O B dae · ρX · S dce
= { (C, ε)-Coalg ∼= B-Coalg: c = bdcec = outr · dce (10.8) }

c O c · a = outr · dce O B dae · ρX · S dce
= { B functor and dae : (P,η)-Alg (8.2) }

c O c · a = B dae · B (ηX ) · outr · dce O B dae · ρX · S dce
= { join fusion (B.4) and functor fusion (B.5) }

c · (id O a) = B dae · (B (ηX ) · outr O ρX ) · (dce+ S dce)
= { definitions of d−e (8.7) and P (8.6) }

c · dae = B dae · (B (ηX ) · outr O ρX ) · P dce

The second step was the key addition; in this context, outr is the natural transfor-
mation P→̇S. The specification (11.2) can be satisfied if we set ρP = B◦η ·outr Oρ.
Dually, for a corresponding specification, ρC = inr · S◦ε M ρ. Continuing from ρP,
we can construct λ = P◦εM (B◦η · outr O ρ), following Section 10.3 with P in place
of S, or λ = C◦η O (inr · S◦ε M ρ) from ρC, following Section 8.3 with C in place
of B.

A distributive law λ : P◦C →̇ C◦P must satisfy Conditions 8.3 and 10.3. Let us
take the first construction λ = P◦εM (B◦η · outr O ρ) and show that Condition 8.3
is satisfied.

(P◦ε M (B◦η · outr O ρ)) · η◦C
= { split fusion (A.4) }

P◦ε · η◦C M (B◦η · outr O ρ) · η◦C
= { η = inl and join computation (B.3a) }

P◦ε · η◦C M B◦η · outr

= { definition of P (8.6) }
(ε + S◦ε) · η◦C M B◦η · outr

= { η = inl and inl is natural (B.6a) }
η · ε M B◦η · outr

= { ε = outl and split functor fusion (A.5) }
(η× B◦η) · (outl M outr)

= { definition of C (10.6) and split reflection (A.2) }
C◦η

Condition 10.3 follows immediately from split computation (A.3a). Dually, for the
construction λ = C◦η O (inr · S◦ε M ρ), Condition 8.3 is trivially satisfied and the
dual of the proof above satisfies Condition 10.3.

12. Monads over Copointed Functors

In Section 9 we saw that we could model recursion equations that needed full
terms on the right-hand side, and using the technique in Section 9.5, we could
precisely model equations that “consume at most one, and produce at least one”.
This was in the case of a distributive law of a monad over a plain endofunctor.
The nature of “consuming at most one” can be made more explicit by the use of



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 41

copointed functors, from Section 10. In this section we will combine monads and
copointed functors from Sections 9 and 10. Let us begin with two examples.

Example 12.1. The Thue–Morse sequence, or Prouhet–Thue–Morse sequence, is,
like π, a ubiquitous mathematical object [Allouche and Jeffery, 1999]. It is a binary
sequence, the first 15 digits of which are:

t = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 . . .

The nth element of the sequence can be computed directly. First, n is written in
binary; if there are an odd number of ones in the binary representation, then tn = 1,
otherwise tn = 0. The sequence can also be expressed as a recurrence relation,

t0 = 0, t2n+1 = 1− tn, t2n+2 = tn+1 .

Hinze [2010] shows that a recurrence of the form t0 = k, t2n+1 = f(tn) and
t2n+2 = g(tn) corresponds to the stream t = k ≺ interleave (map f t) (map g t).
(The definition of interleave is given in Example 10.1.) The clause t2n+2 = tn+1

in the definition does not immediately match this pattern, however, this can be
overcome by using tail to transform tn into tn+1. Therefore, we can give the
following stream as a specification of the Thue–Morse sequence,

thue = 0 ≺ interleave (inv thue) (tail thue) ,

where inv is the specialization of map (1−),

inv (Cons m s) = (1−m) ≺ inv s .

The occurrence is of tail is a problem as it is a stream function that consumes one
element but does not produce any. If we unroll the definitions, we can mechanically
derive an implementation that is in a compliant form.

thue = 0 ≺ thue ′

thue ′ = 1 ≺ interleave thue ′ (inv thue ′)

Now we can capture the recursion equations interleave, inv , thue and thue ′ by
a natural transformation:

ρ :: S (C x ) � B (M x )
ρ (Interleave (As (Cons (m, s)),As t ))

= Cons (m,Com (Interleave (Var t ,Var s)))
ρ (Inv (As (Cons (m, s))))

= Cons (1−m) (Com (Inv (Var s)))
ρ Thue

= Cons 0 (Com Thue ′)
ρ Thue ′

= Cons 1 (Com (Interleave (Com Thue ′,
Com (Inv (Com Thue ′)))))

Example 12.2. The regular numbers are the numbers that evenly divide powers
of 60, and can be characterized as the numbers that only have 2, 3 or 5 as prime
factors. They are also called the Hamming numbers, after the Turing award winner
Richard Hamming, who posed the problem of generating these numbers in ascending
order. Dijkstra [1981] presented a solution à la SASL, attributed to J. L. A. van de
Snepscheut, and proved its correctness. Here we will replicate the same solution,
which is in fact a slightly simplified version for numbers that only have 2 and 3 as
prime factors. The stream is,

ham = 1 ≺ merge (times 2 ham, times 3 ham) ,

where the definition of merge is given in Example 10.1 and times is,

times n (Cons m s) = n ×m ≺ times n s .



