
A Functional and Monadic Proof Assistant for

Streams

by

Daniel W. H. James

Submitted in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science

supervised by

Ralf Hinze

Oxford University Computing Laboratory

2007–8

Abstract

Streams, which are infinite sequences of elements, are defined by a coinductive datatype
and operations on streams are corecursive programs. Equations that define streams,
under light restrictions, have a unique solution. This property gives rise to a succinct
proof technique for proving equality between streams. This project presents the discus-
sion and implementation of a proof assistant that supports this proof method. The tool
is implemented in the purely functional language Haskell and makes extensive use of
monads. The emphasis of the project is placed on simplicity, clarity and terseness.

Acknowledgements

Thanks go to: Ralf Hinze and Andres Löh for their tool lhs2TEX, which has been
invaluable in the typesetting of this thesis; Richard Stallman and the maintainers of GNU
Emacs; Dr. Stewart Adams OBE et. al. for their 1961 discovery of Ibuprofen; Whittard
of Chelsea and the coffee growers and pickers of the world (notably Guatemala, Kenya,
India and Nicaragua); Alfonso Bialetti for invention of the Moka Express; the Keble
Library of Keble College, the Vere Harmsworth Library of the Rothermere American
Institute, the Taylor Institution Library and the Radcliffe Science Library; the kitchen
and hall staff of Keble College for breakfast, lunch and dinner.

Contents

1 Introduction and Background 9
1.1 Introduction . 9
1.2 Streams . 9

2 Implementation 19
2.1 Expressions . 19

2.1.1 Representation of integer streams 19
2.1.2 Canonical form . 20
2.1.3 Higher-order traversal of stream expressions 22
2.1.4 Pretty-printing stream expressions 24

2.2 Type Checking . 27
2.2.1 Introduction of Monads . 27
2.2.2 Type Checking Algorithm . 29

2.3 Substitutions and Matchings . 35
2.3.1 Substitutions . 35
2.3.2 Expression Matching . 36

2.4 Expression Parsing . 41
2.5 Expression Rewriting . 45

2.5.1 Replacement . 45
2.5.2 Expression Searching . 46
2.5.3 Rewriting . 47

2.6 Simplifications and Transformations . 51
2.6.1 Distribution of Expressions . 51
2.6.2 Compaction of Expressions . 53
2.6.3 Extraction of Expressions . 54
2.6.4 Definitions and Unrolling Expressions 60

2.7 User Interface . 65

3 Evaluation and Conclusions 67
3.1 Evaluation . 67
3.2 Conclusions . 68
3.3 Further Work . 69

7

8

Bibliography 72

Chapter 1

Introduction and Background

1.1 Introduction

This master’s project presents the implementation of a proof assistant. The proofs that
it is purposed for are equalities between streams. The project idea was borne out of
Hinze’s paper “Functional Pearl: Streams and Unique Fixed Points” [4]. The project’s
product, a proof tool, serves as a complement to this paper. Note that it is labelled as
a ‘proof assistant’ rather than an ‘automatic prover’, the distinction being that the tool
requires active human interaction to direct the proof search. The latter was soon found
to be a goal that would cost much in the way of complexity and intricacy.

The meta-purpose of the project was a personal exploration of theorem-proving.
There exist a number of general-purpose theorem-provers, some which are highly per-
formant, as well as many other specialized tools. This project has different intentions
— the guiding principle is simplicity. The program code presented in this thesis has
been crafted to maximize clarity and readability; many of the features are suprisingly
succicint and this terseness has been achieved, to a great degree, by the nature of the
implementation language. My quest for elegance is supported by an emphasis on a
functional and monadic implementation — optimized performance is superfluous within
the bounds of this project. The starting point for the implementation of this project
was Bird’s functional calculator, presented in chapter 12 of “Introduction to Functional
Programming using Haskell” [1].

1.2 Streams

A stream is an infinite sequence of elements. The following is a definition in the lazy
functional language Haskell [8].

data Stream α = Cons{head :: α, tail :: Stream α}
infixr 5 ≺
(≺) :: α→ Stream α→ Stream α
a ≺ s = Cons a s

9

10 CHAPTER 1. INTRODUCTION AND BACKGROUND

As well as the datatype Stream, we have defined an infix operator (≺) so as to provide
syntactic sugar for constructing streams.

The type of streams, Stream α, is a container type. Like Haskell’s list datatype
[α], it contains values of type α. While a list can be infinite in a lazy language such
as Haskell, it is more widely viewed as a finite datatype. Streams however are most
definitely infinite. Note that there is just a single data constructor (Cons) and no base
constructor, so there is no means by which to terminate a stream and therefore all stream
values are necessarily infinite objects.

We can delve briefly into the theory behind this. In contrast to the list datatype,
which is an inductive type, a stream is a coinductive type. The semantics of the list
datatype are given by an initial algebra and analogously the semantics of the stream
datatype are given by a final coalgebra. The parallels continue from the category-
theoretic world: fold the catamorphism of the initial algebra for lists, is mirrored by
the anamorphism of the final coalegbra for streams, unfold . Just as Hutton points out
the use of fold and its universal property as a proof method [5], Gibbons and Hut-
ton show the use of unfold and its universal property as a high-level proof method for
corecursive programs [3].

The following is an extremely simple stream which serves simply to demonstrate the
construction of a stream — an infinite object.

zeros :: Stream Int
zeros = 0 ≺ zeros

The stream zeros is the infinite sequence of the number zero. This is an example of what
we call a constant stream, a stream s such that tail s = s.

Suppose that we have a function of the type (α1 → ... → αn → β) and we wish to
lift this function to streams. This lifting operator is familiar to functional programmers,
again in the context of lists, and is commonly called zipWith. Thus the type of a zipWith
for streams would be,

(α1 → ...→ αn → β)→ (Stream α1 → ...→ Stream αn → Stream β)

In Haskell zipWith is in fact a family of higher-order functions, one for each n. For
n = 0, 1, 2 these are given specific names: repeat , map and zip respectively. Here is the
first,

repeat :: α→ Stream α
repeat a = a ≺ repeat a

The function repeat can also be called a parametrized stream. Given a value, repeat
constructs an infinite sequence of that value — a constant stream. As pointed out
previously, tail (repeat k) = repeat k for all k. With repeat we can now redefine zeros
more succinctly as zeros = repeat 0.

The following are the functions map and zip, as defined for streams. They are indeed
similar in definition to their list counterparts and are referred to as stream operators.

1.2. STREAMS 11

map :: (α→ β)→ (Stream α→ Stream β)
map f s = f (head s) ≺ map f (tail s)
zip :: (α→ β → γ)→ (Stream α→ Stream β → Stream γ)
zip f s t = f (head s) (head t) ≺ zip f (tail s) (tail t)

Suppose that we have the streams ones and twos, defined as repeat 1 and repeat 2
respectively. It seems natural then to perform arithmetic operations such as addition on
numeric streams like these. Addition, multiplication and other arithmetic operators are
performed element-wise on streams, thus we can use the zipWith family of functions to
lift arithmetic on numeric values to arithmetic on streams of numeric values. In Haskell
we can make the datatype Stream an instance of the numeric type class Num with the
following implementation1.

instance (Num α)⇒ Num (Stream α) where
(+) = zip (+)
(−) = zip (−)
(∗) = zip (∗)
negate = map negate
fromInteger = repeat ◦ fromInteger

Type classes [13, 2] allow a controlled ‘brand’ of ad-hoc polymorphism in the form of
overloading [11]. Given this instance declaration, the addition operator (+) can be used
on all numeric types, including streams.

As an aside, the type we originally gave to the stream zeros was Stream Int , however
using the full power of Haskell and its type class mechanism, we can generalize this and
give zeros the type Num α ⇒ Stream α. This means that for any type α that is an
instance of the numeric type class Num, zeros has type Stream α. The integer type Int
is a numeric type and an instance of the Num type class, however the integer constant
0 in the definition is also in the set of natural, rational, real and complex numbers. The
Haskell language allows not only the overloading of functions, but also the syntactic use
of integer constants for any datatype which is an instance of the class Num. This is
demonstrated with the following definition of the stream of natural numbers,

nat = 0 ≺ nat + 1

The integer constant 1 in the expression nat + 1, abbreviates the fromInteger method
from the Num type class, so that the above definition is in fact equivalent to,

nat = 0 ≺ zip (+) nat (repeat 1)

Note that in the definition of the (≺) operator, it is declared to be right associative
with a precedence level of 5; the precedence level of addition and multiplication is 6
and 7 respectively, with a higher level corresponding to a higher precedence. Therefore
0 ≺ nat + 1 is in fact 0 ≺ (nat + 1) when all the parenthesises are added in.

1The methods abs and signum have been omitted

12 CHAPTER 1. INTRODUCTION AND BACKGROUND

It is interesting to compare the previous definition of the natural numbers as a stream
to its definition as a recurrence,

a0 = 0 an+1 = an + 1

Recurrences of this form are easily expressed in a single stream equation using the (≺)
operator. Again, here is a recurrence for the factorials,

a0 = 1 an+1 = (n+ 1) ∗ an

and the same sequence defined as a stream,

fac = 1 ≺ (nat + 1) ∗ fac

This relationship between recurrences and streams can be formalized. A sequence defined
by, a0 = k and an+1 = f(an) becomes a = k ≺ f a. A reference to the indexing variable,
as in the definition of the factorials, become the natural numbers stream.

The Fibonacci numbers are a slightly more complicated numeric sequence, defined
by the following recurrence,

a0 = 0 a1 = 1 an+2 = an+1 + an

which translates into the following stream equation,

fib = 0 ≺ 1 ≺ fib + tail fib

The first two values of the sequence are declared and successive values depend on the
previous two values. This stream equation, while correct, is defined in terms of its tail,
tail fib, which is less than desirable for reasons that will be elucidated on later. No
matter however, as it is simple to eliminate this call to tail by splitting the equation into
two and employing mutual recursion as follows,

fib = 0 ≺ fib′

fib′ = 1 ≺ fib + fib′

With the following calculation, these two equations can be recombined into one,

fib′

= { definition of fib′ }
1 ≺ fib + fib′

= { 1 = 1 + 0 }
(1 + 0) ≺ fib + fib′

= { distribute ≺ over + }
(1 ≺ fib) + (0 ≺ fib′)

= { definition of fib }
(1 ≺ fib) + fib

1.2. STREAMS 13

giving

fib = 0 ≺ fib + (1 ≺ fib)

There is a another function called iterate that makes an important addition to our
list of basic stream functions: repeat , map and zip. Given a function f of type (α→ α)
that transforms elements of type α, the function iterate builds a stream of repeated
applications of f to an initial value a. The definition is as follows,

iterate :: (α→ α)→ (α→ Stream α)
iterate f a = a ≺ iterate f (f a)

Using iterate we can give an alternative definition of the stream of natural numbers,
which is iterate (+1) 0, where (+1) is the function that increments a numeric value.
The function iterate also generalizes the function repeat . The expression repeat 0 is the
stream of zeros, however so is iterate id 0, where id is the identity function. This gives
us our first hints of motivation, for proving equality between streams.

A final operator to add to our basic list is stream interleaving.

infixr 5 g
(g) :: Stream α→ Stream α→ Stream α
s g t = head s ≺ t g tail s

This operator is neither commutative or associative. Like the stream cons operator (≺),
stream interleave is right associative and has the same level of precedence.

Using interleaving we can give an alternative definition of the natural numbers. Our
first definition nat , was based on Peano axioms. The following definition is based on the
binary number system.

bin = 0 ≺ 2 ∗ bin + 1 g 2 ∗ bin + 2

The interleaving operator captures a further style of recurrence equation. Recurrences
of the following form,

a0 = k a2n+1 = f(an) a2n+2 = g(an)

translate into a = k ≺ f a g g a.
We have given two very different equations for what we believe to be the exact same

stream. By definition the starting elements of both nat and bin are the same, but we
cannot simply examine the remaining elements as we are dealing with infinite, not finite,
sequences.

It is indeed possible to define a corecursive function of type Stream τ that does not
actually produce a stream. The equations s = tail s and s = head s ≺ tail s are
two such examples. Operationally speaking, these definitions loop in Haskell and do
so because they are not productive. As noted previously, tail = s iff s is a constant

14 CHAPTER 1. INTRODUCTION AND BACKGROUND

stream. Therefore s can be instantiated to any constant stream, of which there are
infinitely many. The second equation is even more general, in fact the most general as
this equation holds for all streams.

If one restricts the syntactic form of these definitions to ensure that they are un-
ambiguous — that they possess unique solutions — then this restriction of uniqueness
will pay dividends when it comes to proving that two streams are equal. Quite simply,
uniqueness can be exploited to the extent that, if one can show that two streams satisfy
the same equation, then they must be equal as this common equation has one and only
one solution. Unique equations are of the following form,

x x1 . . . xn = h ≺ t

for n ≥ 0, where x is an identifier of type Stream τ when n = 0 and x is a function
of return type Stream τ when n > 0. Expression h is of type τ ; t is an expression of
type Stream τ that can contain recursive calls to x, however neither head or tail may be
applied to x. Well-typed applications of head and tail to arguments xi are permitted.