42 R. T. W. HINZE AND D. W. H. JAMES

Again, we can capture the recursion equations merge, times and ham by a natural
transformation:

ρ :: S (C x ) � B (M x )
ρ (Merge (As s (Cons (m, s ′)),As t (Cons (n, t ′))))

= Cons (if m 6 n then m else n,
Com (Merge (Var (if m 6 n then s ′ else s),

Var (if m 6 n then t else t ′))))
ρ (Times n (As (Cons (m, s))))

= Cons (n ×m,Com (Times n (Var s)))
ρ Ham

= Cons (1,Com (Merge (Com (Times 2 (Com Ham)),
Com (Times 3 (Com Ham))))) �

Properties 8.6 and 9.6 show that Bλ preserves η and µ and Property 10.6 shows
that Sλ preserves ε. Taken together, Properties 8.5, 9.5 and 10.6 say that η and µ
lift to (B, ε)-coalgebra homomorphisms. Likewise, Properties 10.5, 8.6 and 9.6 say
that ε lifts to an (S,η,µ)-algebra homomorphism. Therefore all six properties
conspire to preserve the desired double isomorphism.

(12.1) λ-Bialg(C ) ∼=

{
(Sλ,η,µ)-Alg((B, ε)-Coalg(C ))

(Bλ, ε)-Coalg((S,η,µ)-Alg(C ))

12.1. Initial and Final Objects. The following diagram is only a minor revision
of that in Section 11.1. In it we can see the initial and final λ-bialgebras in the
setting of monads over copointed functors, and also the dual solutions to the unique
semantic function.

M (µS) //

dine
��

M (νB)

[(bMλ doutec)]

��
µS ‖

((b[(bMλ doutec)]c))

[(b((bCλ dinec))c)]

//

((bCλ dinec))
��

νB

doute
��

C (µS) // C (νB)

The diagram has only ‘syntactically’ changed by replacing P with M, however, the
distributive law is now λ : M◦C � C◦M, and the casting operators b−c and d−e
are again overloaded. On the left-hand side of the diagram we are casting between
(M,η,µ)-algebras and S-algebras (Theorem 9.1), and on the right-hand side, (C, ε)-
coalgebras and B-coalgebras (Theorem 10.1).

12.2. Creating a Distributive Law. A distributive law that comprises of a
monad over a copointed functor is a sweet spot in the design space. Given a natural
transformation ρ : S◦C � B◦M, such as from from Examples 12.1 and 12.2, we can
create a distributive law λ : M◦C � C◦M. Just as in Section 11.2, an intermediate
step is to turn ρ into either ρM : M◦C � B◦M or ρC : S◦C � C◦M. In this case we
will choose the latter, and ρC is related to ρ by the equivalence:

(12.2) dce · a = C dae · ρC X · S dce ⇐⇒ c · a = B dae · ρX · S dce .

The calculation of ρC is the dual of the calculation of ρP in Section 11.2, and the
extension of the calculation omitted in Section 10.3. We will include it here for



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 43

completeness.

c · a = B dae · ρX · S dce
⇐⇒ { equality of splits }

a M c · a = a M B dae · ρX · S dce
⇐⇒ { (M,µ,η)-Alg ∼= S-Alg: a = bdaec = dae · θX (9.10) }

a M c · a = dae · θX M B dae · ρX · S dce
⇐⇒ { S functor and dce : (C, ε)-Coalg (10.2) }

a M c · a = dae · θX · S (εX ) · S dce M B dae · ρX · S dce
⇐⇒ { split fusion (A.4) and functor fusion (A.5) }

(id M c) · a = (dae × B dae) · (θX · S (εX ) M ρX ) · S dce
⇐⇒ { definitions of d−e (10.7) and C (10.6) }

dce · a = C dae · (θX · S (εX ) M ρX ) · S dce

Therefore, the specification (12.2) can be satisfied if we set ρC = θ · S◦ε M ρ.
Now that we have a natural transformation ρC : S◦C�C◦M from ρ : S◦C�B◦M,

we will continue and create the distributive law λ : M◦C � C◦M by following the
template of Section 9.3. First we define a lifting of C to Cρ : (M,η,µ)-Alg �
(M,η,µ)-Alg,

(12.3) Cρ a = (((C a · ρC A))) ,

and then with this, the distributive law,

(12.4) λ = Cρ µ ·M◦C◦η .

As a result of following the construction of Section 9.3, λ satisfies Condition 9.3
and Cρ µ satisfies Condition 9.4, that is, λ coheres with η and µ, and Cρ µ is an
M-algebra that respects η and µ.

As λ contains the copointed functor C, it must also cohere with ε, Condition 10.3.
Before we get to the proof, we will first show that Cρ is copointed (cf. Prop-
erty 10.5). Let a : MX � X be an M-algebra, then εX : Cρ a � a : M-Alg is the
lifting of ε to an M-algebra homomorphism.

Proof.
εX · Cρ a = a ·M (εX )

⇐⇒ { (M,η,µ)-Alg ∼= S-Alg (9.11) }
εX · bCρ ac = bac · S (εX )

⇐⇒ { definitions of Cρ (12.3) and b−c (9.10) }

εX · C a · ρC X = a · θX · S (εX )

⇐⇒ { ε : C →̇ Id is natural }

a · ε(MX ) · ρC X = a · θX · S (εX )

⇐⇒ { ε = outl , definition of ρC and split computation (A.3a) }
a · θX · S (εX ) = a · θX · S (εX ) �

If we instantiate this property with the M-algebra 〈MX ,µX 〉, we have:

(12.5) ε(MX ) · Cρ (µX ) = µX ·M (ε(MX )) .

We are now in a position to prove that λ satisfies Condition 10.3.



44 R. T. W. HINZE AND D. W. H. JAMES

Proof.
ε(MX ) · λX

= { definition of λ (12.4) }
ε(MX ) · Cρ (µX ) ·M (C (ηX ))

= { ε(MX ) is an M-homomorphism (12.5) }
µX ·M (ε(MX )) ·M (C (ηX ))

= { M functor and ε : C →̇ Id is natural }
µX ·M (ηX ) ·M (εX )

= { second monad law (9.1b) }
M (εX ) �

12.3. Unique Fixed-Point Principle. Let us briefly revisit the results of Sec-
tion 9.6, where recursion equations were modelled by a natural transformation
ρ : S◦B � B◦M. Our natural transformation is now ρ : S◦B � B◦M. A solution of
a system modelled by ρ consists of an S-algebra and a B-coalgebra over a common
carrier X that satisfies:

c · a = B dae · ρX · S dce

If the coalgebra is final, then a is uniquely determined. The following calculation
gives that solution and establishes the UFP.

out · a = B dae · ρ (νB) · S doute

⇐⇒ { ρC which satsifies (12.2) }

doute · a = C dae · ρC X · S doute
⇐⇒ { λ given by (12.4) which satisfies (9.12) }

doute · dae = C dae · λ (νB) ·M doute
⇐⇒ { definition of Mλ (7.4) }

doute · dae = C dae ·Mλ doute
⇐⇒ { (C, ε)-Coalg ∼= B-Coalg (10.9) }

out · dae = B dae · bMλ doutec
⇐⇒ { uniqueness of unfold (3.2) }

dae = [(bMλ doutec)]

⇐⇒ { (M,η,µ)-Alg ∼= S-Alg (9.11) }
a = b[(bMλ doutec)]c

Conversely, if the algebra is initial, then c is uniquely determined: c = b((bCλ dinec))c.
These make up the initial and final objects in λ-Bialg(C ), as seen in Section 12.1.

13. Endofunctors over Comonads

In Section 10, with the introduction of copointed functors, we saw how to model
recursion equations that consume either one level of behaviour or none at all. This
nicely captured stream functions such as interleave and merge (Example 10.1). In
this section we will augment copointed functors to comonads, in the same way that
we did for pointed functors to monads in Section 9.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 45

Example 13.1. Consider the stream functions even and odd , which preserve only
the even and odd indexed elements of a stream, respectively.

even (Cons m (Cons s)) = m ≺ even s

odd (Cons (Cons n s)) = n ≺ odd s

Here we have nested pattern matching on the left-hand side of the equations. In
both cases we need to examine two levels of behaviour: so that one can be kept and
the other discarded. We can model this nested pattern matching in our categorical
setting with comonads.

data N x = Root x (B (N x ))

We can read Root s b as s@b—a Haskell as-pattern—where b may contain further
patterns. If we use N to replace B on the left-hand side, then we are able to
construct a natural transformation to model even and odd .

ρ :: S (N x ) � B (S x )
ρ (Even (Root (Cons (m,Root (Cons ( , Root s ))))))

= Cons (m,Even s)
ρ (Odd (Root (Cons ( , Root (Cons (n,Root s ))))))

= Cons (n, Odd s)

These are examples of a sampling functions [Niqui and Rutten, 2010], functions
that consume more than they produce. Another example from Niqui and Rutten
is the family of all drop operators.

Example 13.2. For l ≥ 2 and 0 ≤ i < l, the family of drop operators,

dropi
l :: Stream x � Stream x ,

drops the i -th element from each input block of size l . The even and odd operators
are members of this family: even = drop1

2 and odd = drop0
2. Niqui and Rutten give

the following definition.

head (dropi+1
l s) = head s

tail (dropi+1
l s) = dropi

l (tail s)

head (drop0
l s) = head (tail s)

tail (drop0
l s) = dropl−2

l (tail (tail s))

This is simple to translate into our definitional style.

dropi+1
l (Cons m s) = m ≺ dropi

l s

drop0
l (Cons (Cons n s)) = n ≺ dropl−2

l s

And as per usual, this is straightforward to turn into a natural transformation.

ρ :: S (N x ) � B (S x )

ρ (Dropi+1
l (Root (Cons (m,Root s ))))

= Cons (m,Dropi
l s)

ρ (Drop0
l (Root (Cons ( ,Root (Cons (n,Root s ))))))

= Cons (n, Dropl−2
l s)

Example 13.3. Another informative example is the finite difference or forward
difference stream operator [Hinze, 2010]. It has a simple, non-recursive definition.

diff s = tail s − s

If we are to express this as a natural transformation, we need to draw out the head
of the resulting stream. Rather than letting the lifted subtraction do the work, we
will turn diff into a recursive definition.

diff (Cons m s@(Cons n )) = n −m ≺ diff s



46 R. T. W. HINZE AND D. W. H. JAMES

The use of the inner as-pattern makes the ‘lookahead’ nature of diff clear. The
names m and s are bound to the head and tail of the input stream, and n is bound
to the head of the tail s. This inspection of the input stream is unlike any of
the previous examples that we have seen. The natural transformation now follows
immediately:

ρ :: S (N x ) � B (S x )
ρ (Diff (Root (Cons (m,Root s (Cons (n, ))))))

= Cons (n −m,Diff s) �

The Haskell type N is the so-called cofree comonad of B. We will discuss comon-
ads in general and then return to the cofree construction in Section 13.1.

Definition 13.4. We say that B is a comonad if it is equipped with natural trans-
formations ε : B →̇ Id and δ : B →̇ B◦B such that

B◦ε · δ = idB ,(13.1a)

ε◦B · δ = idB ,(13.1b)

B◦δ · δ = δ◦B · δ .(13.1c)

B

δ
��

idB

}}

idB

!!
B B◦B

B◦ε
oo

ε◦B
// B

B
δ //

δ
��

B◦B

B◦δ
��

B◦B
δ◦B
// B◦B◦B

A comonad extends a copointed functor with a second natural transformation
δ : B→̇B◦B. When we introduced copointed functors in Section 10, we saw that ε :
B→̇ Id must be respected when constructing coalgebras and also by the distributive
law of the λ-bialgebra; these same conditions extend to δ.