With the exception of our first definition of the Fibonacci stream, all of the stream
equations thus far satisfy these restrictions. There are other streams where their natural
definition does not follow the form of x = h ≺ t . The following fractal sequence is a
good example:

frac = nat g frac

This is a sequence that contains itself in a sub-sequence. Here are the first 20 value of
the stream frac:

0 0 1 0 2 1 3 0 4 2 5 1 6 3 7 0 8 4 9 2

Note that the odd indicies are the natural numbers and the even indicies are the stream
itself! The use of a previously defined stream is legitimate and in this case it is what
makes this definition productive. Using the definition of interleaving and natural num-
bers, this definition can be rewritten to a less elegant version that does satisfy the strict
syntactic restrictions:

frac = 0 ≺ frac g nat + 1

A proof utilizing uniqueness can be formalized as follows. Let s = φ s be a valid
stream equation that observes the above restrictions and let its unique solution be fix φ.
Uniqueness is expressed in these terms by the following universal property:

fix φ = s ⇐⇒ φ s = s

This states that fix φ is a solution of x = φ x and that any solution s of x = φ x is
equal to fix φ. To prove that s = t, where s is the unique solution of x = φ x, fix φ, it
is sufficient to prove that φ t = t. The following is an illustratively succinct proof that

1.2. STREAMS 15

repeat k = iterate id k :

iterate id k
= { definition of iterate }

k ≺ iterate id (id k)
= { identity }

k ≺ iterate id k

Thus iterate id k equals the unique solution of x = k ≺ x , which is by definition repeat k .
This first example was an easy case as only one of the terms s and t was given as

a fixed point. In the more complex case where both s and t are fixed points, fix φ and
fix ψ respectively, there are four basic equations that are sufficient to prove that s = t:
φ (ψ s) = ψ s, ψ s = s and the analogous ψ (φ t) = φ t, φ t = t. The sufficiency of the
first two are shown by the following proof.

φ (ψ s) = ψ s

⇔ { universal property }
fix φ = ψ s

⇔ { s = fix φ }
s = ψ s

⇔ { universal property }
s = fix ψ

⇔ { t = fix ψ }
s = t

Establishing any of these four equations may be tricky or even unattainable; these equa-
tions are expressing that one term is a fixpoint of the defining function of the other
term. For all but the simplest stream equations, this immediate similarity is unlikely.
An alternative approach would be to progress from both s and t to meet at a common
function χ, with a unique fixed point. The proof is therefore in two halves, one to show
that s = χ s and the other to show that t = χ t. Relying on the fact that χ has a unique
fixed point — x = χ x has a unique solution — these two halves can be joined to show
that s = t. Such a proof would mimic the following skeleton.

s

= { why? }
χ s

⊂ { x = χ x has a unique solution }
χ t

= { why? }
t

16 CHAPTER 1. INTRODUCTION AND BACKGROUND

The function χ is a product of the proof itself; it is discovered during the process and
cannot be systematically predicted a priori. The symbol ⊂ denotes the link in this linked
proof.

In their paper “Proof methods for structured corecursive programs” [3], Gibbons
and Hutton explore a number of proof methods. These include the use of the unfold
operator along with its universal property, to conduct proofs in a style similar to the
calculational linked proofs presented here. The comparison is worthwhile making, as we
are interested in assuring ourselves that linked proofs are not only a good proof method,
but that they are at least superior in some sense to competing methods.

The presentation given by Gibbons and Hutton uses lists (which can be finite) not
streams, so the definitions and proofs given here have been recast into the setting of
streams. The following is the definition of unfold ,

unfold :: (α→ β)→ (α→ α)→ α→ Stream β
unfold f g s = f s ≺ unfold f g (g s)

and its universal property,

f = unfold g h ⇐⇒ ∀x. f x = g x ≺ f (h x)

The first restriction of this proof methods is that corecursive programs must be written
in terms of unfold so that the universal property can be employed. Previously we gave
a linked proof of the equality repeat k = iterate id k . Given a new definition of iterate
as iterate f s = unfold id f s here is a proof for comparison.

repeat = iterate id
⇔ { definition of iterate }

repeat = unfold id id
⇔ { universal property }
∀x. repeat x = id x ≺ repeat (id x)

⇔ { simplification }
∀x.repeat x = x : repeat x

⇔ { definition of repeat }
true

The second proof for comparison is the proof of the iterate fusion law:

map h ◦ iterate f1 = iterate f2 ◦ h ⇐= h ◦ f1 = f2 ◦ h

which is in fact the free theorem [12] of the type (α → α) → (α → Stream α), the type

1.2. STREAMS 17

of iterate. The first proof of this law is using the linked proof style:

map h (iterate f1 a)
= { definition of map }

h (head (iterate f1 a)) ≺ map h (tail (iterate f1 a))
= { definition of iterate, simplify head and tail }

h a ≺ map h (iterate f1 (f1 a))
⊂ { x a = h a ≺ x (f1 a) has a unique solution }

h a ≺ iterate f2 (h (f1 a))
= { assumption: h ◦ f1 = f2 ◦ h }

h a ≺ iterate f2 (f2 (h a))
= { definition of iterate }

iterate f2 (h a)

To prove the same law using unfold and its universal property, we must first prove
two auxiliary fusion laws. The first shows that the composition of an unfold and another
function can be fused into a single unfold .

unfold f g1 ◦ h = unfold (f ◦ h) g2

⇔ { universal property }
∀x. unfold f g1 (h x) = f (h x) ≺ unfold f g1 (h (g2 x))

⇔ { definition of unfold }
∀x. f (h x) ≺ unfold f g1 (g1 (h x)) = f (h x) ≺ unfold f g1 (h (g2 x))

⇐ { extensionality }
g1 ◦ h = h ◦ g2

The second fusion law states that the composition of a map and an unfold can again be
fused into a single unfold .

map f ◦ unfold g h = unfold (f ◦ g) h
⇔ { universal property }
∀x. map f (unfold g h x) = f (g x) ≺ map f (unfold g h (h x))

⇔ { definition of map }
∀x. f (head (unfold g h x)) ≺ map f (tail (unfold g h x))

= f (g x) ≺ map f (unfold g h (h x))
⇔ { definition of unfold , simplify head and tail }
∀x. f (g x) ≺ map (unfold g h (h x)) = f (g x) ≺ map f (unfold g h (h x))

⇔ { reflexivity }
true

18 CHAPTER 1. INTRODUCTION AND BACKGROUND

Finally, using these two fusion laws we can prove the iterate fusion law,

iterate f2 ◦ h
= { definition of iterate }

unfold id f2 ◦ h
= { fusion (1) }

unfold (id ◦ h) f1
= { identity }

unfold (h ◦ id) f1
= { fusion (2) }

map h ◦ unfold id f1
= { definition of iterate }

map h ◦ iterate f1

While this approach is appealing in the respect that the heavy lifting is accomplished
with commons tools based upon unfold , this very same characteristic is constraining.

Chapter 2

Implementation

2.1 Expressions

The concept of streams has been introduced using Haskell however we will not use the
full Haskell language for representing and manipulating streams. We will in fact restrict
ourselves to a stripped down language that can express integer streams. This presents
a domain that is simplistic enough but with a more than sufficient supply of interesting
streams1.

2.1.1 Representation of integer streams

The following datatype defines the abstract syntax that will be used to represent a
stream expression.

type Ident = String
infixr 5 :≺:, :g:
infixr 8 :∧:
data Expr = Lit Int

| Var Ident
| App Ident [Expr]
| Summ [Expr]
| Prod [Expr]
| Expr :∧: Expr
| Expr :≺: Expr
| Expr :g: Expr

deriving (Eq ,Ord)

The first line declares a type synonym, stating that an identifier is a string. The type Expr
has eight data-constructors for constructing: literals, variables, function applications,
sums, products, exponentials, cons’ed streams and interleaved streams. The deriving

1http://www.research.att.com/~njas/sequences/

19

20 CHAPTER 2. IMPLEMENTATION

clause at the end of the datatype declaration states which (language standard) type
classes we would like to be automatically instantiated. Here the datatype Expr is given
an instance for the equality type class Eq and the ordering type class Ord . The type class
Eq defines two operators, (≡) and (6≡); Ord defines a variety of comparison operators
including (6). Ordering on abstract datatypes such as Expr is defined by the syntactic
order of the data-constructors, thus Lit 0<Var "x". The necessity of equality is obvious,
but ordering is required so that collections of expressions, such as the arguments to Summ
and Prod , can be ordered and compared.

The are several points worth making about the Expr data type. Addition and mul-
tiplication are commutative and associative operators, therefore instead of being binary
operators, Summ and Prod hold their operands in a list. The summands and factors are
to be kept in sorted order so that comparison is simplified and furthermore, literals will
conveniently be at the head of the list. Subtraction is not a primitive in this abstract syn-
tax, instead an expression such as a−b would be Summ [Var "a",Prod [Lit (−1),Var "b"]].
Expressivity is traded here for simplicity; the trade-off is worthwhile as the abstract
syntax is an internal representation. A final point of interest is the representation of
function application. An alternative implementation for the App data-constructor is
App Expr Expr . The implementation given means that the function name is immedi-
ately accessible and the arguments are collected together so that they can be counted
and ranged over.

2.1.2 Canonical form

Just as a human would want to kept their proofs tidy by eliminating redundancies, here
we also want to keep our integer streams in a simple canonical form. The following
functions do this by partially evaluating constants and applying basic arithmetic laws.
Literals and variables are the base cases of the canonical form. A function application is
in the canonical form if all of its arguments are. To construct a Summ in the canonical
form we use the following function; it sums a list of expressions in canonical form and
returns a single expression representing that sum:

summ :: [Expr]→ Expr
summ [] = zero
summ [e] = e
summ es =

case peval (mergeLists [summands e | e ← es]) of
[x]→ x
xs → Summ xs

where peval (Lit m : Lit n : es) = peval (Lit (m + n) : es)
peval (Lit 0 : es) = es
peval es = es

This definition illustrates a number of language features in Haskell. The first is pattern
matching. The function summ is defined in three parts, the first case for the empty list,

2.1. EXPRESSIONS 21

the second case for the singleton list and the third as a catch all case. Pattern matching
is again used in the explicit case statement as well as the implicit case analysis of the
definition of the local function peval . The implementation of summ also features a list
comprehension: [summands e | e ← es], the list of summands of e, where e is drawn
from the list es. The function mergeLists takes a list of sorted lists and merges them
into a single sorted list. The function peval partially evaluates the merged summands by
summing the literals. The function summands, used in the definition of summ is given
here:

summands :: Expr → [Expr]
summands (Lit 0) = []
summands (Summ ts) = ts
summands t = [t]

An analogous function can be defined for the multiplication of a list of expressions.
The following function follows a very similar form to summ,

prod :: [Expr]→ Expr
prod [] = one
prod [f] = f
prod fs
| zero ∈ fs ′ = zero
| otherwise =

case peval fs ′ of
[x]→ x
xs → Prod xs

where fs ′ = mergeLists [factors f | f ← fs]
peval (Lit m : Lit n : fs) = peval (Lit (m ∗ n) : fs)
peval (Lit 1 : fs) = fs
peval fs = fs

This definition illustrates another Haskell language feature, namely guards. The first
guard, | zero ∈ fs ′, states that if Lit 0 is in the merged list of factors fs ′, then the whole
product is zero. The ‘where’ clause introduces local definitions, similar to the let ... in
expressions in Haskell and other functional languages. The auxiliary function factors
mirrors the definition of summands given above.

The third function that constructs expressions in a canonical form is the operator
(ˆ̂ ˆ),

infixr 8 ˆ̂ ˆ
(ˆ̂ ˆ) :: Expr → Expr → Expr
Lit m ˆ̂ ˆ Lit n
| n > 0 = Lit (m ↑ n)

e ˆ̂ ˆ Lit n
| n ≡ 0 = one

22 CHAPTER 2. IMPLEMENTATION

Lit n ˆ̂ ˆ e
| n ≡ 1 = one

e ˆ̂ ˆ Lit n
| n ≡ 1 = e

(Prod fs) ˆ̂ ˆ e = prod [f ˆ̂ ˆ e | f ← fs]
(e :∧: a) ˆ̂ ˆ b = e ˆ̂ ˆ prod [a, b]
a ˆ̂ ˆ b = a :∧: b

This definition again makes heavy use of pattern matching and guards to give a terse
definition that includes a handful of arithmetic laws. The final two functions for con-
structing expressions in canonical form are (≺), (g) :: Expr → Expr → Expr , however
we will omit these definitions as they are trivial.

2.1.3 Higher-order traversal of stream expressions

Many operations on streams expression, particularly in the setting of a proof assistant,
are in the form of a traversal. The most important of all the higher-order functions for
traversing a data-structure is fold.

foldExpr summ prod (ˆ̂ ˆ) (≺) (g) = fold
where fold (App f as) = App f [fold a | a ← as]

fold (Summ ss) = summ [fold s | s ← ss]
fold (Prod fs) = prod [fold f | f ← fs]
fold (a :∧: b) = (fold a) ˆ̂ ˆ (fold b)
fold (h :≺: t) = (fold h) ≺ (fold t)
fold (s :g: t) = (fold s) g (fold t)
fold t = t

This version of fold for the Expr datatype is not a true fold as it will only return values
of type Expr , rather than an arbitrary type. The function foldExpr will traverse the
whole of a expression however it will not allow us to transform literals, variables or
function applications. For the purpose of transforming an expression into the canonical
form describe above, foldExpr is perfectly adequate.

reduce :: Expr → Expr
reduce = foldExpr summ prod (ˆ̂ ˆ) (≺) (g)

The expression transformation reduce is our first operator for proof expressions. It will
reduce expressions such as 2 ∗ 0 ≺ (s ∗ 1) ˆ̂ ˆ 1 + 1 + 0, to 0 ≺ s + 1.

Haskell is a functional language that emphasises the use of higher-order functions
such as folds and maps. These functions abstract over the details of a data-structure,
so given implementations of map for lists, trees and even streams, one can apply map f
to any of these data-structures. This idea taken further enters the realm of generic
programming, where a function can be written once, but written in a generic way such
that it works on any data-structure. However, unlike a plain parametrically polymorphic

2.1. EXPRESSIONS 23

function, a generic function exhibits type specific behaviour. One approach to generic
programming (there are many) was proposed by Lämmel and Peyton-Jones and is called
“Scrap Your Boilerplate”[6]. The following functions are not generic functions in the
generic programming sense, they are for the Expr datatype only, however they imitate
the style of traversal functions given in the “Scrap Your Boilerplate” library. The key
characteristic of these traversal schemes is that they operate over one layer only — they
apply a function only to the immediate children in the structure of a value. Such a single
layered function can then be used to build a variety of recursive traversal schemes.

gmapExprQ :: (Expr → r)→ Expr → [r]
gmapExprQ f expr =

case expr of
App xs → map f xs
Summ xs → map f xs
Prod xs → map f xs
x :∧: y → [f x , f y]
x :≺: y → [f x , f y]
x :g: y → [f x , f y]

→ []

The function gmapExprQ takes a query function of type (Expr → r) and applies it to all
immediate sub-expressions, collecting the results. It is simply a query mapping function.
A single layer traversal of a transformation function of type (Expr → Expr) is similar,

gmapExprT :: (Expr → Expr)→ Expr → Expr
gmapExprT f expr =

case expr of
App g xs → App g (map f xs)
Summ xs → Summ (map f xs)
Prod xs → Prod (map f xs)
x :∧: y → f x :∧: f y
x :≺: y → f x :≺: f y
x :g: y → f x :g: f y
x → x

Note that in the same way that gmapExprQ does not query literals and variables, the
transformation function is not applied to those data constructors in gmapExprT . It is
the sub-expressions not the expressions themselves that are being directly transformed.