Condition 13.5. The following are the necessary coherence properties for a dis-
tributive law λ : S◦B →̇ B◦S:

ε◦S · λ = S◦ε ,(13.2a)

δ◦S · λ = S◦λ · λ◦S · S◦δ .(13.2b)

S◦B λ //

S◦ε ��

B◦S

ε◦S��
S

S◦B λ //

S◦δ
��

B◦S

δ◦S
��

S◦B◦B
λ◦S
// B◦S◦B

S◦λ
// B◦B◦S

Condition 13.6. If we construct a coalgebra of comonad, then it must respect ε
and δ. Let 〈X , c : X � BX 〉 be an B-coalgebra, then

εX · c = idX ,(13.3a)

δX · c = B c · c .(13.3b)

X

c

��

idX

''
X

BX εX

77

X
c //

c
��

BX

B c
��

BX
δX
// B (BX )



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 47

Property 13.7. In Section 10 we showed that ε can be lifted to an S-algebra
homomorphism (10.3). There is an analogous property for δ. Let a : SX � X be
an S-algebra, then

(13.4) δX : Bλ a � Bλ (Bλ a) : S-Alg(C ) ,

is the lifting of δ to an S-algebra homomorphism. In other words, Bλ is a comonad
and we can form (Bλ, ε, δ)-Coalg(S-Alg(C )).

Property 13.8. We have shown previously that Sλ preserves composition, the
identity, homomorphisms (7.6), and ε (10.4). Now, Sλ as an endo functor on
(B, ε, δ)-Coalg(C ) must preserve δ.

(13.5) δ(SX ) · Sλ c = B (Sλ c) · Sλ c ⇐= δX · c = B c · c
In other words, we can form Sλ-Alg((B, ε, δ)-Coalg(C )).

Summary.

λ-Bialg(C ) ∼=

{
Sλ-Alg((B, ε, δ)-Coalg(C ))

(Bλ, ε, δ)-Coalg(S-Alg(C ))

13.1. Cofree Comonad. Let B : C � C be an endofunctor representing our be-
haviour. There is a canonical comonad, with pleasant properties, that we can
construct from B. To do so we will first describe the cofree B-coalgebra.

The cofree B-coalgebra over X is 〈NX , des〉 equipped with an arrow lab : N→̇ Id.
We think of elements of NX as trees built from our behaviour functor B, where each
node of a tree is labelled with an element of X . There are two ways to destruct a
behaviour tree: the natural transformation lab extracts the (root) label of the tree;
and des : N →̇ B◦N destructs a tree into one level of behaviour over subtrees—a B
structure of behaviour trees.

If we have a coalgebra c : X � BX , we can build a behaviour tree NX with
[[((((c))))]] : X � NX (pronounced “trace”). Given an arrow f : X � Y , a relabelling,
and a B-coalgebra c to build behaviour, a building of trees is characterized by the
uniqueness property,

(13.6) N f · [[((((c))))]] = g ⇐⇒ f = lab Y · g ∧ B g · c = des Y · g ,

for all tree builders g : X �NY . The equivalence states that a compositional build-
ing of a tree, second conjunct, is uniquely defined by a relabelling, first conjunct.
(For the clued-in reader, all of this information comes from the adjunction of the
free and forgetful functors between B-Coalg(C ) and C .)

There are two simple consequences of the uniqueness property. If we use the
identity as a relabelling (f = id), we get the computation laws:

lab X · [[((((c))))]] = id ,(13.7a)

des X · [[((((c))))]] = B [[((((c))))]] · c .(13.7b)

As lab and des are the destructors of trees, we can read these as defining equations
of [[((((−))))]]. The uniqueness property also implies that lab and des are natural in X and
that [[((((−))))]] preserves naturality.

[[((((α))))]] : G →̇ N◦G ⇐= α : G →̇ B◦G
(Here [[((((α))))]] is shorthand for φA = [[((((αA))))]].) The proof is the dual of the proof that
(((−))) preserves naturality in Section 9.1.

Definition 13.9. The cofree comonad is 〈N, ε, δ〉, where ε = lab and δ = [[((((des ))))]].

The δ : N →̇ N◦N of the comonad relabels every subtree with itself. It does so
by building a tree using des, the action of the cofree comonad.



48 R. T. W. HINZE AND D. W. H. JAMES

Theorem 13.1. The category of coalgebras for the cofree comonad of B is isomor-
phic to the category of B-coalgebras:

(N, ε, δ)-Coalg ∼= B-Coalg .

The following definitions are the witnesses to this isomorphism.

d〈X , c : X � BX 〉e = 〈X , [[((((a ))))]] : X � NX 〉 dhe = h

b〈X , d : X � NX 〉c = 〈X ,φX · d : X � BX 〉 bhc = h ,

where φ = B◦ε · des : N →̇ B, which destructs a behaviour tree into a level of
behaviour, the arguments of which are the labels of the subtrees. Furthermore, d−e
and b−c are functorial.

(13.8) h : dce� dde : (N, ε, δ)-Coalg⇐⇒ h : c � d : B-Coalg

Proof Outline. The proof is the dual of that for Theorem 9.1. We will simply
highlight the four components of the proof.

(i) bd〈X , c〉ec = 〈X , c〉 and db〈X , d〉ce = 〈X , d〉.
(ii) b−c is functorial—it maps N-homomorphisms to B-homomorphisms—as

φ : N →̇ B is natural and b−c = φ-Coalg (cf. Section 3.3).
(iii) d−e maps B-homomorphisms to N-homomorphisms.
(iv) d〈X , c〉e is a coalgebra from the comonad (13.3a and 13.3b). �

Summary. Taking Theorems 10.1 and 13.1 together, b−c d−e are now casting op-
erators between (N, ε, δ)-coalgebras, (C, ε)-coalgebras and B-coalgebras—all three
categories are isomorphic.

(C, ε)-Coalg

b−c
��

∼=

B-Coalg

d−e
OO

(N, ε, δ)-Coalg

b−c
��

∼=

B-Coalg

d−e
OO

13.2. Initial and Final Objects. In the following diagram we can see the initial
and final λ-bialgebra in our new setting where λ : S◦N →̇ N◦S. The initial λ-
bialgebra is 〈µS, in, ((Nλ in ))〉. The unique λ-bialgebra homomorphism from the
initial λ-bialgebra to any λ-bialgebra 〈X , a, c〉 is ((a )). The final λ-bialgebra is 〈νB,
[(bSλ doutec)], doute〉. The unique λ-bialgebra homomorphism to the final λ-bialgebra
from any λ-bialgebra 〈X , a, c〉 is [(bcc)]. The center of the diagram displays the dual
solutions to the unique semantic function.