Suppose that we want to rename some or all of the identifiers in an expression as
well as substitute expressions for variables. The following function mapIdent takes a
function that maps identifiers to expressions.

mapIdent :: (Ident → Expr)→ Expr → Expr
mapIdent f e =

case gmapExprT (mapIdent f) e of

24 CHAPTER 2. IMPLEMENTATION

(Var v) → f v
(App v xs)→

case f v of
(Var v ′)→ App v ′ xs

→ error "Invalid function"
x → x

To rename identifier a to b, a mapping f would take "a" to Var "b". A full expression
substitution follows logically. Note that gmapExprT is employed in such a way as to
produce a bottom-up traversal — substitutions occur at the leaves of the abstract syntax
tree before those at the root. In the “Scrap Your Boilerplate” library bottom-up traver-
sals are expressed using the everywhere combinator and top-down with everywhere ′.

everywhere :: (∀a.Data a ⇒ a → a)→ ∀a.Data a ⇒ a → a
everywhere f x = f (gmapT (everywhere f) x)
everywhere ′ :: (∀a.Data a ⇒ a → a)→ ∀a.Data a ⇒ a → a
everywhere ′ f x = gmapT (everywhere ′ f) (f x)

2.1.4 Pretty-printing stream expressions

A string in Haskell is represented as list of characters. The complexity of string con-
catenation, str1 ++ str2, is the length of the first argument, str1. Using concatenation to
build up a large string from many parts can thus become very costly. Haskell provides
the type class Show for representing values as strings. It obviates the time complexity
of string concatenation with the type ShowS , a type synonym for a function that takes
a string and appends it. Concatenation of many strings is then constant time, using
function composition. The following is a listing of the Show type class and associated
functions.

type ShowS = String → String
class Show a where

showsPrec :: Int → a → ShowS
show :: a → String
...

shows :: Show a ⇒ a → ShowS
showChar :: Char → ShowS
showString :: String → ShowS
showParen :: Bool → ShowS → ShowS

The class method showsPrec takes an additional integer argument in the range 0–11 that
represents the surrounding precedence level. The helper function shows is equivalent to
showsPrec 0 and the function showParen conditionally wraps a string in parenthesis.

2.1. EXPRESSIONS 25

The following is the instance of the Show type class for the Expr datatype. A
sufficient instantiation defines the function showsPrec for each data-constructor. The
definitions for (:∧:) and (:g:) have been omitted as they follow similarly from (:≺:).

instance Show Expr where
showsPrec d (Lit i) = showsPrec d i
showsPrec (Var v) = showString v
showsPrec (App f []) = showString f
showsPrec d (App f args) = showParen (d > app prec) $

showString f ◦ showChar ’ ’ ◦ showOperands app prec " " args
where app prec = 10

showsPrec d (Summ sums) = showParen (d > 6) $ showSumm sums
showsPrec d (Prod (Lit i : prods))
| i ≡ −1 = showParen (d > neg prec) $

showChar ’-’ ◦ showProd prods
| i < 0 = showParen (d > neg prec) $

showChar ’-’ ◦ showProd (Lit (abs i) : prods)
where neg prec = 6

showsPrec d (Prod prods) = showParen (d > 7) $ showProd prods
showsPrec d (h :≺: t) = showParen (d > cons prec) $

showsPrec (cons prec + 1) h ◦
showString " <: " ◦
showsPrec cons prec t
where cons prec = 5

showsPrec d (a :∧: b) = ...
showsPrec d (s :g: t) = ...

The absence of a negation and subtraction operator from the abstract syntax datatype
Expr means that pretty-printing sums and products is more complex. Note that the
right associativity of the cons operator is encoded in the definition of showsPrec. This
ensures that a :≺: (b :≺: c) is printed as a ≺ b ≺ c. The same is done for the operators
(ˆ̂ ˆ) and (g). The left associativity of addition and multiplication is irrelevant as sums
and products are represented as lists. The arguments to a function application are also
represented as a list. This common pattern is abstracted into the following auxiliary
function,

showOperands :: Int → String → [Expr]→ ShowS
showOperands [] = id
showOperands prec op xs =

foldr1 (λs r → s ◦ showString op ◦ r) (map (showsPrec (prec + 1)) xs)

The function showOperands takes a precedence, a string to intersperse and a list of
expressions. The expressions are pretty-printed and then assembled into a sequence,
interspersed with the operator string. The function foldr1 is a variant of the right

26 CHAPTER 2. IMPLEMENTATION

associative fold operator for lists; it requires a non-empty list. The following function is
a simple instantiation of showOperands.

showProd [] = shows 1
showProd xs = showOperands 7 " * " xs

The lack of a primitive subtraction results in a more complex auxiliary function
for pretty-printing sums. Subtraction is represented as multiplication by −1, however
multiplication by any other negative integer is also a negated term. For aesthetic reasons
the integer constant in a summ is printed at the end of the expression, but all other
summands are printed in the order in which they appear.

showSumm [] = shows 0
showSumm [x] = showsPrec 7 x
showSumm (Lit i : xs)
| i < 0 = showSumm xs ◦

showString " - " ◦ shows (abs i)
| otherwise = showSumm xs ◦

showString " + " ◦ shows i
showSumm (x : xs@(y : ys)) = showsPrec 7 x ◦

case y of
Prod (Lit i : zs)
| i ≡ −1 → showString " - " ◦

showSumm (Prod zs : ys)
| i < 0 → showString " - " ◦

showSumm ((Prod (Lit (abs i) : zs)) : ys)
→ showString " + " ◦ showSumm xs

The function showSumm is further illustration of the expressive power of pattern match-
ing and guards. It features an as-pattern, which is of form var@pat , where var is the
name bound to the value matched by the pattern pat . Here, the name xs refers to the
tail of the input list and y and ys are the head and tail of this.

2.2. TYPE CHECKING 27

2.2 Type Checking

2.2.1 Introduction of Monads

Haskell is a pure functional language, as has been noted previously. The ‘pure’ label is key
here. The implication is that Haskell has no concept of state, mutation or input/output
— anything that manipulates the Real–World. If Haskell was left at this point it would
be utterly useless as it would have no means by which to communicate with a program
user. As Peyton-Jones has previously put it, the only way one would know that a
purely functional program is running, is when the computer becomes hot. Referential
transparency is what makes purity worthwhile. The guarantee that no matter when or
how many times you apply a function to the same arguments, you will always receive the
same answer in return. It is often very important to know that executing a computation
will not mutate a shared piece of data — that it is free of side-effects. Nevertheless,
input/output and managing state is a crucial requirement for real world programming.

To tackle what’s known as the awkward squad (input/output, concurrency, excep-
tions etc.) Haskell uses a concept called monads. Monads are a means for structuring and
sequencing computations. Consider the Maybe datatype, a standard Haskell datatype,

data Maybe a = Just a | Nothing

Suppose that we have three functions f ::a → Maybe b, g ::b → Maybe c, h ::c → Maybe d .
To sequence these functions we could write the following code,

case f a of
Nothing → Nothing
Just b →

case g b of
Nothing → Nothing
Just c → h c

This is very inelegant as we are forced to deal with the two cases after each function
application. If f , g and h were simply f :: a → b, g :: b → c and h :: c → d then
composition would be trivial: h ◦ g ◦ f .

A monad is primarily comprised on two functions, a function return that lifts a
value into a monadic value and a function (>>=), pronounced ‘bind’, that combines
monadic values with computations that produce monadic values. For generality Haskell
implements the monad concept as a type class, given here:

class Monad m where
(>>=) :: m a → (a → m b)→ m b
return :: a → m a

The Maybe datatype is an instance of the Monad type class,

instance Monad Maybe where
Nothing >>= f = Nothing

28 CHAPTER 2. IMPLEMENTATION

(Just x)>>= f = f x
return x = Just x

We can now write the above composition of f , g and h as return a>>=f >>=g>>=h — much
better! Haskell provides syntactic-sugar called ‘do-notation’ that imitates imperative
code and is appropriate for sequencing more complex monadic computations.

action a = do b ← f a
c ← g b
d ← h c
return d

There are are a number of datatypes that form useful monads. These are defined in
the standard Haskell libraries. The first of these is State,

newtype State s a = State{runState :: (s → (a, s))}
class Monad m ⇒ MonadState s m | m → s where

get :: m s
put :: s → m ()

modify :: MonadState s m ⇒ (s → s)→ m ()

A value of type State s a is a computation that takes a state value of type s and returns
a value of type a along with a new state. When state computations are sequenced
together using the monad operator (>>=), the state is ‘threaded’ through the program.
The type class MonadState, of which the State datatype is an instance, defines a number
of functions for working in the state monad. The function get retrieves the current state,
put overwrites it and modify applies a function to it.

There are two specializations of the State monad, the Reader and Writer monads.
A partial reproduction of the datatypes and associated type classes are given here.

newtype Reader r a = State{runReader :: (r → a)}
class Monad m ⇒ MonadReader r m | m → r where

ask :: m r
...

newtype Writer w a = Writer{runWriter :: (a,w)}
class (Monoid w ,Monad m)⇒ MonadWriter w m | m → w where

tell :: w → m ()
...

A reader captures the concept of a computation that reads from a shared environment, a
value of type r , and returns a value of type a. The ask method of the MonadReader type
class reads the environment value. A writer captures the concept of a computation that
produces output (such as logging) that is secondary to the return value. The definition
of the the MonadWriter type class requires that the type of the output is an instance
of the Monoid type class. A monoid is a type that has an addition operator and an
identity value. A list is a monoid, with concatenate as its operator and the empty list
as the identity.

2.2. TYPE CHECKING 29

Monad Transformers

Monad transformers are a variation on regular monads. Suppose that your computation
reads from a shared environment, but it also returns values of type Maybe a. Therefore
your computation has the type (r → Maybe a). This problem is solved by using a monad
transformer variant of the reader monad.

newtype ReaderT r m a = ReaderT{runReaderT :: r → m a }

A computation of the form (r → Maybe a) can now be given the type ReaderT r Maybe a.
The ReaderT datatype is also an instance of the Monad and MonadReader type classes.

instance Monad m ⇒ Monad (ReaderT r m) where ...
instance Monad m ⇒ MonadReader r (ReaderT r m) where ...

It is possible to bolt together multiple monads to form a stack-like type. This gives rise
to the idea of inner and outer monads. In the above example, Maybe is the inner monad.
Suppose that we have a computation in the inner monad that we wish to sequence in
the combined monad; the final type class of interest, MonadTrans, solves this problem.

class MonadTrans t where
lift :: Monad m ⇒ m a → t m a

The class method lift , lifts a computation in the inner monad to the combined monad.
To continue with the running example, if we have a function f of type b → Maybe a
which we wish to run in the monad ReaderT r Maybe a then lift (f b) will return a
reader computation that simply ignores the environment parameter.

2.2.2 Type Checking Algorithm

The typing algorithm implemented here is a type reconstruction algorithm that calculates
the principal type of a stream expression. Given a stream expression it infers the types
without any explicit type-annotations. There are four different types for integer streams,

data Ty = TyInteger
| TyStream
| TyArrow Ty Ty
| TyVar Int

deriving (Eq)

integers, streams, functions and type variables. The type checking procedure is not as
trivial as one would initially expect, particularly as we have so few types. The cause
is that the abstract syntax for streams has a limited amount of polymorphism, namely
that an integer literal can be either a plain integer or a constant stream. Furthermore
the arithmetic operators can be applied to both integers and streams.

Given a term t and a context Γ, the algorithm calculates a set of typing constraints.
A term t is typeable iff the constraints are satisfiable. The constraint set C that is

30 CHAPTER 2. IMPLEMENTATION

produced, is a set of equations between type expressions — expressions of the datatype
Ty . The solution to the constraint set is a substitution that unifies every equation in
the set; a substitution σ unifies S = T if σS ≡ σT .

This constraint-based approach to typing can be formalised by the constraint typing
relation Γ ` t : T |C. This says that a term t in context Γ has type T when constraints
C are satisfiable. The relation is defined by the following rules,

x : T ∈ Γ
Γ ` x : T | {}

(CT-Var)
unique(X)

Γ ` n : X | {}
(CT-Lit)

Γ ` t : T | C
C ′ = C ∪ {T = Stream}

Γ ` head t : Int | C ′
(CT-Head)

Γ ` t : T | C
C ′ = C ∪ {T = Stream}
Γ ` tail t : Stream | C ′

(CT-Tail)

Γ ` h : T1 | C1 Γ ` t : T2 | C2

C ′ = C1 ∪ C2 ∪ {T1 = Int, T2 = Stream}
Γ ` h ≺ t : Stream | C ′

(CT-Cons)

f : T1 ∈ Γ Γ ` t : T2 | C
unique(X) C ′ = C ∪ {T1 = T2 → X}

Γ ` f t : X | C ′
(CT-App)*

Γ ` t1 : T1 | C1 Γ ` t2 : T2 | C2

unique(X) C ′ = C1 ∪ C2 ∪ {X = T1, X = T2}
Γ ` t1 + t2 : X | C ′

(ST-Summ)*

New type variables must be unique; this condition is represented by unique(X). Each
instance of an integer literal is given a fresh type variable as its type can only be de-
termined by the context in which it is used. The rules for function application and
summation are given in a simplified form for notational convenience, however it should
be clear as to how these rules would be extended to an arbitrary number of arguments.
The rules for multiplication and exponentiation follow from the rule for summation,
similarly the rule for interleaving follows from the rule for cons.

The implementation of the constraint-based type checking algorithm makes heavy use
of monads and monad transformers. This allows all the minor details to be hidden away
and results in a very clean implementation. The implementation uses all the monads
we have seen so far: reader, writer, state and maybe. As the reader, writer and state
monads are kindred monads, there is a datatype named RWS that combines these three
into one. The following is the monad transformer variant of this datatype,

newtype RWST r w s m a = RWST{runRWST :: (r → s → m (a, s,w))}

To implement the type checker the reader monad is used for the typing context Γ that
maps identifiers to types, the state monad is used to generate fresh type variables, the
writer monad is used to gather the constraint set and the maybe monad is for when the
typing algorithm might fail. This is all represented in the following type,

2.2. TYPE CHECKING 31

type Checker a = RWST (Map Ident Ty) [(Ty ,Ty)] Int Maybe a

The type Map Ident Ty is a finite map where values of type Ident are keys and an
equation in a constraint set is represented by a 2-tuple (Ty ,Ty).

The generation of a fresh variable is accomplished with the following auxiliary func-
tion,

getUVar :: Checker Ty
getUVar = do i ← get

modify (+1)
return (TyVar i)

The state monad holds an integer counter which is incremented by getUVar each time
a new type variable is created. The lookup of a type in the context is achieved with the
following one-liner,

lookupType :: Ident → Checker Ty
lookupType v = ask >>= M .lookup v

The class method ask :: m r from the type class MonadReader retrieves the context
and is passed to the lookup function for the finite map, which has the following type
signature.

lookup :: (Monad m,Ord k)⇒ k → Map k a → m a

If the lookup fails, the function invokes the fail method of the Monad type class. For the
Maybe monad, fail returns Nothing . The functions getUVar and lookupType are used
to give a concrete implementation of the above typing rules. The condition unique(X)
becomes a call to getUVar and similarly the condition x : T ∈ Γ becomes a call to
lookupType.

Each typing rule becomes a case in the function tycheck . This implementation follows
the implemenation of a constraint-based type checker, given in Standard ML in the
textbook “Types and Programming Languages” [9]. The two simple base cases are
given here.

tycheck :: Expr → Checker Ty
tycheck (Lit) = getUVar
tycheck (Var v) = lookupType v

The functions head and tail are special cases, and thus have typing rules independent of
the rule for general function application.

tycheck (App "head" [x]) = do ty ← tycheck x
tell [(ty ,TyStream)]
return TyInteger

32 CHAPTER 2. IMPLEMENTATION

tycheck (App "head") = lift Nothing
tycheck (App "tail" xs) = ...

If the head function appears with anything other than a single argument, the algorithm
signals failure. The implementation of the typing rule for tail has been omitted for
brevity. Function application has the most complex typing rule:

tycheck (App f []) = lookupType f
tycheck (App f xs) = do funTy ← lookupType f

tys ← mapM tycheck xs
ty ← getUVar
let funTy ′ = foldr TyArrow ty tys
tell [(funTy , funTy ′)]
return ty

The implementation makes use of the monadic library function mapM ,

mapM :: Monad m ⇒ (a → m b)→ [a]→ m [b]

It is the monadic version of map; the monadic side-effects are sequenced from left to
right along the list. In the usage within the type checker, mutations to the state and
output to the writer may occur and if so, they will happen in the sequence dictated by
the given list. The use of the right associative list fold function, foldr TyArrow ty tys,
builds a curried function type where ty is the final return type.

The typing rules for addition and multiplication are identical. All the operands
must be of the same type but it is not possible to determine that type from just one
operand. Thus a fresh type variable must be given to the whole expression to unify all
the operands.

tycheck (Summ xs) = do ty ← getUVar
tys ← mapM tycheck xs
tell (map ((,) ty) tys)
return ty

tycheck (Prod xs) = ...

The monadic function mapM features again and the other item of note is the construction
of the list of constraints. The expression ((,) ty) is the partial application of the pairing
operator; this expression has the type a → (Ty , a).

The final rules are for exponentiation, cons and interleaving. The typing rule for
exponentiation is a specific form of the rules for addition and multiplication.

tycheck (x :∧: y) = do ty ← getUVar
tyX ← tycheck x
tyY ← tycheck y
tell [(ty , tyX), (ty , tyY)]

2.2. TYPE CHECKING 33

return ty
tycheck (h :≺: t) = do tyH ← tycheck h

tyT ← tycheck t
tell [(tyH ,TyInteger), (tyT ,TyStream)]
return TyStream

tycheck (s :g: t) = ...

Again the implementation for interleaving has been omitted as it follows the implemen-
tation of cons.

The function tycheck is a very good demonstration of the power of monads. The
code for each typing rule has a surprisingly close correspondence to the mathematical
definition given above. The writer monad even conceals the concatenation of constraints
from recursive calls.

To execute the tycheck function, an initial typing context must be supplied. The
following function buildContext , builds the map of identifiers to types in list form, which
can then be turned into a Map data-structure.

buildContext :: Expr → [(Ident ,Ty)]
buildContext = flip zip (map TyVar [0 . .]) ◦

filter (λx → x 6≡ "head" ∧ x 6≡ "tail") ◦
nub ◦
sort ◦
extractIdents

where
extractIdents (Var v) = [v]
extractIdents e@(App f) = f : concat (gmapExprQ extractIdents e)
extractIdents e = concat (gmapExprQ extractIdents e)

The implementation of this function exemplifies the pointfree style of functional pro-
gramming, where explicit references to values are minimized and functions are defined
in terms of function composition. The implementation describes a flow of operations:
the identifiers are extracted, then sorted, the duplicates are removed (using the function
nub), as are "head" and "tail" and finally each identifier is paired with a type vari-
able. The local function extractIdents traverses the input expression using the function
gmapExprQ . The expression ([0 . .]) produces an infinite list of increasing integers start-
ing at zero. By mapping the data-constructor TyVar over this infinite list we get a list
of all the type variables. By zipping this list with the list of identifiers stripped from the
input expression, we give each identifier a unique type variable. This is a common idiom
is Haskell. As the language is lazy, we can describe excessively large or even infinite
values with the intention of using only a part of them. The function zip terminates at
the end of the shortest list, so it is of no concern that the other list is infinite in length.
The function flip reverses the arguments of zip so that the zip can be incorporated in
the function composition.

The output of the function tycheck is a list of pairs representing a constraint set. If
this set can be unified then the initial expression is typeable. The process of unifying

34 CHAPTER 2. IMPLEMENTATION

the constraint set, produces a substitution which can be applied to the typing context
to give each identifier a principal type.

unify :: [(Ty ,Ty)]→ [(Ident ,Ty)]→ Maybe [(Ident ,Ty)]
unify [] ctx = Just ctx
unify ((s, t) : cs) ctx =

if s ≡ t then
unify cs ctx

else if isTyVar s ∧ ¬ (s ∈ fv t) then
unify (mapPair (substTy s t) cs) (mapSnd (substTy s t) ctx)

else if isTyVar t ∧ ¬ (t ∈ fv s) then
unify (mapPair (substTy t s) cs) (mapSnd (substTy t s) ctx)

else
case (s, t) of

(TyArrow a b,TyArrow c d)→ unify ([(a, c), (b, d)] ++ cs) ctx
→ Nothing

where
fv (TyVar v) = [v]
fv (TyArrow a b) = fv a ++ fv b
fv = []
substTy s@(TyVar v) r ty =

case ty of
TyVar v ′ → if v ≡ v ′ then r else ty
TyArrow a b → TyArrow (substTy s r a) (substTy s r b)

→ ty
mapPair f = map (λ(a, b)→ (f a, f b))
mapSnd f = map (λ(a, b)→ (a, f b))

The local function fv , extracts a list of type variables from a type and the local function
substTy takes a type variable to search for, a type to substitute and a type to modify.
The second and third conditions which check if a type variable is present in the free
variables of another type is called the occurs check. This is required to ensure that a
cyclic substitution is not created, resulting in an infinite type. For example take the
expression f f , with an initial context of [("f",TyVar 0)]. The type checking rules
would produce the constraint set: [(TyVar 0,TyArrow (TyVar 0) (TyVar 1))]. The
occur check would catch this case and prevent us from trying to construct an infinite
type for f .

2.3. SUBSTITUTIONS AND MATCHINGS 35

2.3 Substitutions and Matchings

We will now cover a core component of the proof assistant, the matching of one ex-
pression against another. Matching is required so that rules and laws can be applied to
expressions. Two expressions can match if the have the same ‘structure’, even if they
use different identifiers. For example the expression f (head x) ≺ map f (tail x) should
match g (head (repeat 0)) ≺ map g (tail (repeat 0)), as we can form a substitution that
when applied to the first expression, results in the second expression. In this case the
substitution would map the variable f to the variable g and the variable x to the expres-
sion repeat 0. Matching is straightforward for expressions that predominantly involve
function applications, however it becomes more complex when dealing with arithmetic
expressions, for example the matching of x + 1 with a + b + 2.

2.3.1 Substitutions

The type of a substitution, as discussed informally above, is a map from identifiers to
expressions. The renaming of identifier x to identifier y , is a map from x to the expression
Var y .

type Subst = Map Ident Expr

The data-structure Map is provided by the Haskell standard libraries and is implemented
as a balanced binary tree. Therefore the lookup of an identifier in a substitution has
logarithmic complexity. An alternative data-structure for the type Subst could have
been [(Ident ,Expr)] however a lookup operation then has linear complexity.

The following function returns the expression that a given identifier is mapped to in
a substitution.

binding :: Subst → Ident → Expr
binding s v = findWithDefault (Var v) v s

If an identifier v has no mapping then the expression Var v is returned. The function
binding is then used to apply a substitution to an expression.

applySubst :: Subst → Expr → Expr
applySubst s = mapIdent (binding s)

The higher-order function mapIdent , defined previously, is used here to implement the
substitution.

Any computation that updates a substitution will be of the form Subst → ...→ Subst
or Subst → ... → (a,Subst), as a substitution is an object of state. In anticipation of
this, the following type synonym is defined,

type SubstState a = StateT Subst Maybe a

The state monad is used to manage the ‘mutation’ of a substitution and the maybe
monad is used to model failure, such as a conflicting substitution. This monadic approach
will be particularly useful when implementing functions for matching.

36 CHAPTER 2. IMPLEMENTATION

The final operator needed is one to extend a substitution with an mapping,

extendSubstM :: (Ident ,Expr)→ SubstState ()
extendSubstM (v ,Var v ′) | v ≡ v ′ = return ()
extendSubstM (v , e) = do

s ← get
case lookup v s of

Just e ′ → guard (e ≡ e ′)
Nothing → modify (M .insert v e)

A mapping is ignored (return ()), if an identifier maps to a variable of the same name.
If the identifier is already mapped to a different expression then the extension fails. The
function guard implements this behaviour, however we will defer the discussion of this.

The monadic function extendSubstM can be run with the following function, One of
the auxiliary functions for the state transformer monad is execStateT ,

execStateT :: Monad m ⇒ StateT s m a → s → m s

It runs a state monad computation for the purpose of retrieving the end state, in this
case the final substitution.

extendSubst :: Subst → (Ident ,Expr)→ Maybe Subst
extendSubst s ie = execStateT (extendSubstM ie) s

2.3.2 Expression Matching

Expression matching is implemented in the function matchM along with several auxiliary
functions. The implementation uses the combined state and maybe monad, defined for
substitutions. The following are the two base cases,

matchM :: Expr → Expr → SubstState ()
matchM (Lit i1) (Lit i2) = guard (i1 ≡ i2)
matchM (Var i) x = extendSubstM (i , x)

The function guard was also used in the implementation of extendSubstM to ‘guard’
against mapping an identifier to two different expressions. It is a library function defined
as follows,

guard :: MonadPlus m ⇒ Bool → m ()
guard p = if p then return () else mzero

It makes use of MonadPlus, yet another monad related type class. Instances are monads
that support choice and failure.

class Monad m ⇒ MonadPlus m where
mzero :: m a
mplus :: m a → m a → m a

2.3. SUBSTITUTIONS AND MATCHINGS 37

The datatype Maybe is an instance of MonadPlus, with mzero = Nothing and mplus
as a left-biased choice. Furthermore, a monad transformer is an instance of MonadPlus
if its inner monad is an instance of MonadPlus. Therefore as Maybe is an instance of
MonadPlus, so is SubstState. Thus the first case of matchM reads as: a literal matches
a literal if the integers are equal, otherwise the whole match fails.

A function application matches another function application if the function names
match and if they have the same number of arguments, all of which match. Matching two
equal length lists of expressions can be accomplished with the monadic library function
zipWithM ,

zipWithM :: Monad m ⇒ (a → b → m c)→ [a]→ [b]→ m ()

This is the monadic version of the zipWith function for lists. The underscore in the
name of the function is the Haskell nomenclature for monadic functions that discard the
output, thus the true purpose being the side-effects rather than the final result. In this
case, the desired effect of (zipWithM matchM) is an updated substitution.

Consider the matching of f (head a) with g (head b). Here f needs to be mapped
to g and a to b. These two expressions should indeed match, however f (head a) with
f (tail a) should not. A substitution mapping head to tail is not valid in our under-
standing of the system. We cannot simply require that to match, the function names
should be equal, as this would disqualify our first example. The approach taken here is
to make a syntactic distinction between variable identifiers and constant identifiers. An
identifier string is taken to be a lower case letter followed by zero or more alphanumeric
characters. Variable identifiers are a subset of strings, comprised of a lowercase letter
followed by zero or more digits. Thus f , x and a1 are all variable identifiers that can be
identifiers in a substitution mapping and head , nat and map are all constant identifiers.
This leads to the following implementation of function application matching.

matchM (App f xs) (App g ys) =
guard (length xs ≡ length ys)>>
if all isDigit (tail f) then do

extendSubstM (f ,Var g)
zipWithM matchM xs ys

else if f ≡ g then
zipWithM matchM xs ys

else mzero

The function guard is used again to achieve conditional execution of the rest of the func-
tion. The operator (>>) is also featured and it features again in the following definitions,

matchM (a :∧: b) (c :∧: d) = matchM a c >>matchM b d
matchM (a :≺: b) (c :≺: d) = matchM a c >>matchM b d
matchM (a :g: b) (c :g: d) = matchM a c >>matchM b d

It is an operator similar to the monad bind operator (>>=), except that it discards the
value produced by the first monadic computation. It simply sequences two monadic
actions, (>>) :: m a → m b → m b.