S (µS) //

in
��

S (νB)

[(bSλ doutec)]

��
µS ‖

(([(bSλ doutec)]))

[(b((Nλ in ))c)]

//

((Nλ in ))
��

νB

doute
��

N (µS) // N (νB)

On the left-hand side of the diagram there is a proof obligation that ((Nλ in )) must
be an (N, ε, δ)-coalgebra respecting ε (13.3a) and δ (13.3b). This is dispatched by
the duals of the proofs that [(Pλ out )] respects η (Section 8.2) and that [(Mλ out )]
respects µ (Section 9.2).

On the right-hand side of the diagram there are the same proof obligations that
arose in Section 10, namely that 〈νB, [(bSλ doutec)], doute〉 is a λ-bialgebra and that
[(bcc)] is both a S-algebra and N-coalgebra homomorphism. (The definitions of b−c



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 49

and d−e have changed according to Theorem 13.1.) Again, these are dispatched by
the dual proofs of those in Section 8.2.

13.3. Creating a Distributive Law. Given a program that is modelled by a
natural transformation of type ρ : S◦N →̇ B◦S, we seek to derive a distributive law
λ : S◦N →̇ N◦S such that

dce · a = N a · λX · S dce ⇐⇒ c · a = B a · ρX · S dce .

As stated in Section 9.3, distributive laws of type λ : S◦N →̇ N◦S are in one-to-
one correspondence to lifted functors S̄ : (N, ε, δ)-Coalg � (N, ε, δ)-Coalg. Given
a lifting S̄, we can construct a distributive law by following the dual of Section 9.3:

λS̄ = N◦S◦ε · S̄ δ ,

where S̄ δ : S◦N →̇ N◦S◦N is the N-coalgebra for the carrier S◦N. By duality, with
reference to Section 9.3, λS̄ coheres with ε and δ per equations (13.2a) and (13.2b).

What is left is to define the lifting of S. Again by duality:

S̄ 〈X , c : X � NX 〉 = 〈SX , dρX · S ce : SX � N (SX )〉 ,
S̄ h = S h .

This is a lifting on N-coalgebras as d−e = [[((((−))))]] is one from B-coalgebras. Therefore
with λ = λS̄, the distributive law is the dual of (9.16), as expected:

λ = N◦S◦ε · [[((((ρ◦N · S◦δ))))]] .

14. Pointed Functors over Comonads

In this section we will briefly combine pointed functors and comonads from
Sections 8 and 13. Let us begin with a brief example.

Example 14.1. The following is the usual definition of tail :

tail (Cons m s) = s

This definition cannot be immediately used: the type of this definition of tail is
S X �X and we need a natural transformation that we can turn into a distributive
law. We need ≺ to appear on the right-hand side, which forces us to pattern match
more deeply on the left-hand side:

tail (Cons (Cons n s)) = n ≺ s

Now we can capture this recursion equation by a natural transformation:

ρ :: S (N x ) � B (P x )
ρ (Tail (Root (Cons ( ,Root (Cons (n, s)))))) =

Cons (n,Var s) �

Properties 8.6, 10.6 and 13.8 show that Bλ preserves respect for η and Sλ pre-
serves respect for ε and δ. Taken together, Properties 8.5, 10.6 and 13.8 say
that η lifts to a (B, ε, δ)-coalgebra homomorphism: Sλ is pointed. Likewise, Prop-
erties 10.5, 13.7 and 8.6 say that ε and δ lifts to an (S,η)-algebra homomorphisms:
Bλ is a comonad. Therefore all six properties conspire to preserve the desired double
isomorphism.

(14.1) λ-Bialg(C ) ∼=

{
(Sλ,η)-Alg((B, ε, δ)-Coalg(C ))

(Bλ, ε, δ)-Coalg((S,η)-Alg(C ))



50 R. T. W. HINZE AND D. W. H. JAMES

14.1. Initial and Final Objects. In the following diagram we can see the initial
and final λ-bialgebras in our new setting where λ : P◦N →̇ N◦P, and also the dual
solutions to the unique semantic function.

P (µS) //

dine
��

P (νB)

[(bPλ doutec)]

��
µS ‖

((b[(bPλ doutec)]c))

[(b((bNλ dinec))c)]

//

((bNλ dinec))
��

νB

doute
��

N (µS) // N (νB)

As in previous sections, the casting operators b−c and d−e are overloaded in this di-
agram. On the left-hand side of the diagram we are casting between (P,η)-algebras
and S-algebras (Theorem 8.1), and on the right-hand side, (N, ε, δ)-coalgebras and
B-coalgebras (Theorem 13.1).

14.2. Creating a Distributive Law. Given a program that is modelled by a
natural transformation of type ρ : S◦N →̇ B◦P, we seek to derive a distributive law
λ : P◦N →̇ N◦P. This derivation is dual to that in Section 12.2.

The first step is to define an intermediate natural transformation of type ρP :
P◦N →̇ B◦P. This the dual of ρP from Section 12.2 and similar to ρP : P◦C →̇ B◦P
from Section 11.2:

ρP = B◦η · φ O ρ .

Now, following the duality and the lifting technique of Section 13.3, we can define
a lifting of P to Pρ : (N, ε, δ)-Coalg � (N, ε, δ)-Coalg,

Pρ c = [[((((ρP X · P c))))]] ,

and then with this, the distributive law,

λ = N◦P◦ε · [[((((ρP◦N · P◦δ))))]] .

As a result of following the construction in Section 13.3, λ satisfies Condition 13.5
and Pρ δ satisfies Condition 13.6, that is, λ coheres with ε and δ and Pρ δ is an
N-coalgebra that respects ε and δ.

As λ contains the pointed functor P, it must also cohere with η, Condition 8.1.
Again, following the development in Section 12.2, just as Cρ was copointed, dually
Pρ is pointed (cf. Property 8.5). From this the dual of the proof in Section 12.2
follows to show that λ coheres with η.

15. Monads over Comonads

15.1. Creating a Distributive Law.

16. Summary

Summary: feature matrix in Table 1.
Summary: creating distributive laws in Table 2.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 51

left-hand side
B C N
constructor @ notation nested pat-

terns

right-hand side
S P M
constructor constructor

or variable
nested terms
with vari-
ables

Table 1. Feature Matrix (ρ : S◦lhs →̇ B◦rhs)

λ S P M

B

Section 8.3 Section 9.3
ρ : S◦B →̇ B◦P ρ : S◦B →̇ B◦M√
λ = B◦η O ρ lifting

λ : P◦B →̇ B◦P λ : M◦B →̇ B◦M

C

Section 10.3 Section 11.2 Section 12.2
ρ : S◦C →̇ B◦S ρ : S◦C →̇ B◦P ρ : S◦C →̇ B◦M
λ = S◦ε M ρ combine 8.3 & 10.3 ρ′ : S◦C →̇ C◦M

λ : S◦C →̇ C◦S λ : P◦C →̇ C◦P λ : M◦C →̇ C◦M

N

Section 13.3 Section 14.2 Section 15.1
ρ : S◦N →̇ B◦S ρ : S◦N →̇ B◦P ?
colifting (dual) ρ′ : P◦N →̇ B◦P
λ : S◦N →̇ N◦S λ : P◦N →̇ N◦P λ : M◦N →̇ N◦M

Table 2. Creating Distributive Laws

17. Related Work

The theoretical foundations of our work exist in the literature, originally in Turi
and Plotkin [1997] and refined in Lenisa et al. [2000]. We see our work as an
application of, and an exercise in, this theory.

The work that is closest in spirit to ours is Bartels [2003]. It is centered around
the coinduction proof principle, in contrast to the UFP. Bartels looks at two out of
the nine points that we have identified, the simplest λ : S◦B →̇ B◦S, and our sweet
spot λ : M◦C →̇ C◦M, but for space reasons does not explore any others. Bartels
introduces a construction homomorphism up-to, which is a homomorphism from
a coalgebra to a bialgebra, and uses it as a definitional principle. We simply use
bialgebra homomorphisms, following the original theory of Turi and Plotkin [1997],
which nicely exhibits the duality of Iniga and Finn’s viewpoints.

Rutten and Silva present two coinductive calculi, one for streams [Rutten, 2003]
and one for binary trees [Silva and Rutten, 2010], also using coinduction as a proof
principle. They have a uniqueness proof for each: Theorem 3.1 and Appendix A
in Rutten [2003]; and Theorem 2 in Silva and Rutten [2010]. Our approach treats
streams and infinite trees, and behaviour in general, in a datatype generic way—the
same proofs apply, only varying in the chosen functors for syntax and behaviour.
Moreover, we emphasize a compositional, functional style.

Our task of determining that a recursion equation has a unique solution is related
to the task of determining that corecursive definitions are productive [Sijtsma,
1989]. This is crucial in dependently typed programming and proof languages,
where the logical consistency of the system requires it. In Coq this is enforced by



52 R. T. W. HINZE AND D. W. H. JAMES

the guardedness condition [Giménez, 1995], which is particularly conservative: it
has no means to propagate information through function calls, so corecursive calls
are forbidden to appear anywhere other than as a direct argument of a constructor.
Compositionality is the first casualty. The situation is similar in Agda [Abel and
Altenkirch, 2002].

Hughes et al. [1996] were the first to talk about the notion of sized-types, and
used it as part of a type-based analysis that guarantees termination and liveness
of embedded functional programs. Following this, there have been a whole host
of proposed type systems incorporating size annotations. MiniAgda [Mehltretter,
2007, Abel, 2010] is a tangible implementation of a dependently typed core language
with sized types, able to track the productivity of corecursive definitions. Type
signatures are mandatory and contain sizes explicitly, which is in contrast to our ρ
functions, the naturality of which is easy to infer.

Specific to streams, Endrullis et al. [2008] introduce what they call data-oblivious
productivity: productivity that can be decided without inspecting the stream el-
ements. They present three classes of stream specifications. Their analysis is
provably optimal for the flat class, where stream functions cannot contain nested
function applications. Our slogan “consume at most one, produce at least one”
corresponds to their friendly nesting class. A competing approach appears in Zan-
tema [2010], who reduces the determination of uniqueness to the termination of a
term rewriting system (TRS). A stream specification has a unique solution if its
observational variant TRS is terminating, a TRS that is very like Rutten’s stream
definitions.

Acknowledgements. Ralf would like to thank Jan Rutten for pointing him to
distributive laws and bialgebras.

References

A. Abel. MiniAgda: Integrating Sized and Dependent Types. Electronic Proceedings
in Theoretical Computer Science, 43:14–28, 2010.

A. Abel and T. Altenkirch. A predicative analysis of structural recursion. JFP, 12
(1):1–41, 2002.

J.-P. Allouche and S. Jeffery. The ubiquitous Prouhet–Thue–Morse sequence. In
C. Ding, T. Helleseth, and H. Niederreiter, editors, Sequences and Their Appli-
cations, SETA ’98, pages 1–16. Springer, 1999.

H. Applegate. Acyclic models and resolvent functors. PhD thesis, Columbia Uni-
versity, 1965.

F. Bartels. Generalised coinduction. Mathematical Structures in Computer Science,
13(2):321–348, 2003.

R. S. Bird and O. De Moor. Algebra of Programming, volume 100 of International
Series in Computing Science. Prentice Hall, 1997.