38 CHAPTER 2. IMPLEMENTATION

The final task in expression matching is to match addition and multiplication expres-
sions. Addition and multiplication are associative and commutative operators, which
makes this task difficult. Furthermore, literals can be viewed in their atomic form or
as a compound addition (or multiplication) of several literals. Take for example the
matching of x + 1 with y + 2. One could take a restrictive approach, similar to the
matching rule for function application,

matchM (Summ xs) (Summ ys) = do
guard (length xs ≡ length ys)
zipWithM matchM xs ys

This says that two sums will only match if they have an identical number of summands
and the paired summands match. As long as the terms to be matched are in canonical
form, this simplistic implementation will successfully match many expressions. It will
not however match x + 1 with y + 2, as the variable x matches with the variable y , but
not 1 with 2. Alternatively, the expression y + 2 can be viewed as y + 1 + 1 and now it
is clear that x + 1 can be matched to this if we map x to y + 1 in the substitution.

Take as a further example, the matching of x + 1 with y + z + 1. Here the two
expressions having differing numbers of summands. Despite this we can match x to
y + z . The associativity of addition is what comes in to play. The situation is more
complex when we involve more than one variable, such as the matching of a + b with
c+d +1. The commutativity of addition means that several substitutions can be formed:
a → c and b → d +1; a → d and b → c +1; a → c +d and b → 1; a → 1 and b → c +d .

The ‘philosophy’ of this project is to create a simple tool with a handful of tools for
manipulation and proof. The aim is to be sound but not necessarily complete. The ideal
is for proof commands to simply do-the-right-thing (most of the time).

For an addition (or multiplication) expression x to match addition (or multiplication)
expression y , there must be at least as many operands in y . A variable in x can be
mapped to several operands in y but it cannot be mapped to none. All the non-variable
operands of x must be matched in y and what remains of y must be matched by the
variables of x . This procedure is implemented by the following code,

matchM (Summ xs) (Summ ys) = do
guard (length xs 6 length ys)
let (vars, xs ′) = partition isVar xs
rest ← matchSummsM xs ′ ys
matchVarsM Summ vars rest

matchM (Prod xs) (Prod ys) = do
guard (length xs 6 length ys)
let (vars, xs ′) = partition isVar xs
rest ← matchProdsM xs ′ ys
matchVarsM Prod vars rest

This completes the function matchM and all other arguments will fail to match.

2.3. SUBSTITUTIONS AND MATCHINGS 39

matchM = mzero

An addition (or multiplication) expression x to be matched is first split into its con-
stituent variables and other terms using the function partition :: (a → Bool) → [a] →
([a], [a]). To match a list of expressions against another we use the function matchListM .

matchListM :: [Expr]→ [Expr]→ SubstState [Expr]
matchListM [] ys = return ys
matchListM [] = mzero
matchListM (x : xs) ys = matchListM ′ ys >>= matchListM xs

where matchListM ′ [] = mzero
matchListM ′ (y : ys) = do

subst ← get
case execStateT (matchM x y) subst of

Just subst ′ → put subst ′ >> return ys
Nothing → matchListM ′ ys >>= return ◦ (y :)

This matches all the expressions from a list xs against the list of expressions ys and
returns the left over expressions from ys. The expressions in list xs are tried in order
and while there may be a scenario where a different ordering will give a different result,
we will ignore this case.

The function matchListM is used to define matchSummsM and matchProdsM . These
functions are responsible for the partial matching of integer literals.

matchSummsM :: [Expr]→ [Expr]→ SubstState [Expr]
matchSummsM (Lit a : xs) e =

case e of
(Lit b : ys)→ do

guard (a 6 b)
ys ′ ← matchSummsM xs ys
return (Lit (b − a) : ys ′)

→ mzero
matchSummsM xs ys = matchListM xs ys

For sums, a literal matches any literal greater or equal to itself. For products, a literal
matches any literal that is a multiple of it. In both cases the remainder is added to the
return list.

matchProdsM :: [Expr]→ [Expr]→ SubstState [Expr]
matchProdsM (Lit a : xs) e =

case e of
(Lit b : ys)→ do

guard (b ‘mod ‘ a ≡ 0)
ys ′ ← matchProdsM xs ys
return (Lit (b ‘div ‘ a) : ys ′)

40 CHAPTER 2. IMPLEMENTATION

→ mzero
matchProdsM xs ys = matchListM xs ys

The final function matchVarsM matches the variables of the matching expression
against the terms remaining of the expression to be matched.

matchVarsM :: ([Expr]→ Expr)→ [Expr]→ [Expr]→ SubstState ()
matchVarsM f xs ys = g xs (uncurry (++) (partition isVar ys))

where
g [] [] = return ()
g [] = mzero
g [Var v] ys = extendSubstM (v , f ys)
g (Var v : xs) (y : ys) = extendSubstM (v , y)>> g xs ys

The first argument is the function to rebuild an expression from a list of expressions — ei-
ther Summ or Prod . The function takes the list of variables and matches each to a single
expression, until the final variable, which takes the remaining expressions to be matched
against. Note that the list of expressions to be matched against is rearranged so that all
the variables are at the start of the list. The expression (uncurry (++) (partition isVar ys))
separates out the variables and then concatenates them back onto the front of the list.
This ensures that when a + b + 1 is matched against against c + d + 2, a → c and
b → d + 1.

The function match runs the matchM state computation with an initially empty
substitution.

match :: Expr → Expr → Maybe Subst
match e1 e2 = execStateT (matchM e1 e2) empty

2.4. EXPRESSION PARSING 41

2.4 Expression Parsing

The parser for stream expressions is built using ‘Parsec’, which is a monadic parser
combinator library for Haskell. It can be used to parse context-sensitive grammars that
require infinite look-ahead, however it is better suited to LL(1) parsers — a predictive
parser than reads the input from left to right and constructs a leftmost derivation using
one token of look-ahead. The advantage of Parsec is that a parser can be constructed
and used with the same programming language (Haskell) as is used in the rest of the
program. A Parsec parser is a first-class value in Haskell, so it is no different to a regular
datatype or a function; one could return a parser as the result of a function.

We will build up the complete parser by composing many smaller, specialized parsers,
the first of which parses integer literals.

number = Parser Expr
number = do {ds ← many1 digit

; spaces
; return (Lit (read ds))
} 〈?〉 "number"

The type Parser is a monad and the monadic bind operator (>>=) sequences parsers —
(p>>= f) first applies parser p then applies the function f to the result and finally applies
the returned parser. The first line parses one or more digits, where digit :: Parser Char
and many1 :: Parser a → Parser [a]. The parser spaces :: Parser () eats up the trailing
whitespace. The string of digits is then coerced to an integer with the function read .
The final point of interest is the operator 〈?〉, which is the error combinator that attaches
a string label to a parser to assist with error reporting.

The next parser is one that parses an identifier. An identifier is a lowercase letter
followed by zero or more alphanumeric characters (including apostrophe).

identifier :: Parser String
identifier = do {x ← lower

; xs ← many (alphaNum 〈|〉 char ’\’’)
; spaces
; return (x : xs)
} 〈?〉 "identifier"

The Parsec approach to parser construction is particularly elegant as program code ends
up bearing a close resemblance to the formal grammar notation. The operator 〈|〉 is
the predictive choice operator, which will only try the second parser if the first parser
consumes no input. The following parser for variables is a further demonstration how
parser actions are implemented in Parsec.

var :: Parser Expr
var = do {ident@(: xs)← identifier

; if all isDigit xs then

42 CHAPTER 2. IMPLEMENTATION

return (Var ident)
else

return (App ident [])
} 〈?〉 "variable ident or constant ident"

As discussed in the context of expression matching, variable identifiers are a subset of
identifiers, where the tail of the identifier is comprised of zero or more digits. To assist
in the delineation of variable identifiers and constant identifiers, the former are con-
structed as expression variables and the latter are constructed as no argument function
applications.

The parser for stream expressions is named expr , but first we shall define the parser
for atomic expressions,

aexpr = number
〈|〉 var
〈|〉 between (char ’(’) (char ’)’>> spaces) expr
〈?〉 "atomic expression"

The use of the predictive choice operator 〈|〉 is safe as the parser number starts with a
digit, var starts with a lowercase letter and the final parser starts with a left parenthe-
sis. The combinator between wraps the expr parser with parenthesises. The parser for
function application is built on top of the parser for atomic expressions.

fexpr = do {ident@(: xs)← identifier
; args ← many aexpr
; if null args ∧ all isDigit xs then

return (Var ident)
else

return (App ident args)
}

〈|〉 aexpr
〈?〉 "function application"

Note that there is a resolvable conflict in the predictive choice – both sub-parsers will
match an identifier. As per the semantics of the choice operator, if an identifier is found,
the first parser will be applied. The zero or more arguments to a function must all
be atomic expressions. If there are no arguments and the identifier is of the variable
kind, a variable expression is returned, otherwise a function application expression is
constructed.

The Parsec library contains a module for parsing expression grammars. The following
is an operator table for the operators in the stream expression grammar,

table :: OperatorTable Char () Expr
table = [[binary "^" (ˆ̂ ˆ) AssocRight]

, [binary "*" (λx y → prod [x , y]) AssocLeft]

2.4. EXPRESSION PARSING 43

, [prefix "-" (λx → prod [Lit (−1), x]),
binary "+" (λx y → summ [x , y]) AssocLeft ,
binary "-" (λx y → summ [x , prod [Lit (−1), y]]) AssocLeft]

, [binary "<:" (≺) AssocRight ,
binary "\\/" (g) AssocRight]]

where binary op f assoc = Infix (do {string op; spaces; return f }) assoc
prefix op f = Prefix (do {string op; return f })

The outer list is ordered by descending operator precedence. Each sub-list contains
operators with identical precedence levels, but it is not required for them to have the
same associativity. The exponentiation operator has the highest precedence and the cons
and interleaving operators have the lowest. The local functions binary and prefix help
construct values of the datatype Operator , where Infix and Prefix are data-constructors.
Both of these constructors take a parser that returns a function, the function being the
operational interpretation of the operator. The functions summ, prod , (ˆ̂ ˆ), (≺) and
(g) are used to ensure that the output of the parser is an expression already in canonical
form.

expr :: Parser Expr
expr = buildExpressionParser table fexpr 〈?〉 "expression"

The final parser for stream expressions is constructed using the Parsec function buildExpressionParser .
It builds the final expression parser for terms parsed by fexpr , with operators from table.

44 CHAPTER 2. IMPLEMENTATION

2.5. EXPRESSION REWRITING 45

2.5 Expression Rewriting

2.5.1 Replacement

To be able to manipulate all or part of an expression we need the concept of sub-
expressions, given by the following definition.

type SubExpr = (Location,Expr)
data Location = All | Pos Int Location

deriving (Eq ,Show)

The type SubExpr is the paring of an expression and its location within another expres-
sion. The location of a sub-expression within an expression x is recursively defined to
be either the whole of x or a location within the i’th child of x .

To replace the sub-expression found at a location with an expression, we define the
following function,

replace :: Expr → Location → Expr → Expr
replace All rexpr = rexpr

The replacement of location All in expression e with expression e ′, is simply e ′. If the
location is not All then we must recurse into the expression e.

replace (Lit) = error "Lit is atomic"
replace (Var) = error "Var is atomic"

Literals and variables are atomic expressions and thus there are no sub-expressions that
can be replaced. Function application, sums and products store their operands in a list.
A location of the form (Pos i l) refers to the i’th index in the list of operands.

replace (App f args) loc rexpr =
App f (replaceList loc rexpr args)

replace (Summ ss) loc rexpr =
Summ (replaceList loc rexpr ss)

replace (Prod fs) loc rexpr =
Prod (replaceList loc rexpr fs)

The auxiliary function replaceList is defined as follows,

replaceList :: Location → Expr → [Expr]→ [Expr]
replaceList (Pos i loc) rexpr exprs = updateList i exprs

where updateList 0 (x : xs) = replace x loc rexpr : xs
updateList n (x : xs) = x : updateList (n − 1) xs
updateList 0 [] = error "Invalid location"

Note that there is mutual recursion between replace and replaceList . For the binary
operators, the location index 0 refers to the left operand and the index 1 refers to the
right operand.

46 CHAPTER 2. IMPLEMENTATION

replace expr (Pos 0 loc) rexpr =
case expr of

a :∧: b → r a :∧: b
h :≺: t → r h :≺: t
s :g: t → r s :g: t

where r x = replace x loc rexpr
replace expr (Pos 1 loc) rexpr =

case expr of
a :∧: b → a :∧: r b
h :≺: t → h :≺: r t
s :g: t → s :g: r t

where r x = replace x loc rexpr

All other locations are invalid.

replace = error "Invalid location"

2.5.2 Expression Searching

Now that we have a datatype to describe the concept of a sub-expression, we can use this
to this to write functions that will search for a desired sub-expression. Take for example
the proof of nat = 2 ∗ nat g 2 ∗ nat + 1. Starting with the right-hand side, we would
like to expand the definition of nat . Rather than searching for complex sub-expressions,
we are simply interested in constant identifiers. The function findIdent searches for an
identifier in an expression and returns all the function application sub-expressions where
the identifier is used.

findIdent :: Ident → Expr → [SubExpr]
findIdent f expr =

(if isMatch expr then (:) (All , expr) else id) rest
where isMatch (App f ′) | f ≡ f ′ = True

isMatch = False
rest = concatMap g $

zip [0 . .] (gmapExprQ (findIdent f) expr)
g (i , x) = [(Pos i l , e) | (l , e)← x]

The expression zip [0 . .] (gmapExprQ (findIdent f) expr) finds all the matching sub-
expressions in the children of expr and produces a list of type [(Int , [SubExpr])]. The
local function g take a pair (Int , [SubExpr]) and updates all the locations. The function
concatMap :: (a → [b])→ [a]→ [b] applies this to all pairs and collects the results. The
function findIdent can be used not only to find named streams such as nat and fib, it can
also be used to find applications of functions such as map and zip. The sub-expression
returned will be the whole function application.