E. W. Dijkstra. Hamming’s exercise in SASL. Personal Note EWD792, 1981.
J. Endrullis, C. Grabmayer, and D. Hendriks. Data-oblivious stream productivity.

In Logic for Programming, Artificial Intelligence, and Reasoning, volume 5330 of
LNCS, pages 79–96. Springer, 2008.

P. Freyd. Remarks on algebraically compact categories. In M. Fourman, P. John-
stone, and A. Pitts, editors, Applications of Categories in Computer Science,
number 177 in London Mathematical Society Lecture Note Series, pages 95–107.
Cambridge University Press, 1992.

E. Giménez. Codifying guarded definitions with recursive schemes. In Types for
Proofs and Programs, volume 996 of LNCS, pages 39–59. Springer, 1995.

R. Hinze. The Bird tree. JFP, 19(5):491–508, 2009.



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 53

R. Hinze. Concrete stream calculus—an extended study. JFP, 20(5–6):463–535,
2010.

J. Hughes, L. Pareto, and A. Sabry. Proving the correctness of reactive systems
using sized types. In POPL, pages 410–423. ACM, 1996.

M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and
co-pointed endofunctors, monads and comonads. Electronic Notes in Theoretical
Computer Science, 33:230–260, 2000.

C. McBride and R. Paterson. Applicative programming with effects. JFP, 18(1):
1–13, 2008.

K. Mehltretter. Termination checking for a dependently typed language. Master’s
thesis, LMU Munich, 2007.

M. Niqui and J. J. M. M. Rutten. Sampling, splitting and merging in coinductive
stream calculus. In MPC, volume 6120 of LNCS, pages 310–330. Springer, 2010.

J. J. M. M. Rutten. Fundamental study: Behavioural differential equations: A coin-
ductive calculus of streams, automata, and power series. Theoretical Computer
Science, 308:1–53, 2003.

B. A. Sijtsma. On the productivity of recursive list definitions. ACM Trans. Pro-
gram. Lang. Syst., 11(4):633–649, 1989.

A. Silva and J. J. M. M. Rutten. A coinductive calculus of binary trees. Information
and Computation, 208:578–593, 2010.

D. Turi and G. Plotkin. Towards a mathematical operational semantics. Logic in
Computer Science, page 280, 1997.

H. Zantema. Well-definedness of streams by transformation and termination. Log-
ical Methods in Computer Science, 6(3:21), 2010.

Appendix A. Product Laws

Uniqueness.

(A.1) f1 = outl · g ∧ f2 = outr · g ⇐⇒ f1 M f2 = g

Reflection law.

(A.2) outl M outr = id

Computation law.

f1 = outl · (f1 M f2)(A.3a)

f2 = outr · (f1 M f2)(A.3b)

Fusion law.

(A.4) (f1 M f2) · h = f1 · h M f2 · h

Functor fusion law.

(A.5) (k1 × k2) · (f1 M f2) = k1 · f1 M k2 · f2

Projections are natural.

k1 · outl = outl · (k1 × k2)(A.6a)

k2 · outr = outr · (k1 × k2)(A.6b)

Appendix B. Coproduct Laws

Uniqueness.

(B.1) f = g1 O g2 ⇐⇒ f · inl = g1 ∧ f · inr = g2



54 R. T. W. HINZE AND D. W. H. JAMES

Reflection law.

(B.2) id = inl O inr

Computation law.

(g1 O g2) · inl = g1(B.3a)

(g1 O g2) · inr = g2(B.3b)

Fusion law.

(B.4) k · (g1 O g2) = k · g1 O k · g2

Functor fusion law.

(B.5) (g1 O g2) · (h1 + h2) = g1 · h1 O g2 · h2

Injections are natural.

(h1 + h2) · inl = inl · h1(B.6a)

(h1 + h2) · inr = inr · h2(B.6b)

Appendix C. Initial Algebra Laws

Reflection law.

(C.1) id = ((in ))

Computation law.

(C.2) ((a )) · in = a · F ((a ))

Fusion law.

(C.3) h · ((a )) = ((b )) ⇐= h · a = b · F h

Appendix D. Final Coalgebra Laws

Reflection law.

(D.1) [(out )] = id

Computation law.

(D.2) F [(c)] · c = out · [(c)]

Fusion law.

(D.3) [(d )] = [(c)] · h ⇐= F h · d = c · h

Appendix E. Free Monad Laws

Uniqueness property. Let us remind ourselves of the uniqueness property. Given
an algebra a : SX � X and an arrow g : Y � X ,

f = (((a))) ·M g ⇐⇒ f · var = g ∧ f · com = a · S f ,

for all f : MY � X .

Relation to the initial algebra. The carrier of the initial S-algebra is isomorphic
to the free S-algebra over 0 (the initial object in C ), µS ∼= M 0. Modulo this
isomorphism, we have the following equalities: in = com 0, and ((a )) = (((a))) ·M ¡X .
(Note that η0 = ¡M 0.)

Reflection law.

(E.1) id = (((com))) ·M (var Y )

Since µ = (((com))) and η = var , this amounts to the second monad law (9.1b).



PROVING THE UNIQUE FIXED-POINT PRINCIPLE CORRECT 55

Computation law.

(((a))) ·M g · var Y = g(E.2a)

(((a))) ·M g · com Y = a · S ((((a))) ·M g)(E.2b)

Setting Y = MX and g = idMX , (E.2a) specializes to the first monad law (9.1a).

Fusion law.

(E.3) h · (((a))) ·M g = (((a ′))) ·M g ′ ⇐= h · g = g ′ ∧ h · a = a ′ · S h

The fusion law implies the third monad law (9.1c).

(((com))) · (((com))) = (((com))) ·M (((com)))

⇐= { fusion (E.3) }
(((com))) = (((com))) ∧ (((com))) · com = com · S (((com)))

⇐⇒ { computation (9.8b) }
true

Appendix F. Cofree Comonad Laws

Uniqueness property. Let us remind ourselves of the uniqueness property. Given a
coalgebra c : X � BX and an arrow f : X � Y ,

N f · [[((((c))))]] = g ⇐⇒ f = lab Y · g ∧ B g · c = des Y · g ,

for all g : X � NY .