2.5. EXPRESSION REWRITING 47

To find a specific expression the function findExpr is used. Suppose that you want
to find all exponentiation sub-expressions, then you could supply x ↑ y as the search
expression. A more specific search for all squares would be x ↑ 2.

findExpr :: Expr → Expr → [(Location,Subst)]
findExpr sExpr expr =

case match sExpr expr of
Just subst → (All , subst) : rest
Nothing → rest

where rest = concatMap f $
zip [0 . .] (gmapExprQ (findExpr sExpr) expr)

f (i , x) = [(Pos i l , s) | (l , s)← x]

The implementation of findExpr is very much similar to findIdent , however rather than
returning a sub-expression, findExpr returns a location paired with a substitution. The
actual sub-expression found is the result of applying the substitution to the search term.

Suppose that you wish to find a sub-expression that matches x ↑ 2 + 1. If the sub-
expression y ↑ 2 + y + 1 is present, findExpr will not find a match as the search term
does not match the whole sum. Rather than performing the match with match, instead
we shall use matchSummsM so that we can find a match within a larger sum. The
expression x ↑2 + 1 matches y ↑2 + y + 1 with the substitution x → y and the expression
y left over.

findSumm :: Expr → Expr → [(Location,Subst ,Expr)]
findSumm sExpr@(Summ xs) expr =

case expr of
(Summ ys)→

case runStateT (matchSummsM xs ys) M .empty of
Just (e, s) → (All , s,Summ e) : rest
Nothing → rest

→ rest
where rest = concatMap f $

zip [0 . .] (gmapExprQ (findSumm sExpr) expr)
f (i , x) = [(Pos i l , s, e) | (l , s, e)← x]

findSumm = error "Search expression must be a sum"

A similar definition is given for products in findProd . The functions findSumm and
findProd return the left over expression as well as the location and substitution, as
returned by findExpr .

2.5.3 Rewriting

The function rewrite takes a search expression, an expression to search, a replacement
expression and a transformation function. It returns a list of expressions that are all the
single-step rewrites of the original expression. One possible use case is the transformation

48 CHAPTER 2. IMPLEMENTATION

of sub-expressions that match the search expression. Here the search expression and
the replacement expression are identical. Another use for the function rewrite is the
application of a law. For this, the search expression is the left-hand side of the law, the
replacement expression is the right-hand side of the law and the transformation function
is the identity function. The implementation is as follows,

rewrite :: Expr → Expr → Expr → (Expr → Expr)→ [Expr]
rewrite sExpr@(Summ) expr rExpr trans =

map
(λ(loc, subst , rest)→

replace expr loc (summ [trans (applySubst subst rExpr), rest]))
(findSumm sExpr expr)

rewrite sExpr@(Prod) expr rExpr trans =
map

(λ(loc, subst , rest)→
replace expr loc (prod [trans (applySubst subst rExpr), rest]))

(findProd sExpr expr)
rewrite sExpr expr rExpr trans =

map
(λ(loc, subst)→

replace expr loc (trans (applySubst subst rExpr)))
(findExpr sExpr expr)

The functions findExpr , findSumm and findProd are all used to find sub-expressions that
match the search expression. The extracted substitution is applied to the replacement
expression and the transformation is applied to the result. Finally, replace is used with
the location information to build the rewritten expression.

Not all transformation functions are guaranteed to succeed. The function rewriteM
is for use with transformation functions that have the type Expr → Maybe Expr .

rewriteM :: Expr → Expr → Expr → (Expr → Maybe Expr)→ [Expr]
rewriteM sExpr@(Summ) expr rExpr trans =

forMaybe (findSumm sExpr expr) $ λ(loc, subst , rest)→
trans (applySubst subst rExpr)>>=

return ◦ replace expr loc ◦ summ ◦ (:[rest])
rewriteM sExpr@(Prod) expr rExpr trans =

forMaybe (findProd sExpr expr) $ λ(loc, subst , rest)→
trans (applySubst subst rExpr)>>=

return ◦ replace expr loc ◦ prod ◦ (:[rest])
rewriteM sExpr expr rExpr trans =

forMaybe (findExpr sExpr expr) $ λ(loc, subst)→
trans (applySubst subst rExpr)>>= return ◦ replace expr loc

The function forMaybe :: [a]→ (a → Maybe b)→ [b] is the library function mapMaybe ::
(a → Maybe b) → [a] → [b] with the arguments flipped. It is like the function map,

2.5. EXPRESSION REWRITING 49

except that it throws away values that return Nothing . The expression (:[rest]) is the
partial application of the cons operator. This returns a function that cons’es an expres-
sion onto the list [rest].

50 CHAPTER 2. IMPLEMENTATION

2.6. SIMPLIFICATIONS AND TRANSFORMATIONS 51

2.6 Simplifications and Transformations

2.6.1 Distribution of Expressions

The distribution of multiplication over addition is a common operation. It can be as
simple as turning 2 ∗ (x + y) into 2 ∗ x + 2 ∗ y. However, an expression such as (x2 +
3 ∗ x + 2) ∗ (x + 4) is more complex. The function mult takes a list of expressions and
‘multiplies them out’ to form a sum.

mult :: [Expr]→ Expr
mult ts = summ ′ [prod ′ ts ′ | ts ′ ← distr [summands t | t ← ts]]

where prod ′ [x] = x
prod ′ x = Prod x
summ ′ [x] = x
summ ′ x = Summ x

For each expression the list of summands are collected. The list of lists of summands is
distributed using the function distr , where each element of the first list is cons’ed onto
every list of the distribution of the remaining lists.

distr :: [[a]]→ [[a]]
distr [] = [[]]
distr (x : xs) = [a : as | a ← x , as ← distr xs]

The result is a sum of products which is constructed back into an expression using the
local functions summ ′ and prod ′.

Multiplication distributes over addition and furthermore the following abide laws for
interleaving and cons show that the arithmetic operators, multiplication, addition and
exponentiation all distribute over interleaving and cons.

(s1 g t1)⊕ (s2 g t2)⊕ · · · ⊕ (sn g tn) = (s1 ⊕ s2 ⊕ · · · ⊕ sn) g (t1 ⊕ t2 ⊕ · · · ⊕ tn)

(h1 ≺ t1)⊕ (h2 ≺ t2)⊕ · · · ⊕ (hn ≺ tn) = (h1 ⊕ h2 ⊕ · · · ⊕ hn) ≺ (t1 ⊕ t2 ⊕ · · · ⊕ tn)

The function exprDistr distributes exponentiation over cons and interleaving.

exprDistr :: Expr → Expr → Expr
exprDistr (h1 :≺: t1) (h2 :≺: t2) = (h1 ˆ̂ ˆ h2) :≺: (t1 ˆ̂ ˆ t2)
exprDistr n@(Lit) (h :≺: t) = (n ˆ̂ ˆ h) :≺: (n ˆ̂ ˆ t)
exprDistr (h :≺: t) n@(Lit) = (h ˆ̂ ˆ n) :≺: (t ˆ̂ ˆ n)
exprDistr (h1 :g: t1) (h2 :g: t2) = (h1 ˆ̂ ˆ h2) :g: (t1 ˆ̂ ˆ t2)
exprDistr n@(Lit) (h :g: t) = (n ˆ̂ ˆ h) :g: (n ˆ̂ ˆ t)
exprDistr (h :g: t) n@(Lit) = (h ˆ̂ ˆ n) :g: (t ˆ̂ ˆ n)
exprDistr x y = x ˆ̂ ˆ y

Note that literals are being distributed as well. A literal n represents a constant stream
and by the definition of repeat , n = n ≺ n. Similarly for interleaving, cg c = c where c
is a constant stream.

52 CHAPTER 2. IMPLEMENTATION

The following function consolidate, is abstracted for both sums and products. It takes
a sum (or product) of cons’es (and interleaves) and using the abide law, compresses them
to a cons (and interleave) of sums (or products).

consolidate :: ([Expr]→ Expr)→ [Expr]→ [Expr]
consolidate f ts =

(if null conses then
id

else let (ls, rs) = unzipWith (λ(a :≺: b)→ (a, b)) conses
in (:) (f ls :≺: f rs))

(if null interleaves then
ts ′′

else let (ls, rs) = unzipWith (λ(a :g: b)→ (a, b)) interleaves
in (f ls :g: f rs) : ts ′′)

where
(conses, ts ′) = partition isCons ts
(interleaves, ts ′′) = partition isInterleave ts ′

The function unzipWith separates out a list of binary operator expressions into a list of
left and a list of right operands. It is defined as follows,

unzipWith :: (a → (b, c))→ [a]→ ([b], [c])
unzipWith [] = ([], [])
unzipWith f (x : xs) = (a : as, b : bs)

where (a, b) = f x
(as, bs) = unzipWith f xs

Once the cons and interleave sub-expressions have been consolidated the functions
summDistr and prodDistr complete the process by distributing the literals over the
compressed cons and interleave expressions.

summDistr :: [Expr]→ Expr
summDistr ((h :≺: t) : s@(:g:) : n@(Lit) : xs) =

summ ((summ [n, h] :≺: summ [n, t]) : s : xs)
summDistr ((h :≺: t) : n@(Lit) : xs) =

summ ((summ [n, h] :≺: summ [n, t]) : xs)
summDistr ((s :g: t) : n@(Lit) : xs) =

summ ((summ [n, s] :g: summ [n, t]) : xs)
summDistr xs = summ xs

The function prodDistr follows similarly. All the above functions can be brought together
and composed, to form the function distribute that traverses an expression and performs
all the individual distribution operations.

distribute = foldExpr (summDistr ◦ consolidate summ)
(mult ◦ prodDistr ◦ consolidate prod)
exprDistr (≺) (g)

2.6. SIMPLIFICATIONS AND TRANSFORMATIONS 53

2.6.2 Compaction of Expressions

Suppose that we have an expression x2 + 2 ∗ x + x + 1. We would like to compact this
expression to x2 + 3 ∗ x + 1. The function scompact takes a list of expressions, the
summands of an addition, and summs together the common terms.

scompact :: [Expr]→ Expr
scompact = summ ◦

map melt ◦
groupBy (λa b → snd a ≡ snd b) ◦
sortBy (comparing snd) ◦
map fsplit

where melt [] = zero
melt ((c, t) : cts) = prod [summ (c : map fst cts), t]

This function is again written in the pointfree style. The factors of the terms are first
extracted, the pairs of factors and expressions are sorted by the expressions and then
grouped, the groups are merged and the whole thing is summed back together. The
function fsplit extracts the multiplicative factor out of an expression and returns a tuple
of the literal representing the factor and the remaining expression. An expression with
a factor that can be extracted is a Prod term in canonical form.

fsplit :: Expr → (Expr ,Expr)
fsplit (Prod [n@(Lit), t]) = (n, t)
fsplit (Prod (n@(Lit) : ts)) = (n,Prod ts)
fsplit t = (one, t)

The first case is a special case of the second; it ensures that we don’t return a singleton
product. The sorting is achieved with the sortBy :: (a → a → Ordering) → [a] → [a]
function. The functional argument is the comparison function. The list that we are
operating on is a list of tuples and we wish to sort on the second element of the tuple,
the expression. This is achieved with the helper function comparing :: Ord a ⇒ (b →
a) → b → b → Ordering . The grouping of the sorted list in performed with the
groupBy :: (a → a → Bool)→ [a]→ [[a]] function. Again we are grouping with respect
to the second element in the tuple. The local function melt :: [(Expr ,Expr)] → Expr
sums the factors and multiplies the common expression by the result.

The function pcompact does the same for products as scompact does for sums. Take
the expression 2 ∗x2 ∗x as an example. We would like to compact this to the expression
2 ∗ x3.

pcompact :: [Expr]→ Expr
pcompact = prod ◦

map melt ◦
groupBy (λa b → fst a ≡ fst b) ◦
sortBy (comparing fst) ◦

54 CHAPTER 2. IMPLEMENTATION

map esplit
where melt [] = one

melt ((b, e) : bes) = b ˆ̂ ˆ summ (e : map snd bes)

The function esplit extracts the exponent out of an expression; for all except an expo-
nential, the exponent is 1.

esplit :: Expr → (Expr ,Expr)
esplit (f :∧: g) = (f , g)
esplit f = (f , one)

As with scompact , the list of pairs is sorted, grouped and then each group is merged and
a product is constructed from the resulting list. The function compact uses foldExpr to
apply scompact and pcompact to all sums and products in an expression.

compact = foldExpr scompact pcompact (ˆ̂ ˆ) (≺) (g)

The opposition of compact is expand . In contrast to compact , expand is a very
targeted function as it has the potential to significantly increase the size of an expression.

expand :: Expr → Expr
expand (Prod (Lit n : xs)) = summ (replicate n (prod xs))
expand (e :∧: Lit n) = prod (replicate n e)
expand e = e

The function replicate :: Int → a → [a] takes a value and constructs a list containing
that value n times.

2.6.3 Extraction of Expressions

Another class of expression manipulation is the extraction of a common integer literal
or variable from an expression. For example take the expression 2 ∗ x + 4 ∗ y , there is a
common integer factor and this can be rearranged into 2 ∗ (x + 2 ∗ y). These manipu-
lations are well understood for the arithmetic operators of addition, multiplication and
exponentiation, however extraction of literals also extends to the cons and interleave
constructs. Let c be a constant stream, a stream defined by repeat k for some constant
k , then the law cg c = c holds. The abide law for interleave is

(s1 ⊕ s2) g (t1 ⊕ t2) = (s1 g t1)⊕ (s2 g t2)

Using these two laws we can extract a constant summand.

(s+ 1) g (t+ 1)
= { abide law }

(sg t) + (1 g 1)
= { reduction }

(sg t) + 1

2.6. SIMPLIFICATIONS AND TRANSFORMATIONS 55

A similar abide law exists for cons,

(h1 ⊕ h2) ≺ (t1 ⊕ t2) = (h1 ≺ t1)⊕ (h2 ≺ t2)

These laws along with the laws for addition, multiplication and exponentiation give rise
to four operations for expression manipulation. The following subsections give their
implementations.

Extract Integer Summand

The transformation extractLitSummand is implemented in terms of extractLitSummand ′

and combineLitSummand .

extractLitSummand :: Expr → Expr
extractLitSummand = combineLitSummand ◦ extractLitSummand ′

The function extractLitSummand ′ splits an expression into an integer paired with
the remaining expression.

extractLitSummand ′ :: Expr → (Int ,Expr)
extractLitSummand ′ (Lit i) = (i ,Lit 0)
extractLitSummand ′ (Summ (Lit i : xs)) = (i ,Summ xs)

The definitions for literals and sums with literals, serve as base cases for the remaining
definitions.

extractLitSummand ′ (Summ xs) =
let (is, xs ′) = unzip (map extractLitSummand ′ xs)

i = sum is
in if i > 0 then

(i ,Summ (xs ′))
else

(0,Summ xs)

A sum with no literals can have a literal extracted if one or more of its summands has
a literal to extract — the result is the sum.

extractLitSummand ′ (e1 :g: e2) =
let (i1 , e1 ′) = extractLitSummand ′ e1

(i2 , e2 ′) = extractLitSummand ′ e2
i = min i1 i2

in if i > 0 then
(i , combineLitSummand (i1 − i , e1 ′)

:g: combineLitSummand (i2 − i , e2 ′))
else

(0, e1 :g: e2)

56 CHAPTER 2. IMPLEMENTATION

extractLitSummand ′ (e1 :≺: e2) =
let (i1 , e1 ′) = extractLitSummand ′ e1

(i2 , e2 ′) = extractLitSummand ′ e2
i = min i1 i2

in if i > 0 then
(i , combineLitSummand (i1 − i , e1 ′)

:≺: combineLitSummand (i2 − i , e2 ′))
else

(0, e1 :≺: e2)

The result of extracting a literal from either a cons or an interleave term is the minimum
of the literals extracted from the two operands. No other expressions allow a literal to
be extracted,

extractLitSummand ′ expr = (0, expr)

The function combineLitSummand adds a literal to an expression. The clauses for
specialized cases ensure that the resulting expression remains in canonical form.

combineLitSummand :: (Int ,Expr)→ Expr
combineLitSummand (0, e) = e
combineLitSummand (i ,Lit j) = Lit (i + j)
combineLitSummand (i ,Summ (Lit j : xs)) = Summ (Lit (i + j) : xs)
combineLitSummand (i ,Summ xs) = Summ (Lit i : xs)
combineLitSummand (i , e) = summ [Lit i , e]

Extract Integer Factor

The function extractLitFactor is implemented in the same fashion as extractLitSummand .
The factor is extracted and then combined again to form the transformed expression.

extractLitFactor :: Expr → Expr
extractLitFactor = combineLitFactor ◦ extractLitFactor ′

For the function extractLitFactor ′, the sole base case is the integer literal.

extractLitFactor ′ :: Expr → (Int ,Expr)
extractLitFactor ′ (Lit i) = (i ,Lit 1)

A literal factor can be extracted from a sum, as in the example of 2 ∗ x + 4 ∗ y , when
all the summands have an integer factor and the collective greatest common divisor is
greater than 1.

extractLitFactor ′ (Summ xs) =
let ixs ′ = map extractLitFactor ′ xs

2.6. SIMPLIFICATIONS AND TRANSFORMATIONS 57

i = foldr (λa b → fst a ‘gcd ‘ b) 0 ixs ′

in if i > 1 then
(i ,Summ (map (combineLitFactor ◦ first (‘div ‘i)) ixs ′))

else
(1,Summ xs)

The expression foldr (λa b → fst a ‘gcd ‘ b) 0 ixs ′ computes the greatest common divisor
of the factors extracted from each summand — note that n ‘gcd ‘ 0 = n. To produce the
remaining sum, the factors are divided by the common factor and combineLitFactor is
used to merge it back together.

Extracting an integer factor from a product can be trivial if a literal is one of the
factors, otherwise the non-literal factors are traversed to extract factors.

extractLitFactor ′ (Prod [Lit i , e]) = (i , e)
extractLitFactor ′ (Prod (Lit i : xs)) = (i ,Prod xs)
extractLitFactor ′ (Prod xs) =

let (is, xs ′) = unzip (map extractLitFactor ′ xs)
i = product is

in if i > 1 then
(i ,Prod (xs ′))

else
(1,Prod xs)

Consider an expression of the form 2x+1. This could be rearranged into the form
2 ∗ 2x. One could also rearrange it to 4 ∗ 2x−1, however we will draw the line at the first
rearrangement.

extractLitFactor ′ (Lit i :∧: y) = (i ,Lit i ˆ̂ ˆ summ [Lit (−1), y])

Finally, just as the addition of a constant can be extracted from a cons or interleave
expression, so can a constant factor. The factors extracted from the two operands must
have a greatest common divisor greater than 1.

extractLitFactor ′ (e1 :g: e2) =
let (i1 , e1 ′) = extractLitFactor ′ e1

(i2 , e2 ′) = extractLitFactor ′ e2
i = gcd i1 i2

in if i > 1 then
(i , combineLitFactor (i1 ‘div ‘ i , e1 ′)

:g: combineLitFactor (i2 ‘div ‘ i , e2 ′))
else

(1, e1 :g: e2)
extractLitFactor ′ (e1 :≺: e2) =

let (i1 , e1 ′) = extractLitFactor ′ e1
(i2 , e2 ′) = extractLitFactor ′ e2

58 CHAPTER 2. IMPLEMENTATION

i = gcd i1 i2
in if i > 1 then

(i , combineLitFactor (i1 ‘div ‘ i , e1 ′)
:≺: combineLitFactor (i2 ‘div ‘ i , e2 ′))

else
(1, e1 :≺: e2)

No other expressions can be transformed to extract a literal factor.

extractLitFactor ′ expr = (1, expr)

The function combineLitFactor inserts a factor back into an expression, in a similar
fashion to combineLitSummand .

combineLitFactor :: (Int ,Expr)→ Expr
combineLitFactor (1, e) = e
combineLitFactor (i ,Lit j) = Lit (i ∗ j)
combineLitFactor (i ,Prod (Lit j : xs)) = Prod (Lit (i ∗ j) : xs)
combineLitFactor (i ,Prod xs) = Prod (Lit i : xs)
combineLitFactor (i ,Lit j :∧: y) | i ≡ j = Lit j ˆ̂ ˆ summ [Lit 1, y]
combineLitFactor (i , x) = prod [Lit i , x]

Extract Variable Summand

The extraction of a variable from an expression is potentially more complex as there
could be many variables to choose from. To simplify this, we will require that the user
specifies which identifier they wish to extract.

extractVarSummand ′ :: Ident → Expr → Maybe Expr
extractVarSummand ′ v (Var v ′) =

if v ≡ v ′ then Just (Lit 0) else Nothing

A variable summand can be extracted from a product such as 3∗x. It becomes x+2∗x.

extractVarSummand ′ v (Prod [Lit i ,Var v ′]) =
if i > 1 ∧ v ≡ v ′ then

Just (prod [Lit (i − 1),Var v ′])
else Nothing

To extract a variable from a sum, we take the first summand from which the variable
can be extracted.

extractVarSummand ′ v (Summ xs) =
mapFirst (extractVarSummand ′ v) xs >>= return ◦ summ

The function mapFirst is defined as follows,

2.6. SIMPLIFICATIONS AND TRANSFORMATIONS 59

mapFirst :: (a → Maybe a)→ [a]→ Maybe [a]
mapFirst [] = Nothing
mapFirst f (x : xs) =

case f x of
Just x ′ → Just (x ′ : xs)
Nothing → mapFirst f xs >>= return ◦ (x :)

The first element of the list for which the function is successful, is altered to the result
of the function. For expressions such as 1 + x+ 2 ∗ x+ x2, there are several alternatives
for extracting the variable x, but this implementation will take only the first. To work
around this limitation, a more specific invocation of the transformation must be made.
There are no other expressions from which a variable summand can be extracted.

extractVarSummand ′ = Nothing

extractVarSummand :: Ident → Expr → Expr
extractVarSummand v expr =

case extractVarSummand ′ v expr of
Just expr ′ → summ [Var v , expr ′]
Nothing → expr

Extract Variable Factor

As with the function extractVarSummand , extractVarFactor requires the user to specify
the variable identifier to be extracted. The base case is as follows,

extractVarFactor ′ :: Ident → Expr → Maybe Expr
extractVarFactor ′ v (Var v ′) =

if v ≡ v ′ then Just (Lit 1) else Nothing

Just as a literal can be extracted from an exponential, so can a variable. Consider the
expression xy+1, which can be transformed into x ∗ xy.

extractVarFactor ′ v (Var v ′ :∧: e) =
if v ≡ v ′ then

Just (Var v ′ ˆ̂ ˆ summ [Lit (−1), e])
else Nothing

As with the definition of extractLitFactor , a variable factor can be extracted from a sum
if the factor can be extracted from all summands.

extractVarFactor ′ (Summ []) =
Nothing

extractVarFactor ′ v (Summ xs) =
mapM (extractVarFactor ′ v) xs >>= return ◦ summ

60 CHAPTER 2. IMPLEMENTATION

The function mapFirst is used again to extract a variable factor from a product and it
has the same limitations as before.

extractVarFactor ′ v (Prod xs) =
mapFirst (extractVarFactor ′ v) xs >>= return ◦ prod

There are no other expressions from which a variable factor can be extracted.

extractVarFactor ′ = Nothing

extractVarFactor :: Ident → Expr → Expr
extractVarFactor v expr =

case extractVarFactor ′ v expr of
Just expr ′ → prod [Var v , expr ′]
Nothing → expr

2.6.4 Definitions and Unrolling Expressions

We have previously given definitions of stream equations for well known integer sequences
such as nat and fib, as well as a number of stream operators such as repeat , map and
zip. The datatype Definition will be used to represent defined stream equations within
the system.

data Definition = Def {defLhs :: Expr , defRhs :: Expr }
deriving (Eq)

The left-hand side defines the name and any parameters and the right-hand side defines
the body of the definition. The following is an implementation of a parser for strings
representing definitions.

def :: Parser Definition
def = do { lhs ← fun

; char ’=’; spaces
; rhs ← expr
; return (Def lhs rhs)
} 〈?〉 "definition"

where
arg = do {x ← lower

; xs ← many digit
; spaces
; return (Var (x : xs))
} 〈?〉 "function argument"

fun = do {ident ← identifier
; args ← many arg

2.6. SIMPLIFICATIONS AND TRANSFORMATIONS 61

; return (App ident args)
} 〈?〉 "function declaration"

The left-hand side of the definition is parsed by the specialized parsers fun and arg ,
defined locally.

A collection of definitions will be represented by a map data-structure, which maps
identifiers to definitions. When a function application is encountered, the identifier can
be used to retrieve the definition of the function being applied.

type Definitions = Map Ident Definition

There are a number of operations that require the lookup of stream definitions. The
type Env is a monad specialized for that purpose.

type Env r = ReaderT Definitions Maybe r

This is a reader transformer monad with the maybe monad as the inner monad and the
map of definitions as the shared environment. This describes computations that need to
lookup definitions and can also fail.

Unrolling

The first operation that operates in the Env monad is the function unrollExpr . Given a
function application, unrollExpr looks up the definition and substitutes in the body of
the definition.

unrollExpr :: Expr → Env Expr
unrollExpr expr@(App f) = do

defs ← ask
def ← M .lookup f defs
subst ← lift $ match (defLhs def) expr
return (applySubst subst (defRhs def))

The function match computes the substitution needed to replace the function application
with the body of the definition. The function unrollExpr can fail by two different causes.
The first is if the function application does not have a corresponding definition in the
shared environment, so the lookup function fails; the second is if the match fails.

If an expression is not a function application we can still ‘unroll’ the expression. We
simply extract the head and the tail of the expression and form a cons expression.

unrollExpr expr = do
h ← getHead expr
t ← getTail expr
return (h ≺ t)

The operation of unrolling an expression into a cons expression with a head and tail, is
often one of the first steps in a proof. Our intention is to discover a stream equation

62 CHAPTER 2. IMPLEMENTATION

with a unique solution. Therefore, transforming to a cons expression is more often than
not the best way to start, followed by simplifying the head and rearranging the tail.

Take the example of proving that nat = 2 ∗ nat g 2 ∗ nat + 1. Applying unrollExpr
to 2∗nat g2∗nat + 1 results in 2∗0 ≺ 2∗nat + 1g2∗ (nat + 1). The operations reduce,
distribute and extract will complete the proof.