Relation to the final coalgebra. The carrier of the final B-coalgebra is isomorphic
to the free B-coalgebra over 1 (the final object in C ), νB ∼= N 1. Modulo this
isomorphism we have the following equalities: out = des 1, and [(c)] = M !X · [[((((c))))]].
(Note that ε1 = !N 1.)

Reflection law.

(F.1) N (lab Y ) · [[((((des ))))]] = id

Since δ = [[((((des ))))]] and ε = lab, this amounts to the first comonad law (13.1a).

Computation law.

f = lab Y ·N f · [[((((c))))]](F.2a)

B (N f · [[((((c))))]]) · c = des Y ·N f · [[((((c))))]](F.2b)

Setting Y = NX and f = idNX , (F.2a) specializes to the second comonad law (13.1b).

Fusion law.

(F.3) N f ′ · [[((((c′))))]] = N f · [[((((c))))]] · h ⇐= f ′ = f · h ∧ B h · c′ = c · h

The fusion law implies the third comonad law (13.1c).

N [[((((des ))))]] · [[((((des ))))]] = [[((((des ))))]] · [[((((des ))))]]

⇐= { fusion (F.3) }
[[((((des ))))]] = [[((((des ))))]] ∧ B [[((((des ))))]] · des = des · [[((((des ))))]]

⇐⇒ { computation (13.7b) }
true



56 R. T. W. HINZE AND D. W. H. JAMES

Appendix G. Lifting

The underlying or forgetful functor U : F-Alg(C ) � C is defined

U 〈A, a〉 = A , U h = h .

A functor H̄ : F-Alg(C ) � G-Alg(D) is a lifting of H : C � D if U◦H̄ = H◦U.

F-Alg(C )

U
��

H̄ // G-Alg(D)

U
��

C
H

// D

Given a natural transformation λ : G◦H →̇ H◦F, we can define a lifting Hλ : F-
Alg(C ) � G-Alg(D) of H as follows:

Hλ 〈X , a : FX � X 〉 = 〈HX ,H a · λX : G (HX ) � HX 〉 ,(G.1)

Hλ h = H h .(G.2)

Since Hλ’s action on carriers and homomorphisms is given by H, it preserves iden-
tity and composition. It remains to show that it takes F-homomorphisms to G-
homomorphisms.

H h : Hλ a � Hλ b : G-Alg(D) ⇐= h : a � b : F-Alg(C ) ,

where a : FX � X and b : FY � Y . We reason.

H h · Hλ a

= { definition of Hλ (G.1) }
H h · H a · λX

= { H functor and assumption h : a � b : F-Alg(C ) }
H b · H (F h) · λX

= { λ : G◦H →̇ H◦F is natural }
H b · λY · G (H h)

= { definition of Hλ (G.1) }
Hλ b · G (H h)

The functor α-Alg emerges as a special case with H = Id and λ = α. Also,
Sλ is an instance of the scheme with F = G, which consequently restricts H to
endofunctors.

The construction dualizes to categories of coalgebras.

(R. Hinze) Department of Computer Science, University of Oxford, Wolfson Build-

ing, Parks Road, Oxford, OX1 3QD, England
E-mail address, R. Hinze: ralf.hinze@cs.ox.ac.uk

URL: http://www.cs.ox.ac.uk/people/ralf.hinze/

(D. James) Department of Computer Science, University of Oxford, Wolfson Build-
ing, Parks Road, Oxford, OX1 3QD, England

E-mail address, D. James: daniel.james@cs.ox.ac.uk

URL: http://www.cs.ox.ac.uk/people/daniel.james/


	1. Introduction
	2. The Unique Fixed-Point Principle
	2.1. Infinite Trees
	2.2. Streams

	3. Warm-up
	3.1. Initial Algebras and Final Coalgebras
	3.2. Initial into Final
	3.3. Natural Transformations of Algebras and Coalgebras

	4. Meet Iniga and Finn
	5. Bialgebras
	6. Reheat
	7. Endofunctors over Endofunctors
	7.1. Lifting Endofunctors to Algebras
	7.2. Initial Object and Final Object

	8. Pointed Functors over Endofunctors
	8.1. Free Pointed Functor
	8.2. Initial Object and Final Object
	8.3. Creating a Distributive Law

	9. Monads over Endofunctors
	9.1. Free Monad
	9.2. Initial Object and Final Object
	9.3. Creating a Distributive Law
	9.4. Semantics of Open Terms
	9.5. Embedding Behaviour into Syntax
	9.6. Proving The Unique Fixed-Point Principle Correct

	10. Endofunctors over Copointed Functors
	10.1. Cofree Copointed Functor
	10.2. Initial Object and Final Object
	10.3. Creating a Distributive Law

	11. Pointed Functors over Copointed Functors
	11.1. Initial and Final Objects
	11.2. Creating a Distributive Law

	12. Monads over Copointed Functors
	12.1. Initial and Final Objects
	12.2. Creating a Distributive Law
	12.3. Unique Fixed-Point Principle

	13. Endofunctors over Comonads
	13.1. Cofree Comonad
	13.2. Initial and Final Objects
	13.3. Creating a Distributive Law

	14. Pointed Functors over Comonads
	14.1. Initial and Final Objects
	14.2. Creating a Distributive Law

	15. Monads over Comonads
	15.1. Creating a Distributive Law

	16. Summary
	17. Related Work
	Acknowledgements

	References
	Appendix A. Product Laws
	Appendix B. Coproduct Laws
	Appendix C. Initial Algebra Laws
	Appendix D. Final Coalgebra Laws
	Appendix E. Free Monad Laws
	Appendix F. Cofree Comonad Laws
	Appendix G. Lifting