The function getHead used in the definition of unrollExpr is defined as follows,

getHead :: Expr → Env Expr
getHead i@(Lit) = return i

The head of a constant stream is the constant itself, therefore the head of a literal is the
literal.

getHead v@(Var) = return (App "head" [v])

There is nothing to do with a variable other than construct an application of head .

getHead (Summ xs) = mapM getHead xs >>= return ◦ Summ
getHead (Prod xs) = mapM getHead xs >>= return ◦ Prod

The arithmetic operators of addition, multiplication and exponentiation are applied
element-wise, therefore the head of a sum, product or exponential is the head of the
operands.

getHead (x :∧: y) = liftM2 (:∧:) (getHead x) (getHead y)

The function liftM2 :: Monad m ⇒ (a → b → c) → m a → m b → m c lifts a binary
function to a monadic one.

getHead (x :≺: y) = return x
getHead (x :g: y) = getHead x

The head of a cons is naturally the first operand, and head of an interleave is the head
of the first operand, by the definition of interleaving. Finally the head of a function
application is the head of the unrolled function.

getHead e@(App) = unrollExpr e >>= getHead

Note that unrollExpr and getHead are mutually recursive. The definition of getTail
follows very similarly to getHead .

getTail :: Expr → Env Expr
getTail i@(Lit) = return i
getTail v@(Var) = return (App "tail" [v])
getTail (Summ xs) = mapM getTail xs >>= return ◦ Summ
getTail (Prod xs) = mapM getTail xs >>= return ◦ Prod
getTail (x :∧: y) = liftM2 (:∧:) (getTail x) (getTail y)

2.6. SIMPLIFICATIONS AND TRANSFORMATIONS 63

getTail (x :≺: y) = return y
getTail (x :g: y) = liftM2 (:g:) (return y) (getTail x)
getTail e@(App) = unrollExpr e >>= getTail

The function elimHeadAndTail performs a top-down traversal of an expression to
eliminate function applications of head and tail .

elimHeadAndTail :: Expr → Env Expr
elimHeadAndTail expr =

case expr of
(App "head" [a])→ getHead a
(App "tail" [a])→ getTail a
x → gmapExprM elimHeadAndTail x

The function gmapExprM is the monadic version of gmapExprT

gmapExprM :: Monad m ⇒ (Expr → m Expr)→ Expr → m Expr
gmapExprM f expr =

case expr of
App g xs → mapM f xs >>= return ◦App g
Summ xs → mapM f xs >>= return ◦ Summ
Prod xs → mapM f xs >>= return ◦ Prod
x :∧: y → liftM2 (:∧:) (f x) (f y)
x :≺: y → liftM2 (:≺:) (f x) (f y)
x :g: y → liftM2 (:g:) (f x) (f y)
x → return x

Unique Solution Verification

A procedure for verifying that a stream equation has a unique solution, as discussed
in section 1.2, can be implemented using the Env monad. The following is not the
only possible implementation, however this procedure will admit definitions such as
fib = 0 ≺ 1 ≺ tail fib + fib and carry = 0 g carry + 1.

verifyDefinition :: Definition → Env Bool
verifyDefinition (Def lhs rhs@(h :≺: t)) =

let res1 = findExpr (App "head" [lhs]) rhs
lhsTail = (App "tail" [lhs])
res2 = findExpr lhsTail rhs

in if null res1 then
if null res2 then

return True
else do

h ′ ← getHead t

64 CHAPTER 2. IMPLEMENTATION

t ′ ← getTail t
let res1 = findExpr (App "head" [lhsTail]) (h ′ :≺: t ′)

res2 = findExpr (App "tail" [lhsTail]) (h ′ :≺: t ′)
return (null res1 ∧ null res2)

else
return False

If the body of the definition is already in ‘cons-form’, then it is searched for applications
of head or tail to a recursive call. This procedure will not permit any applications of
head. It will permit an application of tail, so long as the tail of the body is itself can be
a valid stream equation with no illegal applications of head or tail. This is equivalent to
splitting the definition of fib into fib and fib′.

If the body of a definition is not a cons expression the functions getHead and getTail
are used to rewrite it in that way.

verifyDefinition (Def lhs rhs) = do
h ← getHead rhs
t ← getTail rhs
verifyDefinition (Def lhs (h :≺: t))

This implicitly requires that other streams used in the definition must be already defined.

2.7. USER INTERFACE 65

2.7 User Interface

The user interface for the project has been built as a textual command line interface
using Haskell bindings to the GNU Readline library, as well as further use of the Parsec
parser library. It runs as a REPL (Read-Evaluate-Print loop). The program begins by
accepting a stream equality from the user and then proceeds in a loop, allowing the user
to input commands to manipulate the current expression. The available commands are
as follows:

adddef This command parses a stream definition from the command line and prints
out the current list of active definitions. The input definition is not verified at this
time as it may depend on other definitions that have not yet been entered.

addlaw This command parses a law declaration from the command line and prints out
the current list of active laws. A law is simply two expressions given as an equality.
The datatype and parser for a law is

data Law = Law{ lawName :: String , lawLhs :: Expr , lawRhs :: Expr }
law :: Parser Law
law = do {name ← many1 (satisfy (6≡ ’:’))

; char ’:’; spaces;
; lhs ← expr
; char ’=’; spaces
; rhs ← expr
; return (Law name lhs rhs)
} 〈?〉 "law"

reduce This command applies the reduce function to the whole of the current working
expression and uses the elimHeadAndTail function to eliminate applications of
head and tail .

distrib This command takes an expression as an optional argument, which is a search
expression. The function distribute is applied to the whole of the current work-
ing expression, or if the optional argument is provided, a list of matching sub-
expressions are retrieved and the user is given the choice of which specific applica-
tion is to be used.

compact This command takes an expression as an optional argument, which is a search
expression. The function compact is applied to the whole of the current working
expression, or if the optional argument is provided, the command behaves in the
same way as the distrib command.

expand This command requires an expression as an argument, which is the search
expression for the sub-expression to which the function expand should be applied
to.

66 CHAPTER 2. IMPLEMENTATION

extracts This command takes either an expression as an argument or an identifier
and an expression as two arguments. In the case of the former, the function
extractLitSummand is applied to sub-expressions that match the search expression
argument. When an identifier is given as well, the function extractVarSummand
is applied instead, using the given identifier as the variable to extract.

extractf This command functions in exactly the same way as the extracts function,
except that it is for factors rather than summands.

unroll This command can be used in three different ways. With no arguments, the
whole of the current working expression is unrolled. With an identifier as an
argument, the user is given a choice about which applications of the identifier are
to be unrolled. Finally if the command is given an expression, matching sub-
expressions are to be unrolled.

applylaw This command takes a law name as input and searches for matches for both
the left and right-hand sides of the law.

rewrite This final command is provided so that should any of the previous commands
fail to do what the user requires, this command will allow an explicit rewrite to be
made.

There are some commands that can potentially return multiple results. In the case
where a search expression is provided, there can be multiple matches in the current
working expression. The following function handles this,

applySearchTransformation :: (Expr → Expr)→ Expr → Eval ()
applySearchTransformation f sExpr =

gets current >>= λexpr →
let exprs ′ = filter (6≡ expr) (rewrite sExpr expr sExpr f) in
case exprs ′ of

[] → outputLn "No change"
[x]→ updateAndPrintCurrent x
xs → do x ← liftIO $ chooseExpr xs

updateAndPrintCurrent x

The current working expression is retrieved. The function rewrite is used to find all
matchings and return a list of new working expressions for each match, where the match
has had the transformation applied. If there were no matches, then no change occurs.
If there is a single match then that is taken as the new working expression. If there are
multiple matches, then the function chooseExpr presents the user with a menu so that
they can select the transformation result that they intended.

Chapter 3

Evaluation and Conclusions

3.1 Evaluation

One of the main simplifications made in the formulation of this project is the restriction
of streams to integer streams. This decision was made largely because of the time
constraints. Nevertheless, this restriction is not particularly limiting as much of the
work on streams by Hinze and Rutten [4, 10] focuses on numeric streams (Rutten uses
real numbers rather than integers).

Later sections of Hinze’s paper explore the application of streams to finite calculus.
This project did not explore this area, again due to time constraints. The project,
as is, allows extensibility through definitions and laws that can be dynamically added
into the running proof assistant. While this approach could be taken to tackle the
application of streams to finite calculus, this is not ideal. The arithmetic operators
of addition, multiplication and exponentiation as well as cons and interleave are given
special treatment within the system. The operators in finite calculus of finite difference
and summation cannot be added in with this same special status; furthermore, the
handful of laws that pertain to these operators and their interactions with the others,
cannot be assimilated into the simplifications such as distribute. This is the price paid for
this particular instance of simplicity. The proof operator for distribution can be applied
to many sorts of expressions and encompasses many specific laws of distribution, but this
is a ‘one tool for all’ only as so far as the predefined operators. Altering proof operators,
such as distribute, to be extensible is a significant adaptation.

In the early stages of the project a large amount of effort was expended in an attempt
to make an ‘automatic prover’ rather than a ’proof assistant’. The initial assumptions
were that the restrictions of integer streams and a specific proof method would make
an automatic approach possible and preferable to an interactive one. The hope for a
fully automatic, even limited, prover was abandoned. Many proofs given in Hinze’s
paper begin by unrolling definitions to reveal a cons expression with a head and tail.
The proof then proceeds by simplifying the head and rearranging the tail to result in
a recursion equation. The process of unrolling and simplifying is indeed a mechanical
process that can be automated; the functions unrollExpr , elimHeadAndTail and reduce

67

68 CHAPTER 3. EVALUATION AND CONCLUSIONS

do exactly this. The rearrangement of the tail to discover the recursion is the true work.
Despite the knowledge that the starting expression must appear in some form in the
tail, this remains a tough task. There were two alternatives, a brute force proof search
or a goal-directed proof search. The former is not desirable due to the sheer quantity of
choices presented by arithmetic operations. No progress was made with the later, so a
fully automatic approach was discontinued.

The attempt at full automation was not the only part of what can be described as
‘exploring the design space’. Early on in the project, the datatype for describing streams
went through a number of iterations. These experimental variations explored alterna-
tive forms of representing function application and the specific treatment of arithmetic
operators. This has resulted in large amounts of the code presented here being adapted
and rewritten several times over.

The issues that were found to be challenging during the project were not the ones
expected at the outset. Tasks such as verifying the uniqueness of stream equations
and stream specific proof operations were the presumed substance of the project. As it
transpired, the bulk of the project was dealing with arithmetic manipulation. The task
of the proof tool essentially boiled down to an implementation of an arithmetic simplifier
and manipulator.

The generality of matching addition and multiplication expressions is another short-
coming of the project. The commutativity and associativity of these operators means
that there is the potential for a significant number of alternative matchings. The imple-
mentation presented makes an ‘arbitrary’ choice on how to match the variables within a
sum or product. This certainly is a limitation and in some cases this will lead to a match
erroneously failing. This is not as debilitating as it might first appear, for two reasons.
Firstly, based on the proofs explored during the project, it appears to be uncommon to
have multiple variables in a sum or product to be matched. Secondly, the tool provides a
number of general commands for manipulation, which can applied to a whole expression
or part of it. By using these to preprocess an expression, the matching can potentially
be simplified.

3.2 Conclusions

This project has produced a specialized proof assistant that provides computer aid to
proofs of stream equality. While it admits a number of simplifications, it can be seen as
the basis for a more general theorem-prover for streams. The project has also served as
a vehicle for first exploration into the topic of theorem proving and term rewriting. The
assumptions made at the outset, about the nature of the project, have largely turned
out to be false. The major challenges were related to arithmetic manipulation rather
than anything specific to streams. The goal of a fully automatic prover turned out to
be an especially hard task, again largely due to arithmetic.

From the perspective of programming languages, the project does present a strong
case for the expressive power of pattern matching and other language features present
in Haskell. Furthermore the power of monads, as a means of expressing stateful compu-

3.3. FURTHER WORK 69

tations, is illustrated throughout the project and particularly so in the implementation
of the type checker.

3.3 Further Work

A simple extension to the project, which would have been attempted given more time, is
the addition of the finite difference and summation operators from finite calculus. There
are a number of arithmetic laws for each of these operators, some of which would be
naturally amalgamated into the functions such as reduce and distribute. Other possible
extensions to the representation of expressions include generalising to real numbers to
allow for division, or even to make streams fully polymorphic.

There are a number of improvements that can be made to the proof assistant. For
example, instead of requiring that the user specify the law that they wish to employ,
the proof assistant could search all the active laws for potential uses. This would help a
user ‘discover’ the next step in the proof.

It would good to revisit the idea of a goal directed proof search for arithmetic proofs.
One would need to answer the questions of how should a goal be represented and how a
goal should be reached (uninformed search, informed search, planning).

At the beginning of the project, the use of ‘Agda’ was considered [7]. “Agda is a
system for incrementally developing proofs and programs. Agda is also a functional
language with dependent types.” It is also written in Haskell, however at the time of
the project, the support for co-inductive datatypes had not yet been implemented. It
would be worthwhile revisiting this.

70 CHAPTER 3. EVALUATION AND CONCLUSIONS

Bibliography

[1] Richard Bird. Introduction to Functional Programming using Haskell. Prentice Hall
Series in Computer Science. Prentice Hall, second edition, 1998.

[2] C. Hall et. al. Type classes in Haskell. In European Symposium on Programming,
volume 788 of LNCS, pages 241–256. Springer-Verlag, April 1994.

[3] Jeremy Gibbons and Graham Hutton. Proof methods for structured corecusive
programs. In 1st Scottish Functional Programming Workshop, Stirling, Scotland,
August 1999.

[4] Ralf Hinze. Functional pearl: Streams and unique fixed points. Submitted to
ICFP’08, 2008.

[5] G. Hutton. A tutorial on the universality and expressiveness of fold. Journal of
Functional Programming, 9(4):355–372, July 1999.

[6] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical design pattern
for generic programming. ACM SIGPLAN Notices, 38(3):26–37, March 2003.

[7] Ulf Norell. Towards a practical programming language based on dependent type
theory. PhD thesis, Department of Computer Science and Engineering, Chalmers
University of Technology, SE-412 96 Göteborg, Sweden, September 2007.

[8] Simon Peyton Jones, editor. Haskell 98 Languages and Libraries: The Revised
Report. Cambridge University Press, 2003.

[9] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002.

[10] J. J. M. M. Rutten. A coinductive calculus of streams. Mathematical Structures in
Computer Science, 15(1):93–147, 2005.

[11] C. Strachey. Fundamental concepts in programming languages. Higher-Order and
Symbolic Computation, 13(39):11–49, April 2000.

[12] P. Wadler. Theorems for free! In FPCA ’89: Proceedings of the fourth international
conference on Functional programming languages and computer architecture, pages
347–359. ACM, September 1989.

71

72 BIBLIOGRAPHY

[13] P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In 16’th
Symposium on PoPL, Austin, Texas, January 1989. ACM Press.

